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Abstract. The following problem arose in the planning of optical communications networks
which use bidirectional SONET rings. Traffic demands di,j are given for each pair of nodes in an
n-node ring; each demand must be routed one of the two possible ways around the ring. The object
is to minimize the maximum load on the cycle, where the load of an edge is the sum of the demands
routed through that edge.

We provide a fast, simple algorithm which achieves a load that is guaranteed to exceed the
optimum by at most 3/2 times the maximum demand, and that performs even better in practice.
En route we prove the following curious lemma: for any x1, . . . , xn ∈ [0, 1] there exist y1, . . . , yn such
that for each k, |yk| = xk and ∣∣∣∣∣∣

k∑
i=1

yi −
n∑

i=k+1

yi

∣∣∣∣∣∣ ≤ 2.
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1. Introduction. Around the world, billions of dollars are being spent by tele-
phone operating companies to replace copper circuits with optical fiber, vastly increas-
ing potential bandwidth and opening the network to multiple data-types—including
video. The dominant technological standard in the United States is the Synchronous
Optical NETwork (SONET) [1]. In one very popular configuration called a SONET
ring, nodes (typically telephone central offices) are connected by a ring of fiber, with
each node sending, receiving, and relaying messages by means of a device called an
add-drop multiplexer (ADM).

SONET rings enjoy several advantages over other network configurations. The
vertex-symmetry of the rings ensures that nodes play the same role and are similarly
equipped, and the connectivity of the cycle protects against failure of either a link
(that is, an edge) or a node. Thus, a major task of network-planning software, in-
cluding Bellcore’s SONET ToolkitTM [2], is to identify groups of nodes which can be
turned into SONET rings in such a way as to satisfy traffic demands in a cost-efficient
manner.

The capacity of a SONET ring varies from ring to ring but is the same for each
link of a ring, and the cost of a ring (all other factors being equal) is an increasing
function of its capacity. It is not the fiber itself but the ADMs which limit bandwidth.
However, the effect is the same: for each SONET ring there is a capacity C such that
no link of the ring may carry more than C units of traffic.

In some SONET rings all traffic is routed clockwise (unless a fault has occurred)
and the capacity is selected so as to handle the sum of all the point-to-point demands
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between nodes of the ring. Such “unidirectional” SONET rings will not concern us
here.

In bidirectional rings, however, a routing is chosen independently for each pair of
nodes, and all traffic between those nodes (in either direction) is sent by that route.
Clearly, bidirectional rings are much more bandwidth-efficient; for example, when
demands are uniform they can carry four times the traffic of a unidirectional ring
having the same capacity.

In order to compute the capacity required for a proposed bidirectional SONET
ring, the planning software must route the projected traffic demands in such a way as
to minimize, or at least approximately minimize, the maximum load on any link. The
problem is described formally below. We remark that the actual capacity selected
for a proposed ring is further adjusted to allow for failures and abnormal demands,
and that there is a discrete set of standard capacities from which to choose; but these
considerations do not change the objective.

2. Notation and terminology. The problem is formally stated as follows:

RING LOADING
instance: Ring size n and nonnegative integers di,j , 1 ≤ i < j ≤ n.
question: Find a map φ : {(i, j) : 1 ≤ i < j ≤ n} −→ {0, 1} which minimizes
L = max1≤k≤n Lk, where

Lk =
∑

{di,j : φ(i, j) = 1 and k ∈ [i, j)}+
∑

{di,j : φ(i, j) = 0 and k 6∈ [i, j)}.

The notation “[i, j)” is used here for the half-closed integer interval {i, i+ 1, . . . ,
j − 1}.

To make ring loading a decision problem as in [7], we append a target value T
to the instance and ask whether there is a φ for which L ≤ T .

Each di,j is called a demand, and the map φ is called a routing. Setting φ(i, j) = 0
amounts to routing the traffic between nodes i and j the “back” way, that is, through
the link {n, 1}. When φ(i, j) = 1 we say that the (i, j)th demand has been routed
through the “front.”

The routing induces a load Li on each link {i, i+1}, namely, the sum of the
demands routed through that link. The largest load is the ringload L, the quantity
to be minimized.

3. Theory and reality. The decision form of ring loading is clearly in the
class NP since the routing provides a witness which is only

(
n
2

)
bits long. In fact,

ring loading is an integer multicommodity flow problem (the reader is referred to
[4] for a survey on such problems); in general such problems are NP-complete, but we
are dealing with a very special case.

Technically, the input size for an instance of ring loading is slightly more than

dlogne+ dlog T e+
∑

1≤i<j≤n
dlog di,je,

relative to which ring loading is NP-complete. A simple reduction is available from
the partition problem [7, p. 223], in which positive integers a1, . . . , am are given
and the question is whether one can divide them into two groups of equal sum. Put
n = m + 3, di,m+2 = ai for 1 ≤ i ≤ m, and dm+1,m+2 = dm+2,m+3 =

∑
ai/2. Set

all other demands equal to zero, and let T =
∑

ai. Then a good routing must send
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dm+1,m+2 and dm+2,m+3 the short way (front) and must partition the other demands
so that Lm+1 = Lm+2 = T . This solves partition, and vice versa.

An even easier reduction—with just two nodes—was given by Cosares and Saniee
[3] and was made possible by their slightly more general ring loading formalization
in which more than one demand per node pair is allowed. (The positive results to
follow are also easily extended to cover the more general formulation; we prefer the
more restrictive version for notational reasons.)

However, the reduction from partition says nothing about the tractability of
ring loading in practice, because partition is solvable in time polynomial in m ·
max ai and actual demand sizes for ring loading are not large numbers. In fact,
traffic demands are estimates to begin with, and the range 0 to 100 units is typically
adequate. Thus, we may even take the maximum demand D to be bounded by a
reasonable constant. The size n of a SONET ring is currently restricted to about
20. With these parameters, an instance of partition can be solved using dynamic
programming by hand!

Modest as the parameters are, however, they do not permit exhaustive search of

the 2(n2) possible routings, and the partition-to-ring loading reduction does not
appear to permit reversal. As far as we know, any of the following three statements
may be true (see [7] for descriptions of clique and chromatic number):

• ring loading (like partition) can be solved in time polynomial in n and
D.

• ring loading (like clique) can be solved in time polynomial in n but only
if a bound on the maximum demand D is fixed.

• ring loading (like chromatic number) is NP-complete even for (some)
fixed D.

Mercifully, the D = 1 case is solvable in time polynomial in n. The proof is due to
Frank [5] and is explained nicely in [6]; it relies on a theorem of Okamura and Seymour
[9]. This case is important because in some cases demands can be split, but only at
integral values, and can thus be regarded as a multiplicity of unit demands. In fact, as
we shall demonstrate, our approximation algorithm for ring loading actually solves
this case exactly.

We do not have a fast exact algorithm, either in theory or in practice, for the
ring loading problem with D>1. Fortunately, in practice, a reasonable approximate
solution to ring loading was acceptable. There was no room for compromise on the
issue of computation time: the ring loading problem had to be solved in a matter of
seconds at most, because it was part of a frequently called subroutine for determining
the cost of proposed SONET rings. The full program considers enormous numbers of
potential SONET rings and is supposed to work on run-of-the-mill serial computers.

To be precise, we sought an algorithm A with the following three properties, listed
in order of importance:

1. A must be fast.
2. A should provide a solution to ring loading which exceeds the optimum

load by no more than about 5% in most cases.
3. A should, if possible, come with a performance guarantee for both (1) and

(2).
As it turns out, these properties were obtainable with a fairly simple algorithm whose
efficiency does not much depend on D (the demands can be treated as real numbers).

4. Linear relaxation. The “relaxed” version of ring loading, in which de-
mands may be split (that is, sent partly around the front, partly around the back), is
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formulated as follows:

RELAXED RING LOADING

instance: Ring size n and nonnegative integers di,j , 1 ≤ i < j ≤ n.
question: Find a map φ∗ : {(i, j) : 1 ≤ i < j ≤ n} −→ [0, 1] which minimizes
L∗ = max1≤k≤n L∗k, where

L∗k =
∑

{φ∗(i, j)di,j : k ∈ [i, j)}+
∑

{(1− φ∗(i, j))di,j : k 6∈ [i, j)}.

Since this is now a linear programming problem, it is solvable in polynomial time
[8]. In fact, we shall see that a solution to relaxed ring loading can be obtained
in a very fast greedy fashion, even if we demand the additional property described in
Proposition 4.1.

It is useful to think of demands geometrically as weighted chords in a circle
representing the SONET ring. Two demands dg,h and di,j , with g < h and i < j, are
said to cross if all of the indices are distinct and if exactly one of i and j lies in (g, h);
otherwise they are said to be parallel. In particular, demands such as di,j and di,k,
which share a node, are parallel.

A link which lies between two chords representing parallel demands is said to
be “between” the demands. Finally, a routing φ∗ for the relaxed ring loading
problem is said to split a demand di,j if 0 < φ∗(i, j) < 1.

Proposition 4.1. Let φ∗ be a routing for an instance of relaxed ring loading
which achieves the optimal load L∗ and is also minimal, in the sense that no other
routing has Li ≤ L∗i for every i and Lj < L∗j for some j. Then no link which lies
between two parallel demands will carry traffic from both demands.

Proof. Assume otherwise, letting link {k, k+1} carry a quantity a of traffic from
demand dg,h and b ≥ a from di,j . After rerouting a quantity a of traffic from each
demand so as to no longer pass through the kth link, no link suffers an increased load.
This contradicts the minimality of φ∗.

Proposition 4.1 fails for ring loading as can be seen from the example in Fig. 1,
where n = 8 and the nonzero demands are d2,3 = d1,4 = 1 and d6,7 = d5,8 = 2.
The optimal {0, 1}-assignment sends both d1,4 and d5,8 the long way around the ring,
achieving L = 3; no other assignment can do better than L = 4. What is significant,
however, is that the proposition does hold in the case of {0, 1} demands.

We can turn relaxed ring loading into a decision problem in a more general
way than before. We append to the instance a capacity Ci for each link {i, i+1} and
ask whether there is a routing φ∗ for which Li ≤ Ci for each i. In the following it
will be useful to regard node labels as integers modulo n, so that, for example, the
link {n, 1} is also written {n, n+1} and the half-open interval (g, h] is interpreted as
{g, g+1, . . . , n−1, n, 1, 2, . . . , h−1} if h < g.

Each pair of links {g, g+1}, {h, h+1}, with g < h, constitutes a cut of capacity
Cg +Ch in the network. We may think of a cut as a chord connecting the midpoints
of the links {g, g+1} and {h, h+1}; if a demand di,j crosses this chord, any routing
will contribute load di,j to the cut’s two links. Thus, if the instance is solvable, then
Dg,h ≤ Cg + Ch, where

Dg,h :=
∑

{di,j : i ≤ g and j ∈ (g, h], or i ∈ (g, h] and j > h}

is the total traffic demand across the cut. The following converse is a special case of
the Okamura–Seymour theorem [9]; we give a simple proof here.



THE RING LOADING PROBLEM 5

1 21 2

1

2

3

4 5

6

7

8

12 1 2

Fig. 1. An instance of RING LOADING with optimal solution.
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Proposition 4.2. If Dg,h ≤ Cg + Ch holds for each cut then there is a solution
to relaxed ring loading satisfying the capacity constraints.

Proof. It will be useful in what follows to allow “cuts” of the form {g, g}, with ca-
pacity 2Cg and demand Dg,g = 0. The cut constraint for these cuts is thus equivalent
to nonnegativity of the link capacities.

Assume the theorem fails and fix a counterexample with n minimal and, subject
to the minimality of n, having the least possible number of nonzero demands.

Choose any nonzero demand—say, di,j—with i < j, and let {g, h} minimize
M = Dg,h − Cg − Ch subject to i ≤ g < h < j; thus, {g, h} is the tightest cut in the
front route for di,j . (A cut {g, h} is said to be “tight” if Dg,h = Cg + Ch.)

We propose to send min(di,j ,M/2) of the demand di,j around the front and, if
di,j > M/2, send the remaining di,j −M/2 around the back. When the capacities
have been decreased accordingly, we will have a new relaxed ring loading instance
with one less nonzero demand. If the new instance still satisfies the cut constraints,
it will contradict minimality of the counterexample, proving the theorem.

Suppose that in the new instance some cut is violated. That cut must lie on the
back route for di,j , since this demand has already been accounted for in cuts which
it crosses, and cuts on the front route have sufficient slack by choice of M . Then we
have a cut {g′, h′} with [g′, h′) ∩ [i, j) = ∅ such that

Dg′,h′ + 2(di,j −M/2) > Cg′ + Ch′

where all quantities are computed in the original instance.

Call the {g, h} cut and the {g′, h′} cut “straight” and consider also the “diagonal”
cuts {g, g′} and {h, h′}. Every demand must cross at least as many of the two diagonal
cuts as the two straight cuts, while di,j crosses both diagonal cuts and neither straight
cut. Hence,

Dg,g′ +Dh,h′

≥ Dg,h +Dg′,h′ + 2di,j

> Cg + Ch − 2(M/2) + Cg′ + Ch′ − 2(di,j −M/2) + 2di,j

= Cg + Cg′ + Ch + Ch′

so that one of the diagonal cuts must have violated the cut constraint.

Note that nonviolation of cuts of the form {g, g} assures us that the given routing
of di,j is actually possible, i.e., that no link capacity will become negative after-
ward.

Given a set of demands, we now wish to find an assignment φ∗ which minimizes
L∗ and satisfies the conclusion of Proposition 4.1. This can be done quickly by putting
each link in a tight cut as follows.

First we compute the
(
n
2

)
values Dg,h, 1 ≤ g < h ≤ n; let the largest of these

be M . Then L∗ ≥ M/2, but the ring with all capacities set to M/2 satisfies the
cut constraint, so in fact L∗ = M/2. We now take the links in any order (say, {1, 2}
through {n, 1}) and lower their capacities as much as possible; that is, define capacities
{Ci} recursively by

Cg = max (maxh < g(Dg,h − Ch),maxh > g(Dg,h −M/2)) ,

noting that Cg ≥ 0.
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No realizable set {C ′i} of capacities can have C ′i ≤ Ci for every i and C ′j < Cj

for some j, since the least such j would be part of a bad cut. Hence any fea-
sible assignment φ∗ for these capacities is a minimal solution of the original re-
laxed ring loading instance, and Proposition 4.1 applies. In particular, if S =
{{i, j} : di,j is split by φ∗}, then every pair of chords in S crosses and, therefore,
|S| ≤ n/2.

In fact, after reducing the capacities as above we can solve relaxed ring load-
ing to route each demand all front or all back until only mutually pairwise crossing
demands remain. To see this, assume that there is still a parallel pair of unrouted
demands and choose a link between them; fix a tight cut containing that link. At
most one of the two parallel demands crosses the cut; the other can, and indeed must,
be routed to miss the cut entirely.

In summary, our algorithm for solving relaxed ring loading proceeds as fol-
lows:

1. Compute the
(
n
2

)
values Dg,h, and L∗ = M/2.

2. Compute minimal capacities {Ci} as described above.
3. While there are pairs of parallel demands, find tightest cuts and route de-

mands all front or all back, resetting capacities accordingly.
4. When only crossing cuts remain, route as much as possible by the front and

the remainder by the back.
The running time of this procedure is approximately of order kn2, where k is the

number of nonzero demands; this is very fast for the parameter sizes that we require.
See [10] for an even faster solution to problems akin to relaxed ring loading.

In any case, our solution to relaxed ring loading ends with at most only n/2
of the demands split. It therefore seems natural to compute φ∗ and then “unsplit” the
demands in S as gently as possible in order to get a near-optimal {0, 1} assignment
for ring loading. This is exactly what we do.

5. Unsplitting. Henceforth φ∗ will be a fixed, minimal solution to relaxed
ring loading with a set of split demands S as above. We seek a solution φ to ring
loading which agrees with φ∗ when φ∗(i, j) ∈ {0, 1} and for which L−L∗ is as small
as possible, where L is the ringload of φ.

If node i is not an endpoint of a split demand, then the difference between the
loads on links {i−1, i} and {i, i+1} will not change as we pass from φ∗ to φ. Hence,
for the purpose of determining φ, we may as well delete vertex i and combine the two
former links to form a single link whose load under the relaxed assignment is taken to
be max(L∗i−1, L

∗
i ). Proceeding in this fashion for each vertex not involved in a split

demand, we are reduced to the case where n is even and S = {{i, i+m} : 1 ≤ i ≤ m},
with m = n/2.

Let us define ui to be the amount of demand di,i+m sent by φ∗ via the front route,
and vi via the back, so that ui, vi > 0 and ui + vi = di,i+m. If φ routes di,i+m by the
front, then each link {j, j+1} with j ∈ [i, i+m) has its load incremented by vi (the
amount formerly sent around the back) relative to the relaxed assignment φ∗, while
the rest of the link loads are decremented by vi. Similarly, if demand di,i+m is sent by
the back route, the load of each link in [i, i+m] is decreased by ui while the rest are
incremented by the same amount.

Hence if we set zi = vi when φ(i, i+m) = 1 and zi = −ui otherwise, we have

Lj = L∗j +
∑

i∈[1,m]
j∈[i,i+m)

zi −
∑

i∈[1,m]
j∈[i+m,i)

zi.
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Notice that Lj + Lj+m = L∗j + L∗j+m for all j. Thus L ≤ 2L∗ for all choices of φ,
duplicating the performance ratio claimed by Cosares and Saniee [3], but we will do
much better by choosing φ judiciously.

The optimal φ can be found by dynamic programming, but in practice we try
every φ and choose the best one! There are at most 2n/2 choices for φ, a list easily
exhausted for all currently contemplated SONET ring sizes. In effect, for our values of
n (up to 32, possibly) the line between tractability and intractability lies not between
polynomial and exponential but between exponential in n and exponential in n2.

Our embarrassment, as theorists, is assuaged somewhat by the fact that there is
a polynomial algorithm for finding an assignment φ which achieves the performance
guaranteed by the following theorem.

Theorem 5.1. Let φ∗ be a minimal solution, with ringload L∗, to the relaxed
version of an instance of ring loading. Let D be the maximum magnitude of the
demands split by φ∗. Then there is a {0, 1} assignment φ with ringload L which agrees
with φ∗, except on split demands, and which satisfies L− L∗ ≤ 3

2D.

Proof. We define zi (hence φ) inductively, ensuring that
∑k

i=1 zi ∈ [−D/2, D/2]
for all k, 1 ≤ k ≤ m. This is always possible since, once z1, . . . , zk−1 are defined and

the partial sum s =
∑k−1

i=1 zi lies in the required interval, the two possible values of∑k
i=1 zi lie on both sides of s and differ by only uk + vk ≤ D.

Put

Mk :=
k∑
i=1

zi −
m∑

i=k+1

zi = 2
k∑
i=1

zi −
m∑
i=1

zi ∈
[
−3

2
D,

3

2
D

]

and

M := max
1≤k≤m

|Mk|,

then

L− L∗ ≤ max
j

(Lj − L∗j ) = M ≤ 3

2
D.

The greedy unsplitting given in the proof of Theorem 5.1, when appended to
our solution to relaxed ring loading, gives the polynomial-time approximation
algorithm which we call “Algorithm A.”

Of course, the true optimum Lopt for the original ring loading problem is at
least equal to L∗, so the theorem guarantees an additive error of at most a constant
(3/2) times the maximum original demand irrespective of the value of n.

How good is this performance guarantee? This method can never achieve a multi-
plicative performance bound better than 2 relative to L∗, since the “square example”
with n = 4, d1,3 = d2,4 = 1, and other demands 0 gives L∗ = 1, Lopt = 2. Nor can
we hope to get a factor better than 4/3 relative to Lopt due to the example shown in
Fig. 1.

However, for larger n, if demands average D/2 in size then the typical demand
adds n/4 ·D/2 to the total load when routed the short way; thus we expect the sum
of the loads of all the links to be approximately

(
n
2

) · n/4 · D/2 ≈ (D/16)n3, giving
L∗ ≥ (D/16)n2. Next to an optimum of order n2, an additive error which does not
depend on n at all looks pretty good; but we must again remember that n is never
very large. For n = 16 this analysis allows a relative error of (3

2D)/(16D) ≈ 9%,
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which is not so impressive. Of course this is pessimistic; the Cosares-Saniee algorithm
allows 100% error in theory but does far better in practice. In any case, it would
clearly be worth some effort to determine whether the constant 3/2 is best possible,
and we tackle this problem in the last section.

First, however, we return to the {0, 1} demands case.

6. {0,1} Demands. In this section it will not complicate notation to allow many
demands between two nodes of the ring, each of magnitude 1; we also allow capacities
Ci for the links, not necessarily equal. A cut {g, h} is said to be even if Cg+Ch−Dg,h ≡
0 (mod 2). In [6] feasibility is shown to be equivalent to the cut condition together
with the following parity condition.

Parity condition. For every pair of links g, h, if g and h are each in a tight cut,
then the cut {g, h} is even.

Theorem 6.1. In the {0, 1} case, if we put Ci = L for each link i, then ring
loading is feasible with ringload ≤ L if and only if the cut and parity constraints are
satisfied. If only the cut constraint is satisfied, then the optimal ringload is L+ 1. In
any case, the algorithm A described above finds an optimal assignment.

Proof. It is straightforward to verify that if a demand is assigned (all front or all
back) without violating the cut condition, then the truth value of the parity condi-
tion is preserved. Since the parity condition is met when all demands are assigned,
necessity is clear.

On the other hand, suppose that demands are assigned in accordance with Algo-
rithm A until all remaining demands require splitting. Suppose there is at least one
left, say, di,j ; then there must be parallel cuts {g, h} and {g′, h′} on each side of di,j
with Cg +Ch−Dg,h = Cg′ +Ch′ −Dg′,h′ = 1. Since the diagonal cuts must be tight,
the parity condition is (twice) violated.

It remains only to observe that if the cut constraint is satisfied when Ci = L,
then at Ci = L + 1 we also satisfy the parity constraint since all the cuts have
slack.

7. The constant. Let β be the infimum of all reals α such that the following
combinatorial statement holds: For all positive integers m and nonnegative reals
u1, . . . , um and v1, . . . , vm with ui + vi ≤ 1, there exist z1, . . . , zm such that for every
k, zk ∈ {vk,−uk} and

∣∣∣∣∣
k∑
i=1

zi −
m∑

i=k+1

zi

∣∣∣∣∣ ≤ α.

Then β is the “right” constant for Theorem 5.1, i.e., L−L∗ ≤ βD for some choice
of φ. Note that any choice of rational values for the ui’s and vi’s can actually occur
(up to constant factor) from an instance of ring loading, since we can construct one
as follows. Let Mj be the load actually incurred by link {j, j+1} when the demands
di,i+m = ui + vi are split ui front and vi back. Let M be huge, and postulate
additional “short” demands dj,j+1 = M −Mj for each j, 1 ≤ j ≤ 2m. Then any
optimal relaxed ring loading solution will send all the short demands by the one-
link route; however, the sum of the link loads due to the other demands is constant
since each has two routes of the same length. Thus splitting the other demands as
given, so as to obtain the same load M on every link, is optimal, and it is easy to see
that no other splitting can achieve uniform load.
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We already know β ≤ 3/2 and the square example, where m = 2 and u1 = v1 =
u2 = v2 = 1/2, shows that β ≥ 1. (In fact, ui’s and vi’s chosen uniformly at random
subject to the given constraints also force β ≥ 1.)

The special case where ui = vi for each i is interesting for several reasons. This
means that φ∗ is sending exactly half of each demand di,i+m each way around the
ring, giving us no clue how to unsplit them. Furthermore, this is the case which arises
when (as in the square example) all of the nonzero demands in the original ring
loading instance are mutually crossing.

The case ui = vi thus gives rise to a new ring loading problem as well as the
following new constant.

CROSSED RING LOADING

instance: Ring size 2m and nonnegative reals di, 1 ≤ i ≤ m.
question: Find a map φ : {1, 2, . . . ,m} −→ {0, 1} which minimizes L = max1≤k≤2m Lk,
where

Lk =
∑

{φ(i)di : k ∈ [i, i+m)}+
∑

{(1− φ(i))di : k 6∈ [i, i+m)}.

Note that we have allowed real demands here (rationals would be fine, too) in
order to handle nonintegral splits produced by a previous linear programming phase.

We define γ be the infimum of all reals α such that the following combinato-
rial statement holds: For all positive integers m and x1, . . . , xm ∈ [0, 1] there exist
y1, . . . , ym such that for every k, |yk| = xk and

∣∣∣∣∣
k∑
i=1

yi −
m∑

i=k+1

yi

∣∣∣∣∣ ≤ 2α.

(Note that we have rescaled the combinatorial statement so that the xi’s lie in the
unit interval instead of [0, 1/2].)

We have 1 ≤ γ ≤ β ≤ 3/2. For lack of a counterexample, the authors were moved
to conjecture publicly that both constants are equal to 1. After an embarrassingly
long interval we found a simple proof, given below, that γ = 1; thus we have the
following theorem.

Theorem 7.1. Let K be the sum of the demands of an instance of crossed ring
loading. Then there is an assignment φ (which can be found in time polynomial in m
and the length of the demand descriptions) whose ringload L satisfies L−K/2 ≤ D.

Proof. We must show that given x1, . . . , xm ∈ [0, 1] there are y1, . . . , ym such that
for every k, |yk| = xk and

∣∣∣∣∣
k∑
i=1

yi −
m∑

i=k+1

yi

∣∣∣∣∣ ≤ 2.

As in the asymmetric case, we can obtain a bound of 3 instead of 2 by greedy assign-
ment; in this case that amounts to putting yk = xk when

∑k−1
i=1 yi ≤ 0 and yk = −xk

otherwise. We generalize this algorithm by choosing a real w instead of 0 as the
“empty sum.”

Specifically, for fixed w ∈ [−1, 1], define yk inductively by yk = xk when w +∑k−1
i=1 yi ≤ 0 and yk = −xk otherwise. Then w +

∑k
i=1 yi ∈ [−1, 1] for all k; let

f(w) := w +
∑m

i=1 yi.
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Suppose that f(w) = −w; then

k∑
i=1

yi −
m∑

i=k+1

yi

= 2
k∑
i=1

yi −
m∑
i=1

yi

= 2

(
w +

k∑
i=1

yi

)
−
(
w +

m∑
i=1

yi

)
− w

∈ [−2, 2]

as desired.

Since f(−1) + (−1) ≤ 0 ≤ f(1) + 1, the existence of a w for which f(w) = −w
would follow from the intermediate value theorem if f were continuous. Of course this
is not the case; whenever a partial sum hits 0, some yi’s change sign and f(w) may
jump. (Since we have chosen yi positive when the partial sum is 0, f will be continuous
from the left.) However, it turns out that the absolute value of f is continuous.

Note first that when no partial sum is at 0, the derivative f ′(w) is 1. On the
other hand suppose that w = w0 is chosen such that one or more of the partial sums
is zero; in particular, let k ≥ 0 be minimal such that w +

∑k
i=1 yi = 0. Then for

sufficiently small ε, the signs of yj and w +
∑j

i=1 yi, for j > k, flip as we move from
w = w0 to w = w0 + ε. Hence, taking j = m, we have that limw→w+

0
f(w) = −f(w0).

It follows that when any partial sum hits zero we will have limw→w+
0
f(w) =

−f(w0); thus the function g given by g(w) = |f(w)| will be continuous everywhere
and differentiable except at finitely many points. The graph of g is a zig-zag, with
derivative 1 where g(w) = f(w) and −1 where g(w) = −f(w).

Of course, if we define h by h(w) = −w, then the graph of h is a line of slope −1
from (−1, 1) to (1,−1) which must intersect the graph of g. Moreover, it must either
intersect at a point where g′(w) = 1 or coincide with a segment of the graph of g of
slope −1, in which case the leftmost point of the segment lies also on the graph of f .
Either way we have a point w at which −w = g(w) = f(w).

To complete the proof we need to demonstrate a fast algorithm for finding this w.
To do this we set the yi’s one at a time while keeping a solution w in range. Specifically,
at stage j we have values y1, . . . , yj fixed and aj ≤ w ≤ bj , with g(aj) ≤ −aj and
g(bj) ≥ −bj ; of course this holds at stage 0 with a0 = −1, b0 = 1. At stage j + 1, if

ai +
∑j

i=1 yi and bi +
∑j

i=1 yi are both positive, then perforce we set yj+1 = −xj+1;
if both are ≤ 0, then we put yj+1 = xj+1. In either of these cases we set aj+1 = aj
and bj+1 = bj .

Otherwise s := −∑j
i=1 yi lies in the half-open interval [aj , bj). If g(s) < −s, we

put yj+1 = −xj+1 and set aj+1 = s and bj+1 = bj ; if g(s) ≥ −s, put yj+1 = xj+1

and set aj+1 = aj and bj+1 = s. In any case the inductive conditions are preserved,
the intervals [aj , bj ] are nested downward, and at stage m all the yi’s are correctly
set.

We have shown γ = 1, but the proof above will not work for β, as g = |f | is no
longer continuous in the asymmetric case. Even so, we may gain by replacing f by
a multivalued function F , defined by z ∈ F (w) if z = w +

∑n
i=1 zi for any z1, . . . , zn

which keep the sums w +
∑k

i=1 zi within bounds.
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−.5 +.5

0 0

.17   .71   .25   .71   .23   .75   .76   .21   .75   .21   .73   .25   .50

.83   .23   .75   .21   .77   .21   .24   .73   .25   .71   .27   .71   .50

u
i

v
i

1 2 3 4 5 6 7 8 9 10 11 12 13i=

Fig. 2. An example in which additive error of D cannot quite be achieved.

Then the graph of F will be a union of slope-1 line segments, each corresponding
to an assignment of zi’s. The sum of the lengths of these segments will be at least

√
2

since F (w) always takes on at least one value, and in practice—and in virtually any
random model—the segments will practically always intersect the line from (−.5, .5)
to (.5,−.5) at least once, providing a solution to ring loading which is within D of
L∗.

However, it is just barely possible to choose values ui and vi for which the diagonal
line sneaks through between the line segments of the graph of F . A set of such values,
for m = 13, is given in Fig. 2 along with the corresponding graph of F . On the
graph, each of the 213 routings is represented by a diagonal line segment, often null,
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Table 1

n k C% C-B B=C A-C A=C A-B A=B Bt At Ct

8 28 100% .0054 63% .0110 19.4% .0160 10.7% .0001 .0002 .002
12 66 99% .0013 85% .0036 21.2% .0051 19.5% .0004 .0005 .1
16 120 96% .0003 94% .0017 22.3% .0023 20.7% .0016 .0016 .45
20 190 93% .00014 96% .0010 26.2% .0015 23.6% .0036 .0038 .78
24 276 93% .00002 99% .0007 27.2% .0008 24.8% .007 .007 .84
28 378 92% .00000 99% .0004 28.3% .00056 25.5% .013 .012 .92
32 496 92% .00000 99% .0002 29.2% .00037 26.4% .02 .019 1.1

indicating the final sum w+
∑m

i=1 zi as a function of w, for just those values of w for

which all partial sums w +
∑k

i=1 zi lie between −.5 and .5.

With this general definition of the multifunction F , a crossing of the diagonal is
necessary as well as sufficient to get a solution within 2 of L∗. Hence the example
shows that β is at least 1.01. This lower bound can certainly be raised somewhat but
it is far from clear that the true value of β is anywhere near 3/2.

8. Conclusions. Experimental results show that indeed our proposed algorithm
is adequately fast and, when applied to random examples small enough to compute
Lopt, produces a ringload very close to optimal. We have never managed to produce
a random example with L > L∗ + D even though our theorem guarantees only L ≤
L∗ + 3

2D, and we doubt such an instance will ever be seen in practice.

Hence, even though the mathematics refuses to cooperate, we guarantee L ≤
L∗ +D .

Table 1 above exhibits the results of testing our algorithm, which we call “Algo-
rithm A,” on uniformly random data. Alongside “A” we ran a linear programming
algorithm, “Algorithm B,” in order to compute the lower bound given by the re-
laxed ring loading solution. To find the optimum ringload and for purposes of
comparison, we also tested “Algorithm C,” which recursively looks for an optimal so-
lution. In most cases Algorithm C was not enormously slower than A, but it became
hopelessly stuck in some cases, leaving us with no value for the optimal ringload.

For each set of parameters, 1000 cases were run. The interpretation of the columns
of the table is as follows:

n: number of nodes in the ring,
k: number of demands,
C%: percentage of runs in which the optimum was found,
C-B: average error of LP bound relative to optimum,
B=C: percentage of runs in which LP bound = optimum,
A-C: average error of our algorithm relative to optimum,
A=C: percentage of cases in which A hit the optimum,
A-B: average error of LP bound relative to A,
A=B: percentage of cases in which A achieves LP bound,
Bt: average running time for the LP algorithm,
At: average running time for Algorithm A,
Ct: average running time for Algorithm C.

The fourth through seventh columns are computed only for those rounds in which
the optimum was found; that creates a bias, especially for the column labelled B=C,
since we will probably never get equality when Algorithm C fails. The run time for
Algorithm C includes cases where it failed to find the optimum, and it was terminated
after 10 seconds of CPU time on any one run.
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Abstract. Communications problems that involve frequency interference, such as the channel
assignment problem in the design of cellular telephone networks, can be cast as graph coloring
problems in which the frequencies (colors) assigned to an edge’s vertices interfere if they are too
similar. The paper considers situations modeled by vertex-coloring d-regular graphs with n vertices
using a color set {1, 2, . . . , n}, where colors i and j are said to interfere if their circular distance
min{|i − j|, n − |i − j|} does not exceed a given threshold value α. Given a d-regular graph G and
threshold α, an interference-minimizing coloring is a coloring of vertices that minimizes the number
of edges that interfere. Let Iα(G) denote the minimum number of interfering edges in such a coloring
of G. For most triples (n, α, d), we determine the minimum value of Iα(G) over all d-regular graphs
and find graphs that attain it. In determining when this minimum value is 0, we prove that for r ≥ 3
there exists a d-regular graph G on n vertices that is r-colorable whenever d ≤ (1− 1

r
)n− 1 and nd

is even. We also study the maximum value of Iα(G) over all d-regular graphs and find graphs that
attain this maximum in many cases.

Key words. graph coloring, interference threshold, regular graph

AMS subject classifications. 05B99, 05C35

PII. S089548019427545X

1. Introduction. This paper is motivated by telecommunication problems such
as the design of planar regions for cellular telephone networks and the assignment of
allowable frequencies to the regions. In our graph abstraction, vertices are regions,
edges are pairs of contiguous regions, and colors correspond to frequencies. We pre-
sume that every region has the same number d of neighbors, which leads to considering
degree-regular graphs. Interference occurs between two regions if they are neighbors
and their frequencies lie within an interference threshold. We adopt the simplifying
assumption that the number of colors available equals the number n of regions, and
let α denote the threshold parameter so that colors i and j in {1, 2, . . . , n} interfere
precisely when their circularly measured scalar distance is less than or equal to α.
Precedents for the use of circularly measured distance in graph coloring include Vince
[20] and Guichard and Krussel [11].

Our formulation leads to several interesting graph-theoretic problems. One is to
determine for any given d-regular graph G and threshold α the minimum number
Iα(G) of interfering edges over the possible colorings of G. Another is: given param-
eters n, α, and d, determine the minimum and maximum values of Iα(G) and find
graphs G that attain these values. We focus on the latter problem. More specifically,
let G(n, d) denote the set of undirected d-regular graphs on n vertices, which have no
loops or multiple edges, but may be disconnected. We wish to determine the (global)
minimum interference level `(n, α, d), which is the minimum of Iα(G) over G(n, d).
For comparison purposes, we also wish to determine the (global) minimax interfer-
ence level L(n, α, d), which is the maximum of Iα(G) over G(n, d). This latter problem
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1997.
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measures how badly off you would be if an adversary gets to choose G ∈ G(n, d), and
you can then color G to minimize interference.

Our graph-theoretic model is an approximation to the frequency assignment prob-
lem for cellular networks studied in Benveniste et al. [1]. In that paper the network
of cellular nodes is viewed as vertices of a hexagonal lattice Λ in R

2, and the graph
G is specified by a choice of sublattice Λ′ of Λ, with n = |V (G)| being the index
of the sublattice Λ′ in Λ. More precisely, the vertices of G are cosets of Λ/Λ′, and
we draw an edge between two cosets if the cosets are “close” in the sense that they
contain vectors v, v′, respectively, with ||v − v′|| < x, where || · || is a given norm
on R

2 and x is a cutoff value. Such graphs1 G are d-regular for some value of d; the
usual nearest-neighbors case gives d = 6: see Bernstein, Sloane, and Wright [2]. The
frequency spectrum is also divided into cosets (modulo n), and nodes in the same
coset (mod Λ′) are assigned a fixed coset of frequencies (mod n). In cellular prob-
lems the graph G is fixed (depending on Λ′). Typical parameters under consideration
are 10 ≤ n ≤ 30, d = 6, and n/α about 2 or 3. From this standpoint the quanti-
ties `(n, α, d) and L(n, α, d) represent lower and upper bounds for attainable levels of
interference.

Related coloring problems motivated by the channel assignment problem are stud-
ied in Hale [12], Cozzens and Roberts [6], Bonias [4], Liu [14], Tesman [17], Griggs
and Liu [9], Raychaudhuri [15], Troxell [18], and Guichard [10] among others. Roberts
[16] surveys the earlier part of this work. Factors that distinguish prior work from
the present investigation include our focus on regular graphs and the inevitability of
interference when certain relationships hold among n, α and d.

Our main results give near-optimal bounds for `(n, α, d) and L(n, α, d) and iden-
tify d-regular graphs and colorings that attain extremal values. Many interference-
minimizing designs use only a fraction of the available colors or frequencies. The most
common number of colors used in these optimal designs is

γ =

⌊
n

α+ 1

⌋
,

which is the maximum number of mutually noninterfering colors from {1, 2, . . . , n} at
threshold α. Detailed statements of theorems for `(n, α, d) and L(n, α, d) appear in
section 2. Proofs follow in sections 3 to 7.

In the course of our analysis we derive a graph-theoretic result of interest in its
own right, which is a condition for the existence of a d-regular graph having chromatic
number ≤ r.

Theorem 1.1. If r ≥ 3, then G(n, d) contains an r-colorable graph if nd is even
and

d ≤



(1− 1
r )n− 1 if r divides n+ 1 ,

(1− 1
r )n otherwise .

This result is proved in section 5, and the proof can be read independently of the
rest of the paper. Note that if nd is odd then G(n, d) is the empty set.

We preface the results in the next section with a few comments to indicate where
we are headed. The case α = 0 corresponds to no interference because the number of

1The graph G represents a fundamental domain of Λ/Λ′. In the cellular terminology, a funda-
mental domain for Λ/Λ′ is called a “reuse group.” More generally, a “reuse group” is a collection of
contiguous cells that exhausts all frequencies, with no two cells in the group using the same frequency.



INTERFERENCE-MINIMIZING COLORINGS 17

available colors equals the number of vertices, and therefore `(n, 0, d) = L(n, 0, d) = 0.
We assume that α ≥ 1 in the rest of the paper.

For degrees near 0 or n, namely d = 0, 1, n− 2 or n− 1, the set G(n, d) contains
only one unlabeled graph, so these cases are essentially trivial. We note at the end of
section 4 that

`(n, α, n− 1) = L(n, α, n− 1) = bn
γ
c
(
n− 1

2
γ

(
bn
γ
c+ 1

))
.(1.1)

Our first main result in the next section, Theorem 2.1, applies to degree 2 and
shows that most values of ` and L for d = 2 equal 0. A notable exception is that
L(n, 2, 2) is approximately n/3.

Subsequent results focus on d ≥ 3, where we use the maximum number of non-
interfering colors γ to express the results. The case γ = 1 is trivial because then all
colors interfere with each other, so that ` = L = #(edges of G) = nd/2. For γ ≥ 2,
`(n, α, d) for most values of (n, α, d) is approximately

max

(
nd

2
− n2

2

(
γ − 1

γ

)
, 0

)
.

Moreover, L(n, α, d) = 0 whenever γ > d, whereas if n is much larger than d, and d
is somewhat larger than γ, then L(n, α, d) is approximately nd/(2γ).

Extremal graphs which attain `(n, α, d) when ` > 0 are usually connected, and
the associated coloring can often be achieved using γ noninterfering colors. On the
other hand, graphs that attain L(n, α, d) when L > 0 are usually disconnected and
contain many copies of the complete graph Kd+1. There are exceptions, however.

Our results imply that there is often a sizable gap between the values of ` and L.
The smallest instance of ` < L occurs at (n, α, d) = (6, 2, 2) where ` = 0 and L = 2.
Figure 1.1 shows the two graphs in G(6, 2) with interference-minimizing colorings for
α = 2.

Fig. 1.1.

A qualitative comparison of the regions where ` and L equal 0 and are positive
is given in Figure 1.2, where the coordinates are d/n and γ/n.

2. Main results. An undirected graph is simple if it has no loops or multiple
edges. Let G(n, d) denote the set of d-regular graphs on n vertices which are simple
but which are not necessarily connected. Let [n] = {1, 2, . . . , n} be a set of n colors
with circular distance measure

D(i, j) = min{|i− j|, n− |i− j|} ,
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Fig. 1.2. Zero and positive regions.

and let α ∈ {0, 1, . . .} be the threshold-of-interference parameter. A coloring of the
vertex set V (G) of graph G = (V (G), E(G)) in G(n, d) is a map f : V (G) → [n]. The
interference Iα(G, f) of coloring f of G at threshold α is

Iα(G, f) := |{{x, y} ∈ E(G) : D(f(x), f(y)) ≤ α}| .
The minimum interference in G at threshold α is

Iα(G) := min
f :V (G)→[n]

Iα(G, f) .

We study the (global) minimum interference level

`(n, α, d) := min
G∈G(n,d)

Iα(G),(2.1)

and the (global) minimax interference level

L(n, α, d) := max
G∈G(n,d)

Iα(G) .(2.2)

We first note restrictions on the parameter space. Since all graphs in G(n, d) have
nd/2 edges, it follows that

n and d cannot both be odd .(2.3)

We restrict attention to the threshold range

1 ≤ α ≤ n

2
− 1 ,(2.4)

because α ≥ n/2 implies that all colors interfere. Thus

γ := b n

α+ 1
c ≥ 2 .(2.5)
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Our first result concerns ` and L for degree 2.
Theorem 2.1. Let d = 2.
(a) For all γ ≥ 2,

`(n, α, 2) = 0 .(2.6)

(b) For all γ ≥ 3,

L(n, α, 2) = 0 .(2.7)

(c) If γ = 2, and n = 3M + j with 0 ≤ j ≤ 2, then

L(n, α, 2) =




M if j = 0, or j = 2 with
α ≥ (2n− 4)/5,

M − 1 if j = 1, or j = 2 with
α < (2n− 4)/5 .

(2.8)

This is proved in section 3.
We now consider d in the range

3 ≤ d ≤ n− 3

for the minimum interference level `. The cases of γ = 2 and γ ≥ 3 are treated
separately. We obtain an almost complete answer for γ = 2.

Theorem 2.2. Suppose that γ = 2.
(a) If n is even, then

`(n, α, d) = 0 if d ≤ n

2
,

and

`(n, α, d) =




nd
2 − n2

4 if d > n
2 and

n
2 is even, or n

2 and d are both odd,

nd
2 − n2

4 + 1 if d > n
2 and n

2 is odd
and d is even .

(2.9)

(b) If n is odd, then

`(n, α, d) = 0 if d < n− 2α ,

and

`(n, α, d) =
nd

2
− n2

4
+

1

4
if d >

n

2
.(2.10)

(c) If n is odd and in the remaining range n − 2α ≤ d ≤ n
2 , then `(n, α, d) ≤ d

2 .
Furthermore,

(i) `(n, α, d) = 0 if there is an integer 2s+ 1 ≥ 5 such that

α ≤
(

s

2s+ 1

)
n− 1 and d ≤

(
2

2s+ 1

)
n ;
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(ii) `(n, α, d) ≤ d
2 − 1 if d ≥ 8, d

2 is even, and there is an integer 4s + 1 ≥ 5
such that

α ≤
(

2s

4s+ 1

)
n− 1 and d =

(
2

4s+ 1

)
(n+ 1) ;

(iii) `(n, α, d) = d
2 for α = (n− 3)/2.

Case (c) above is the only case not completely settled. Instances of it are illus-
trated in Figure 2.1. The number beside each vertex clump gives the color assigned to
those vertices, and the number on a line between noninterfering clumps is the number
of edges between them. Case analyses, omitted here, show that no improvements are
possible in part (c) of the theorem when n ≤ 21. Given n ≤ 21, (i) has three realiza-
tions, namely `(15, 5, 6) = `(21, 7, 8) = `(21, 8, 6) = 0, (ii) has only the realization at
the bottom of Figure 2.1, and ` = d/2 for all other cases.

We remark that the bounds on `(n, α, d) for d > n/2 are obtained using a variant
of Turán’s theorem on extremal graphs (Turán, [19]; Bondy and Murty, [3, p. 110]).
Theorem 2.2 is proved in section 4.

We now consider the minimum interference level ` when γ ≥ 3. To handle this
case we use Theorem 1.1, which is proved in section 5. Let p and q be the unique
nonnegative integers that satisfy

n = pγ + q with 0 ≤ q < γ ,

that is,

p = bn
γ
c and q = n− γbn

γ
c .(2.11)

Our bounds for γ ≥ 3 are given in the next two theorems for q = 0 and q > 0,
respectively, and are proved in section 6. The q = 0 case is somewhat simpler.

Theorem 2.3. Suppose that γ ≥ 3 and that γ divides n, i.e., q = 0.
(a) If d ≤ n− p, then

`(n, α, d) = 0 .

(b) If d > n− p, then

`(n, α, d) =




n(d−n+p)
2 if n− d is odd or if

n− d is even and p is even,

n(d−n+p)
2 + γ

2 if n− d is even and p is odd .

Theorem 2.4. Suppose that γ ≥ 3 and γ doesn’t divide n, i.e., q ≥ 1.
(a) If d < n− p, then

`(n, α, d) =




0 if d < n− p− 1, or d = n− p− 1
and q < γ − 1,

p
2 if d = n− p− 1 and q = γ − 1 .

(b) If d ≥ n− p, then

`(n, α, d) =
n(d− n+ p)

2
+ θ,
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Fig. 2.1. γ = 2, n odd, n – 2α < d < n/2.

where

θ =




q(p+1)
2 if n− d is odd,

q(p+2)
2 if n− d is even and p is even,

pq+γ
2 if n− d is even and p is odd .

(2.12)
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We turn next to results for the minimax interference level L. We first distinguish
cases where L = 0 from cases where L > 0.

Theorem 2.5. Suppose that 3 ≤ d ≤ n− 2. Then
(a) L(n, α, d) = 0 whenever γ > d and also when γ = d and n < 2(d+ 1);
(b) L(n, α, d) > 0 for γ ≤ d whenever n ≥ 2(γ + 1).
The only cases in the parameter range 1 ≤ α ≤ n

2 − 1 and γ ≥ 2 not settled by
this theorem are those with

γ = d− a and n = 2(d− a) or 2(d− a) + 1, where a > 0 .(2.13)

Both L = 0 and L > 0 occur in this exceptional case, e.g., for a = 1, L(8, 1, 5) = 0
while L(7, 1, 4) = 1.

Our final main result provides bounds for L. Set

Q = d+ 1− γbd+ 1

γ
c,

and

W = n− (d+ 1)b n

d+ 1
c .

In view of Theorem 2.5 we consider only the range that 2 ≤ γ ≤ d.
Theorem 2.6. Suppose that 3 ≤ d ≤ n− 1 and that 2 ≤ γ ≤ d. Then

L(n, α, d) ≥ 1

2γ
b n

d+ 1
c((d+ 1)(d+ 1− γ) +Q(γ −Q))− 1

2
W (d+ 1−W ) ,

and

L(n, α, d) ≤ 1

2γ

(
d

n− 1

)
(n(n− γ) + q(γ − q)) .

In the special case that d+1 divides n, these bounds can be written more simply
as

nd

2γ
− n(γ − 1)

2γ
+
nQ(γ −Q)

2γ(d+ 1)
≤ L(n, α, d) ≤ nd

2γ
− nd(γ − 1)

2γ(n− 1)
+

dq(γ − q)

2γ(n− 1)
.

This applies in particular when d = n− 1, in which case the upper and lower bounds
coincide, yielding (1.1). If n is substantially larger than d, and d is somewhat larger
than γ, then L is closely approximated by nd/2γ.

Theorems 2.5 and 2.6 are proved in section 7.

3. Elementary facts: Theorem 2.1. We derive general conditions that guar-
antee ` = 0 or L = 0, and then analyze degree-2 graphs (Theorem 2.1).

Lemma 3.1. If 1 ≤ α < n
2 , then

(a) `(n, α, d) = 0 whenever d < n− 2α ,(3.1)

and

(b) `(n, α, d) = 0 whenever d ≤ n

2
and n is even.(3.2)
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Proof. (a) Given d < n − 2α, let V (G) = {1, 2, . . . , n} and consider the coloring
f(i) = i for every i. We construct a suitable G starting with the edge set

E = {{i, j} : i, j ∈ [n], i 6= j, with D(i, j) ≥ (n+ 1− d)/2} .
If n is odd, or if n is even and d is odd, let E(G) = E. Then every vertex has degree
d and every edge has D > α, so `(n, α, d) = 0. If n and d are both even, so α ≤ (n−
d)/2−1, let E(G) = (E∪{{i, j} : D(i, j) = (n− d)/2})\{{1, (n/2) + 1}, {2, (n/2) + 2},
. . . , {(n/2), n}}. Again, every vertex has degree d and every edge has D > α, so
`(n, α, d) = 0.

(b) Let χG denote the chromatic number of the graph G. The definition implies
that

`(n, α, d) = 0 if χG ≤ γ for some G ∈ G(n, d) .(3.3)

If n is even and d ≤ (n/2), then G(n, d) contains a bipartite graph with n/2 vertices
in each part, so χG = 2, and (b) follows from (3.3), since γ ≥ 2.

We remark that the construction in part (a) uses all n colors, and when d ≥ n−2α
this same construction gives many interfering edges. It is natural to consider the
opposite extreme, which is to use only a maximal set of γ = bn/(α+ 1)c noninterfering
colors. This leads to part (b).

The restriction in part (b) that n be even is crucial, because no d-regular bipartite
graph exists for odd n. Indeed, there are exceptions where `(n, α, d) > 0 for some
d < n/2 with n odd (see Theorems 2.1 and 2.2). These exceptions occur when γ = 2,
but are not an issue for γ ≥ 3.

We obtain bounds on the minimax interference level L using the following well-
known bound for the chromatic number χG of a graph G.

Proposition 3.2. For every finite simple graph G,

χG ≤ ∆G + 1 ,(3.4)

where ∆G is the maximum degree of a vertex of G. Furthermore, χG ≤ ∆G provided
that no connected component of G is an odd cycle or a complete graph.

Proof. For the proof, see Brooks [5] and Bondy and Murty [3, pp. 118 and
122].

This result immediately yields the following condition for the minimax interfer-
ence level L = 0.

Lemma 3.3. If 1 ≤ α < (n/2), then

L(n, α, d) = 0 whenever γ > d .(3.5)

Proof. The definition of L(n, α, d) gives

L(n, α, d) = 0 if χG ≤ γ for every G ∈ G(n, d) .(3.6)

Since ∆G = d for a d-regular graph, (3.5) follows from Proposition 3.2 via (3.6).
Proof of Theorem 2.1. (a) Since d = 2, ` = 0 follows from (3.2) if n is even, and

from (3.1) if n is odd and α ≤ (n/2)− 1.
(b) Follows from Lemma 3.3.
(c) Given d = 2, every graph in G(n, 2) is a sum of vertex-disjoint cycles. Suppose

γ = 2, so n/3 − 1 < α ≤ n/2 − 1. Then an even cycle has minimum interference
0, a 3-cycle has minimum interference 1, and an odd cycle with five or more vertices
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has minimum interference 0 or 1. It follows that L = M if n = 3M (M 3-cycles),
L = M − 1 if n = 3M + 1 (M − 1 3-cycles, one 4-cycle), and L ∈ {M − 1,M} if
n = 3M + 2. The last case uses M − 1 3-cycles and one 5-cycle. When the 5-cycle’s
vertices are colored successively as 1, α+ 2, 2α+ 3, n− 2α− 1, and n− α, it has no
interference if [n−(2α+3)]+[n−2α−1] > α, i.e., if α < (2n−4)/5, so L = M−1 in this
case. More generally, suppose one vertex of the 5-cycle is colored 1. Its neighbors must
have colors in [α + 2, n − α] to avoid interference. Then their uncolored neighbors,
which are adjacent, must have colors in [2α + 3, . . . , n, 1, . . . , n − 2α − 1] to avoid
interference. This set has maxD = [n + (n − 2α − 1)] − (2α + 3), which is ≤ α if
(2n− 4)/5 ≤ α. Hence, L = (M − 1) + 1 for n = 3M + 2 if (2n− 4)/5 ≤ α.

4. Minimal interference level: Theorem 2.2. We prove Theorem 2.2 in this
section. The ranges stated where `(n, α, d) = 0 follow from Lemma 3.1, so the main
content of parts (a) and (b) of Theorem 2.2 concerns the values `(n, α, d) for d > n/2.
To obtain these we use a variant of Turán’s theorem (Turán [19]; Bondy and Murty
[3, p. 110]), which we state as a lemma. An application of the lemma at the end of
the section yields the exact value of L(n, α, n−1) as well as `(n, α, n−1). Recall that
an equi-t-partition of a vertex set V is a partition {V1, . . . , Vt} with ||Vi| − |Vj || ≤ 1
for all i, j ∈ {1, . . . , t}.

Lemma 4.1. The maximum number of noninterfering edges in the complete graph
Kn with vertex set V and threshold parameter α is attained only by a coloring f : V →
[n] that has D(f(x), f(y)) > α whenever x and y are in different parts of an equi-γ-
partition of V .

Proof. Suppose that a coloring f of the complete graph Kn has fi vertices of
color i and fifj > 0 for some i 6= j with D(i, j) ≤ α. Let mab denote the number
of vertices of colors other than a and b that interfere with a and not b. If all color-i
vertices are recolored j, the net increase in interference is fi(mji −mij); if all color-j
vertices are recolored i, the net increase in interference if fj(mij −mji). Hence, at
least one of the recolorings does not increase interference. Continuing this recoloring
process implies that noninterference in Kn is maximized by a γ-partite partition of V
such that D(f(x), f(y)) > α whenever x and y are in different parts of the partition.
Turán’s theorem then implies that maximum noninterference obtains only when the
partition is an equi-γ-partition.

We can assume without loss of generality that the coloring f found in Lemma 4.1
is constant on each part of an equi-γ-partition, with f(V ) = {(i − 1)(α + 1) + 1 :
i = 1, . . . , γ}. If interfering edges are then dropped from Kn, we obtain a complete
equi-γ-partite graph with zero interference and chromatic number γ. This graph is
regular if and only if γ divides n and each part of the partition has n/γ vertices.

Proof of Theorem 2.2. Throughout this proof γ = 2, so that

n/3− 1 < α ≤ n/2− 1 .(4.1)

We consider first (a) and (b). The ranges given where `(n, α, d) = 0 come from
Lemma 3.1. So assume now that d > n

2 . Let G0 be a complete bipartite graph {A,B}
such that

|A| = dn
2
e and |B| = bn

2
c .

Lemma 4.1 implies that two-coloring G0 using noninterfering colors for A and B
uniquely maximizes the number of edges with no interference when γ = 2. Therefore
` ≥ nd/2− |A||B| .
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(a) Suppose n is even. If n/2 and d are odd, the number of edges needed within
each part of G0 to increase all degrees to d is (n/2)(d − n/2)/2, which is an integer
since d − n/2 is even. It follows that if n/2 is even, or if n/2 and d are odd, then
` = (n/2)(d− n/2) = nd/2− n2/4.

If instead n/2 is odd, and d is even, then (n/2)(d−n/2) is odd, G0 is not part of any
graph in G(n, d), and ` > nd/2− n2/4. We obtain ` = nd/2− n2/4 + 1 by replacing
G0 with a complete bipartite graph G1 with bipartition {A′, B′}, |A′| = n/2 + 1
and |B′| = n/2 − 1. Beginning with G1, each vertex in A′ requires d − n/2 + 1
more degrees to have degree d, and each vertex in B′ requires d − n/2 − 1 more
edges added to have degree d. Both d − n/2 + 1 and d − n/2 − 1 are even, so edge
additions as needed can be made within A′ and B′ to obtain G ∈ G(n, d). Therefore
` = nd/2− (n/2 + 1)(n/2− 1) = nd/2− n2/4 + 1 in this case; and (2.9) is proved.

(b) Suppose n is odd, so d is even by (2.3). Beginning withG0, each of the (n+1)/2
vertices in A requires d− (n− 1)/2 more incident edges added to have degree d, and
each of the (n− 1)/2 vertices in B requires d− (n+ 1)/2 more incident edges added
to have degree d. Each of {(n + 1)/2, d − (n − 1)/2} and {(n − 1)/2, d − (n + 1)/2}
contains an even integer, so we can make the required additions of edges within A
and B. Hence ` = nd/2 − [(n + 1)/2][(n − 1)/2] = nd/2 − (n2 − 1)/4, and (2.10) is
proved.

It remains to prove (c), which has three parts, (i)–(iii). Assume henceforth that n
is odd and n−2α < d < n/2, with d even because n is odd. Augmented equi-bipartite
graphs, illustrated at the top of Figure 2.1, show that ` ≤ d/2 since they require d/2
edges within the (n+1)/2-vertex part to obtain degree d for every vertex. Sometimes
` = d/2. A case in point is α = (n− 3)/2, the largest possible α for γ = 2 and odd n.

Suppose α = (n − 3)/2. Then d > n − 2α = 3 ⇒ d ∈ {4, 6, . . . , n − 1}. Each
vertex in the color set [n] has exactly two others for which D > α, and the graph of
noninterfering colors is an n-cycle whose successive colors are 1, (n+3)/2, 2, (n+5)/2,
3, . . . , (n + 1)/2. If every color were assigned to some vertex in G ∈ G(n, d), there
would be at least n(d−2)/2 interference edges. But n(d−2)/2 > d/2, so f must avoid
at least one color to attain `. Deletion of one color from the n-cycle of noninterfering
colors breaks the cycle and leaves the noninterference graph

Because all xi colors interfere with each other, and all yi colors interfere with
each other, we can presume that f uses only one xi and an adjacent yj . This yields
the augmented bipartite structure of the preceding paragraph, and it follows from
maximization of between-parts edges that ` = d/2. This completes the proof of (iii).

For (i) and (ii), assume α < (n − 3)/2 and consider an odd r ≥ 5 sequence of
colors c1, c2, . . . , cr with c1 = 1 and D(ci+1, ci) ≥ (α + 1) for i = 1, . . . , r − 1. The
tightest such sequence has ci = (i− 1)(α+ 1) + 1 for i = 2, . . . , r, where color jn+ k,
1 ≤ k ≤ n, is identical to color k. It follows that the final color cr can be chosen not
to interfere with c1 = 1 = jn+ 1 if

1

2
(r − 1)n− (r − 1)(α+ 1) ≥ (α+ 1) ,



26 P. C. FISHBURN, J. H. KIM, J. C. LAGARIAS, AND P. E. WRIGHT

i.e., if

α ≤
(
r − 1

2r

)
n− 1 ⇐⇒ r ≥ n

n− 2(α+ 1)
.(4.2)

We usually consider the smallest such odd r ≥ 5 because this allows the ` = 0
conclusion for the largest d values. Our approach, illustrated on the lower part of
Figure 2.1, is to assign clumps of vertices to the ci in such a way that all edges for G ∈
G(n, d) are between adjacent clumps on the noninterference color cycle c1, . . . , cr, c1.

Suppose (4.2) holds for a fixed odd r ≥ 5. We assume that r < n because the
ensuing analysis requires this for d ≥ 3. Let a and b be nonnegative integers that
satisfy

n = ar + b, 0 ≤ b < r .

We prove (i), then conclude with (ii). The analysis for (i) splits into three cases
depending on the parity of a and br/4c.

Case 1: a odd.
Case 2: a even, br/4c odd.
Case 3: a even, br/4c even.

Because n is odd, Case 1 requires b to be even and Cases 2 and 3 require b to be odd.
Case 1. Given an odd a, we partition the n vertices into b clumps of a+1 vertices

each and r − b clumps of a vertices each. The clumps are assigned to colors in the
noninterference cycle c1, . . . , cr, c1 so that the clumps of each type are contiguous.
Cases for b = 0 and b = 4 are illustrated at the top of Figure 4.1. We begin at the
central (top) a clump and proceed symmetrically in both directions around the color
cycle, assigning between-clumps edges as we go so that all vertices end up with degree
2a. The required edges into the next clump encountered are distributed as equally
as possible to the vertices in that clump. When we get into the clumps with a + 1
vertices, the number of between-clumps edges needed will generally be less than the
maximum possible number of (a+1)2. Numbers of between-clumps edges used to get
degree 2a for every vertex are shown on the noninterference lines between the ci on
Figure 4.1.

The preceding construction yields `(n, α, d) = 0 for d = 2a = 2(n− b)/r. If even
d is less than 2a, say d = 2a′ with a′ < a, we modify the procedure by using fewer
between-clumps edges for the required vertex degrees: clump sizes are unchanged.
Because n/r < d/2 = a yields the contradiction that n < ra, it follows for Case 1
that ` = 0 if d ≤ (2/r)n.

Case 2. With a even and br/4c odd, we have b odd and r ∈ {5, 7, 13, 15, 21,
23, . . .}. In this case we assign a − 1 vertices to c1 and proceed in each direction
around the ci cycle, assigning a, a+1, a, a−1, a, a+1, a, a−1, . . . , a0, a∗ vertices to
the next (r−1)/2 ci in order. The penultimate number a0 equals a if r ∈ {5, 13, 21, . . .}
and is a + 1 if r ∈ {7, 15, 23, . . .}. The ultimate number a∗ in chosen so that there
are [n− (a− 1)]/2 vertices (excluding the a− 1 for c1) on each side of the color cycle.
If a0 = a then a∗ = a + (b + 1)/2, and if a0 = a + 1 then a∗ = a + (b − 1)/2. The
two cases are shown on the lower left of Figure 4.1 with numbers of between-clumps
edges that give degree d = 2a for every vertex. If even d is less than 2a, fewer edges
are used, as needed, down the two sides. As in Case 1, we get ` = 0 if d ≤ (2/r)n.

Case 3. With a even and br/4c even, we have b odd and r ∈ {9, 11, 17, 19, 25,
27, . . .}. Here we assign a+1 vertices to c1 and proceed with a, a−1, a, a+1, a, a−1,
a, a + 1, . . . , a0, a∗ vertices assigned to the next (r − 1)/2 ci in each direction away
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Fig. 4.1.

from c1. We get a0 = a and a∗ = a + (b + 1)/2 if r ∈ {9, 17, 25, . . .}, and a0 = a + 1
and a∗ = a + (b− 1)/2 if r ∈ {11, 19, 27, . . .}. The two cases are shown on the lower
right of Figure 4.1. As before, ` = 0 if d ≤ (2/r)n.

This completes the proof of (i), after defining s by r = 2s + 1. We have also
checked that the construction used here cannot yield l = 0 unless the conditions of
(i) hold.
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There is, however, one other set of circumstances where this construction yields
a value of ` < d/2 for some d > (2/r)n, and these circumstances are exactly the
hypotheses of (ii), namely


d ≥ 8, d/2 is even,
r = 4s+ 1 for some integer s ≥ 1,
n = r(d/2)− 1 (n is odd since d/2 is even),
α satisfies (4.2) .

(4.3)

In this case we partition the vertices into (r + 1)/2 clumps of d/2 − 1 vertices each
and (r − 1)/2 clumps of d/2 + 1 vertices each. The clumps (−1 for d/2 − 1, +1
for d/2 + 1) are arranged around the noninterference color cycle c1, c2, . . . , cr as
−1,−1,−1,+1,+1,−1,−1,+1,+1, . . . ,−1,−1,+1,+1. We use all possible between-
clumps edges. This gives degree d for every vertex except those in the c2 clump, which
has 2(d/2− 1)2 = d2/2− 2d+ 2 incoming edges from c1 and c3. The degree total for
c2 should be d(d/2 − 1) = d2/2 − d, so we need to add (d − 2)/2 = d/2 − 1 edges
within c2 to get degree d for each c2 vertex. Prior to the additions, each c2 vertex
has degree d− 2 by our equalization construction, so the additions can be made by a
complete cycle within the clump. It follows that ` ≤ d/2− 1, proving (ii).

We conclude this section by noting that the modified Turán’s theorem (Lemma 4.1)
easily allows us to completely settle the case of degree d = n− 1.

Corollary 4.2. For d = n− 1,

`(n, α, n− 1) = L(n, α, n− 1) = bn
γ
c
(
n− 1

2
γ

(
bn
γ
c+ 1

))
.(4.4)

Proof. Write

n = pγ + q , 0 ≤ q < γ ,

so p = bnγ c. An equi-γ-partition of an n vertex set has


q parts, each with p + 1 vertices,

γ − q parts, each with p vertices.

Now the unique graph G ∈ G(n, n− 1) is Kn, so applying Lemma 4.1, we have

`(n, α, n− 1) = L(n, α, n− 1) = q

(
p+ 1

2

)
+ (γ − q)

(
p
2

)
,

which is (4.4).

5. Chromatic number bound: Theorem 1.1. This section gives a self-
contained proof of Theorem 1.1. We first recall two preliminary facts, stated as
propositions.

Proposition 5.1 (see Dirac [7]). Let G be a simple graph. If every vertex of G
is of degree at least |V (G)|/2, then G is Hamiltonian; that is, G has a cycle of length
|V (G)|.

Proof. For the proof, see Bondy and Murty [3, p. 54].
Recall that a matching in a simple graph G is a subset of mutually vertex-disjoint

edges of G. A matching is perfect if every vertex in G is on some edge of the matching.
The following is a consequence of a well-known theorem of Hall [13].
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Proposition 5.2 (Marriage Theorem). If G is a d-regular bipartite graph with
d > 0, then G has a perfect matching.

Proof. For the proof, see Bondy and Murty [3, p. 73].
We study the function φ(n, d; r) defined by

φ(n, d; r) =




1 if there exists an n-vertex d-regular r-colorable graph,

0 otherwise .

When φ(n, d; r) = 1 we let G(n, d; r) denote such a d-regular r-colorable (that is,
r-partite) graph having n vertices. We consider only values in which nd is even.

Our first observation is that because an r-colorable graph is also (r+1)-colorable,

φ(n, d; r1) ≤ φ(n, d; r2) if r1 < r2 .(5.1)

The purpose of the next two lemmas is to prove that φ(n, d; r) is monotone when
r ≥ 3 is held fixed and d varies over values where nd is even.

Lemma 5.3. (a) If d ≤ n/2 and if either r ≥ 3 or r = 2 and n is even, then

φ(n, d; r) = 1 .(5.2)

(b) If d ≥ n/2, then

φ(n, d; r) = 1 implies φ(n, d− 2; r) = 1 .(5.3)

If in addition n is even, then

φ(n, d; r) = 1 implies φ(n, d− 1; r) = 1 .(5.4)

Proof. (a) Suppose that n is even. The inequality (5.1) implies that it is enough
to show

φ(n, d; 2) = 1 for d ≤ n

2
, n even .(5.5)

We use reverse induction on d ≤ n/2. For the base case d = n/2, the complete
equi-2-partite graph gives φ(n, n/2; 2) = 1. For the induction step, suppose we know
that φ(n, d; 2) = 1. Then a d-regular bipartite graph G(n, d; 2) exists, and by Propo-
sition 5.2 it has a perfect matching M . Remove all edges in M from G to obtain a
(d− 1)-regular bipartite graph G(n, d− 1; 2). Hence φ(n, d− 1, 2) = 1.

Suppose n is odd. Then (5.1) implies that it is enough to show

φ(n, d; 3) = 1 for d ≤ n

2
, n odd .(5.6)

Now d must be even by (2.3), and d ≤ (n − 1)/2. Because n − 1 is even, we have
φ(n − 1, d; 2) = 1 by (5.5). Consider G := G(n − 1, d; 2) with |V (G)| = n − 1. By
Proposition 5.2 we may find a perfect matching ofG, sayM = {{x1, y1}, . . . , {xk, yk}},
with k = (n− 1)/2 ≥ d/2. Remove from G the edges {x1, y1}, . . . , {x d

2
, y d

2
}, and add

to G a new vertex z and the edges {z, xi} and {z, yi} for 1 ≤ i ≤ d/2. Then it is easy
to see that the resulting graph is a d-regular 3-partite graph with n vertices, which
proves (5.6).
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(b) Let G = G(n, d; r), which exists by hypothesis. Since d ≥ n/2, Proposition 5.1
guarantees that G has a Hamiltonian cycle C. Removing all edges from C yields a
G(n, d− 2; r), so φ(n, d− 2; r) = 1. If moreover n is even, then C has even length and
we get a perfect matching M by taking alternate edges in C. Removing all edges in
M from G yields a G(n, d− 1; r), so φ(n, d− 1; r) = 1 in this case.

Lemma 5.4. If r ≥ 3, then

φ(n, d1; r) ≥ φ(n, d2; r) if d1 < d2 ,(5.7)

provided that nd1 and nd2 are both even.
Proof. Suppose d1 ≤ n/2. Then by Lemma 5.3(a), φ(n, d1; r) = 1 for all r ≥ 3,

and we are done.
Suppose d1 > n/2. For even n, Lemma 5.3(b) used inductively on decreasing d

gives

φ(n, d2; r) = 1 ⇒ φ(n, d2 − 1; r) = 1 ⇒ . . .⇒ φ(n, d1; r) = 1 .

For odd n, since nd1 and nd2 are both even, both d1 and d2 must be even. Now
Lemma 5.3(b) gives

φ(n, d2; r) = 1 ⇒ φ(n, d2 − 2; r) = 1 ⇒ . . .⇒ φ(n, d1; r) = 1 ,

so (5.7) follows.
Proof of Theorem 1.1. To commence the proof, we define p and q by

n = pr + q with 0 ≤ q < r ,(5.8)

that is, p = bn/rc ≥ 1. Note that r divides n+ 1 if and only if q = r− 1. In terms of
p and q the assertions of the theorem then become

(i) If q = 0, then φ(n, d; r) = 1 if d ≤ n− p.
(ii) If 1 ≤ q ≤ r − 2, then φ(n, d; r) = 1 if d ≤ n− p− 1.
(iii) If q = r − 1 then φ(n, d; r) = 1 if d ≤ n− p− 2.
To prove (i)–(iii), we use the complete equi-r-partite graph Gr(n) defined as

follows. The graph Gr(n) has vertices V = {v1, v2, . . . , vn}, and for 1 ≤ j ≤ r we
define the vertex sets

Xj = {vi : i ≡ j (mod r)} .(5.9)

The edge set of Gr(n) is

E(Gr(n)) = {{vi, vj} : i 6≡ j(mod r)} .
Here {X1, . . . , Xr} is an equi-r-partition of V with

|X1| = |X2| = · · · = |Xq| = p+ 1, |Xq+1| = · · · = |Xr| = p .(5.10)

For 1 ≤ a ≤ b ≤ r we let Gr
a,b denote the induced subgraph of Gr(n) on the vertex

set

Va,b := ∪bj=aXj .

To prove (i), if q = 0 then Gr(n) is an (n− p)-regular graph, hence

φ(n, n− p; r) = 1 .(5.11)
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Lemma 5.4 implies φ(n, d; r) = 1 if d ≤ n− p, and (i) follows.
To prove (ii), let H = Gr

q+1,r. Then (5.10) shows that H is a p(r − q − 1)-
regular graph having p(r − q) vertices. Now r − q ≥ 2 implies that H has degree
p(r − q − 1), which is greater than half its vertices, so H has a Hamiltonian cycle C
by Proposition 5.1.

If p(r−q) is even, then H has a perfect matching M obtained by taking every other
edge in C. Removing all edges in M from Gr(n), the resulting graph is (n − p − 1)-
regular, hence φ(n, n− p− 1; r) = 1. Lemma 5.4 then completes the proof of (ii).

If p(r − q) is odd, then p is odd, hence so is

n = pr + q = (p+ 1)q + p(r − q) .

Then n− p− 1 is also odd, so d = n− p− 1 is forbidden by (2.3). Thus it suffices to
show that φ(n, n− p− 2; r) = 1 in this case, for then Lemma 5.4 gives φ(n, d; r) = 1
for d ≤ n− p− 2.

Let H ′ := Gr
1,q. Then H ′ is a (p+ 1)(q − 1)-regular graph with (p+ 1)q vertices.

If q > 1, then

(p+ 1)(q − 1) ≥ (p+ 1)q/2 ,

hence H ′ is Hamiltonian. Since (p + 1)q is even, H ′ has a perfect matching M ′.
Removing all edges in M ′ ∪C from Gr(n), the resulting graph is (n− p− 2)-regular,
hence φ(n, n− p− 2; r) = 1.

Suppose q = 1. Notice that since p(r − 1) is odd, r 6= 3, hence r ≥ 4. Let H ′′ be
the induced subgraph of Gr(n) on the set

{vjr+2 ∈ X2 : (p+ 1)/2 ≤ j ≤ p} ∪
r⋃

j=3

Xj ,

and

E := {{vir+1, vjr+2} : 0 ≤ j ≤ (p− 1)/2, i = 2j or i = 2j + 1} .
Then the number of vertices of H ′′ is p(r − 2) + (p − 1)/2 and the minimum degree
of H ′′ is p(r − 3) + (p− 1)/2. Since

p(r − 3) + (p− 1)/2 ≥ 1

2
(p(r − 2) + (p− 1)/2) for r ≥ 4 ,

Proposition 5.1 implies that H ′′ has a Hamiltonian cycle C ′′. By removing all edges
in C ′′∪E from Gr(n) we have an (n−p−2)-regular graph, hence φ(n, n−p−2; r) = 1.

To prove (iii) we proceed by induction on r, with an induction step from r to
r + 2. There are two base cases, r = 3 and r = 4.

Base Case r = 3. We have q = 2, so n = 3p+ 2. Let

E1 = {{v3i, v3i−2} : i = 1, 2, . . . , p} and E2 = {{v3i, v3i−1} : i = 1, 2, . . . p} .
Consider the graph G obtained by removing from G3(n) all edges in E1 ∪ E2 ∪
{v3p+1, v3p+2}. Then it is easy to see that G is (n−p−2)-regular, so φ(n, n−p−2; r) =
1. Now Lemma 5.4 gives φ(n, d; r) = 1 for d ≤ n− p− 2.

Base Case r = 4. We have q = 3, and n = 4p + 3. Suppose first that p is odd.
We relabel the vertices of G4(n) so that the sets Xj in (5.9) become

Xj = {wi : i ≡ j (mod 3)} for j = 1, 2, 3, while X4 = {ui : 1 ≤ i ≤ p} .(5.12)
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Let H be the subgraph of G4(n) induced on the vertex set {wj : 2p+1 ≤ j ≤ 3p+3}.
Then |V (H)| = p+ 3 is even and H is Hamiltonian. Thus H has a perfect matching,
call it M . Consider the edge set

E = {{ui, wj} : 1 ≤ i ≤ p, j = 2i− 1 or 2i} ,
and form a graph G by removing all edges in E ∪ M from G4(n). Then G is an
(n− p− 2)-regular subgraph of G4(n), hence φ(n, n− p− 2; r) = 1, and φ(n, d; r) = 1
for d ≤ n− p− 2 by Lemma 5.4.

Suppose now that p is even. Then n = 4p+3 is odd and n−p−2 is also odd, so d =
n−p−2 is forbidden by (2.3). It suffices, therefore, to show that φ(n, n−p−3; r) = 1
in this case, for then Lemma 5.4 gives φ(n, d; r) = 1 for d ≤ n− p− 3, hence also for
d ≤ n−p−2. We use the vertex labelling (5.12), and let H be the subgraph of G4(n)
induced on {wj : 1 ≤ j ≤ 3p}. Then |V (H)| = 3p is even, and H is Hamiltonian, so
H has a perfect matching M . Consider the edge set

E = {{ui, wj} : 1 ≤ i ≤ p, j = 3i− 2, 3i− 1 or 3i}
∪ {{w3p+1, w3p+2}, {w3p+2, w3p+3}, {w3p+3, w3p+1}} .

Form a graph G by removing E ∪M from G4(n). It is an (n− p− 3)-regular graph,
whence φ(n, n− p− 3; r) = 1.

Induction Step. Fix r ≥ 5 and define

d0 := d0(n, r) = max{d : d ≤ n− p− 2, nd is even} ,
so d0 = n−p−2 or n−p−3. It is enough to show that φ(n, d0; r) = 1, for Lemma 5.4
then yields φ(n, d; r) = 1 for d ≤ n− p− 2, nd even.

To do this, set

n′ = n− 2(p+ 1) = p(r − 2) + q − 2 ,

where q = r−1 so q−2 > 0. Then d1 = d0(n, r)−n′ has 0 ≤ d1 ≤ p, and furthermore
we easily check that

d′ := d0(n
′, r − 2) = d0(n, r)− 2(p+ 1) .(5.13)

Take r′ = r − 2, whence q′ = q − 2 = r′ − 1. We may apply the induction hypothesis
at r′ = r − 2 to conclude that there exists a d′-regular (r − 2)-partite graph G =
G(n′, d′; r − 2). Let H be a d1-regular bipartite graph with 2(p+ 1) vertices disjoint
from those of G; such a graph H exists by Lemma 5.3(a). Take the disjoint union
of G and H and add in all edges between V (G) and V (H) to obtain a new graph
G′ on n vertices which is d0(n, r)-regular, according to (5.13). Thus φ(n, d0; r) = 1,
completing the induction step for (iii).

6. Minimal interference level: Theorems 2.3 and 2.4. In this section we
study the range γ ≥ 3 and prove Theorems 2.3 and 2.4. The cases where `(n, α, d) = 0,
i.e., for d smaller than about n− p, follow from Theorem 1.1 applied with r = γ. For
the remaining cases, the harder step in the proofs is obtaining the (exact) lower bounds
for `(n, α, d). The upper bounds are obtained by explicit construction.

We proceed to derive a lower bound for `(n, α, d) stated as Lemma 6.2 below.
Let G be any d-regular graph on n-vertices, let f : V (G) → {1, 2, . . . , n} be a given
coloring of G, and let α also be given. We begin by partitioning the n colors into
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Fig. 6.1. Color set partition.

γ groups {Ãi : 1 ≤ i ≤ γ}, such that each group Ãi consists of consecutive colors
and the groups Ã1, . . . , Ãγ are themselves consecutively arranged with respect to the

cyclic ordering of colors (mod n), with all groups but Ã1 containing exactly α + 1
colors, and Ã1 contains the remaining α+ 1 +m colors. Here m is given by

n = γ(α+ 1) +m, with 0 ≤ m < α+ 1 ,(6.1)

and such a partition is completely determined by the choice of Ã1 = {i, i+ 1, . . . , i+
α+ 1 +m}. We now choose Ã1 so as to minimize the number of vertices v in G that
are assigned colors f(v) in Ã1. After doing this, we have the freedom to cyclically
relabel the colors (via the map φ`(j) = j + `(mod n)) without affecting which edges
have vertex colors that interfere. We use this freedom to specify that

Ã1 := {−m,−m+ 1, . . . , α− 1, α} ,

in which case

Ãi := {j : (i− 1)(α+ 1) ≤ j < i(α+ 1)} for 2 ≤ i ≤ γ :

(see Figure 6.1). Notice that for 2 ≤ i ≤ γ any two colors in Ãi interfere with each
other.

This partition of the colors induces a corresponding partition of the vertices of G
into the color classes

Ai := {v ∈ G : f(v) ∈ Ãi}, 1 ≤ i ≤ γ .(6.2)

Now set

ai := |Ai| .
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We now count the edges in G and in its complement Ḡ = Kn−G in various ways. For
any two subsets V and W of vertices, let e(V,W ) count the number of edges between
vertices in V and those in W , and let V̄ := V (G) \ V . Let āi,j count the number of
edges between Ai and Aj that are not in G, which is

āi,j := aiaj − e(Ai, Aj) , 1 ≤ i, j ≤ γ .

Along with this we define

āi := Σj 6=iāi,j = ai(n− ai)− e(Ai, Ãi) , 1 ≤ i ≤ γ .

The d-regularity of G then yields

e(Ai, Ai) =
1

2
(dai − e(Ai, Ãi)) =

1

2
(ai(d+ ai − n) + āi) .(6.3)

The potential interfering edge set Bi,j between vertices in Ai and those in Aj is

Bi,j := Bi,j(G, f) = {{v, w} ∈ E(Kn) : v ∈ Ai, w ∈ Aj ,with D(f(v), f(w)) ≤ α} .
The actual interfering edge set is E(G) ∩Bi,j and we set

ci,j := |E(G) ∩Bi,j | .
We clearly have

āi,j + ci,j ≥ |Bi,j | .(6.4)

Finally, let δ∗ and δ count the potential and actual noninterfering edges in A1, re-
spectively, i.e.,

δ∗ := |{{v, w} ∈ E(Kn) : v, w ∈ A1 and D(f(v), f(w)) ≥ α+ 1}| ,

δ := |{{v, w} ∈ E(G) : v, w ∈ A1 and D(f(v), f(w)) ≥ α+ 1}| .
Certainly δ∗ ≥ δ. Since all edges between the vertices in the same component Ai

interfere, except for δ edges in A1, we obtain the bound

Iα(G, f) = Σi<jci,j + Σγ
i=1e(Ai, Ai)− δ

≥ Σi<jci,j + Σγ
i=1e(Ai, Ai)− δ∗ .

(6.5)

To bound this further, we need the following bounds for edges connecting a vertex in
the color set Ã1 to a vertex in its two neighboring color sets Ã2 and Ãγ .

Lemma 6.1. We have

ā1,2 + c1,2 ≥ δ∗ ,(6.6)

and

ā1,γ + c1,γ ≥ δ∗ .(6.7)

Proof. We start with (6.6). By (6.4) it is enough to show that

|B1,2| ≥ δ∗ .
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It suffices to show for fixed v ∈ A1 with α+ 1−m ≤ f(v) ≤ α that

|{w ∈ A2 : D(f(v), f(w)) ≤ m}| ≥ |{w ∈ A1 : D(f(v), f(w)) ≥ α+ 1}| ,(6.8)

because, using α ≥ m, this implies that, for sums over v ∈ A1 with α + 1 − m ≤
f(v) ≤ α,

|B1,2| ≥ Σv|{w ∈ A2 : D(f(v), f(w)) ≤ m}|

≥ Σv|{w ∈ A1 : D(f(v), f(w)) ≥ α+ 1}| = δ∗ .

To prove (6.8), given v ∈ A1 with α+ 1−m ≤ f(v) ≤ α, we define the vertex set

A′ := {w ∈ V (G) : f(w) ∈ {f(v)− α, f(v)− α+ 1, . . . , f(v) +m}} ⊆ A1 ∪A2 .

This is a set of α + 1 + m consecutive colors, hence |A′| ≥ |A1| by the minimizing
property of the color set Ã1. Now α+ 1−m ≤ f(v) ≤ α implies that

A1 ∩A′ = {w ∈ V (G) : f(w) ∈ {f(v)− α, . . . , α}} .
Thus

|A′ \ (A1 ∩A′)| ≥ |A1 \ (A1 ∩A′)|,
which is exactly (6.8). Thus (6.6) follows.

The proof of (6.7) is analogous.
To state the lower bound lemma, recall that the quantities p and q are defined by

n = pγ + q with 0 ≤ q < γ ,

so p = bn/γc.
Lemma 6.2. If d ≥ n− p then

`(n, α, d) ≥ qd(p+ 1)(d+ p+ 1− n)/2e+ (γ − q)dp(d+ p− n)/2e .(6.9)

Proof. We derive this result from the general bound

Iα(G, f) ≥ Σγ
i=1dai(d+ ai − n)/2e ,(6.10)

where ai = |Ai| for the vertex partition (6.2). To establish (6.10), we first note that
Lemma 6.1 yields

1

2
(ā1,2 + ā1,γ) + c1,2 + c1,γ ≥ δ∗ .

Together with (6.3), this yields

e(A1, A1)− δ∗ + c1,2 + c1,γ ≥ e(A1, A1)− 1
2 (ā1,2 + ā1,γ)

≥ 1
2a1(d− a1 − n) .

Since the left side of this inequality is an integer,

e(A1, A1)− δ∗ + c1,2 + c1,γ ≥ da1(d− a1 − n)/2e .
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However, (6.3) also gives

e(Ai, Ai) ≥ dai(d+ ai − n)/2e, for 2 ≤ i ≤ γ .

Substituting these bounds in (6.5) yields (6.10).
To derive (6.9), we minimize the right side of (6.10) over all possible values: ai ≥ 0

subject to Σγ
i=1ai = n. It is easy to verify that this occurs when all the ai’s are as

equal as possible, i.e., 


q of the ai take the value p+ 1,

γ − q of the ai take the value p .
(6.11)

Thus

Iα(G, f) ≥ qd(p+ 1)(d+ p+ 1− n)/2e+ (γ − q)dp(d+ p− n)/2e ,
which gives (6.9).

Proof of Theorem 2.3. (a) This bound follows from Theorem 1.1, taking r = γ
noting that q = 0 guarantees that r doesn’t divide n+ 1.

(b) For d > n− p we first establish the lower bounds

`(n, α, d) ≥ n(d− n+ p)

2
+ µ(6.12)

where

µ =




0 if n− d is odd or if n− d is even
and p is even,

γ
2 if n− d is even and p is odd ,

(6.13)

using Lemma 6.2. The case q = 0 is n = pγ, so (6.9) simplifies to

`(n, α, d) ≥ γdp(d− n+ p)/2e

= n
p dp(d− n+ p)/2e.

Now (6.12) follows on determining the cases for which p(d− n+ p) is odd.
To show that this bound is attained, we simply construct the graph G with the

coloring f that makes (6.11) hold. The constructions are easy and are left to the
reader.

Proof of Theorem 2.4. (a) The bounds where `(n, α, d) = 0 follow from Theo-
rem 1.1 with r = γ.

There remains the case in which d = n − p − 1 and q = γ − 1, i.e., when n =
bn/γcγ + γ − 1 (where Theorem 1.1 does not apply). We must show that

`(n, α, n− p− 1) =
p

2
.

For the upper bound ` ≤ p/2, it suffices to construct an appropriate graph. Note
first that p must be even since if p is odd, then n = pγ + γ − 1 ≡ (p + 1)γ −
1 is odd and d = n − p − 1 is also odd, contradicting (2.3). Now consider the
equi-γ-partite graph Gγ(n) defined in the proof of Theorem 1.1. We take a perfect
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matching M from the induced subgraph of Gγ(n) on the vertex set (Xγ−1 \ {vn}) ∪
Xγ . We remove all the edges in M from Gγ(n) and add the edges {vγ−1, v2γ−1},
{v3γ−1, v4γ−1}, . . . , {v(p−1)γ−1, vpγ−1}. Then it is straightforward to check that the
resulting graph G is (n−p−1)-regular and it clearly has exactly p/2 interfering edges
when the sets Xi are colored with γ mutually noninterfering colors.

To show the lower bound ` ≥ p/2, let G be an (n − p − 1)-regular graph and f
an n-coloring of V (G) such that

Iα(G, f) = `(n, α, n− p− 1) .

Take the partition {Ai : 1 ≤ i ≤ γ} of V (G) associated to f constructed at the
beginning of this section. We consider cases.

Case (i). a1 ≥ p+ 2.
The minimality property of A1 implies that, for all v ∈ V (G),

|{w ∈ V (G) : f(w) = f(v) + j (mod n) with −m ≤ j ≤ α}| ≥ p+ 2 .

Since d = n − p − 1, for each v ∈ V (G) there exists w ∈ V (G) \ {v} such that
|f(v)− f(w)| ≤ α. Thus Iα(G, f) ≥ n/2 > p/2.

Case (ii). ai ≥ p+ 2 for some 2 ≤ i ≤ γ.
Here the equality in (6.5) combined with e(A1, A1) ≥ δ yields

Iα(G, f) ≥ Σγ
i=2e(Ai, Ai) .(6.14)

Using (6.3) we then have

Iα(G, f) ≥ e(Ai, Ai) ≥ 1

2
ai(d+ ai − n) ≥ p+ 2

2
>

p

2
.

Case (iii). All ai ≤ p+ 1.
Since n = (p+ 1)γ − 1, this case requires that γ − 1 of the ai equal p+ 1 and one ai
equals p.

Suppose first that a1 = p. Observe that (6.14) and (6.3) yield

Iα(G, f) ≥ Σγ
i=2e(Ai, Ai)

≥ 1
2Σγ

i=2āi ≥ 1
2Σγ

i=2āi,1 .
(6.15)

Now (6.2) and a1 = p give

Σγ
i=2āi,1 = ā1 = (a1(n− a1)− e(A1, Ā1))

≥ p(n− p)− pd = p .

Substituting this in (6.15) gives Iα(G, f) ≥ p/2.
Suppose finally that a1 = p+1. Since γ ≥ 3, and only one ai = p, either a2 = p+1

or aγ = p+ 1 or both. We treat only the case that a2 = p+ 1, since the argument for
aγ = p+ 1 is similar. Let ai0 = p. Now by (6.5) and (6.3)

Iα(G, f) ≥ 1
2 (ā1 + ā2) + c1,2 − δ∗ + 1

2

∑γ
i=3
i6=i0

āi

≥ 1
2 (2ā1,2 + ā1,i0 + ā2,i0) + c1,2 − δ∗ + 1

2

∑γ
i=3
i6=i0

āi .
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Lemma 6.1 gives ā1,2 + c1,2 ≥ δ∗, hence

Iα(G, f) ≥ 1
2 (Σi6=i0 āi,i0) = 1

2 āi0

≥ 1
2 (p(n− p)− pd) = p

2 ,

completing case (iii).
(b) We start from the formula (6.9) of Lemma 6.2, which gives a lower bound.

We claim that equality occurs. This formula of `(n, α, d) splits into several cases,
according to when (p + 1)(d + p + 1 − n)/2 and p(d + p − n)/2 are integers or half-
integers, and consideration of the parities of n − d and p leads to the formulas for θ
in (2.12).

For the upper bound, obtaining equality in the formula for `(n, α, d) requires
(6.11) to hold, and this easily determines the construction of a suitable graph G and
a coloring f . We omit the details.

7. Minimax interference level: Theorems 2.5 and 2.6. We conclude by
proving the bounds for L(n, α, d) stated in section 2.

Proof of Theorem 2.5. To show part (a), the condition L(n, α, d) = 0 certainly
holds if the chromatic number χG ≤ γ for all G ∈ G(n, d). This holds for γ > d
by Brooks’ theorem (Proposition 3.2). For the case γ = d ≥ 3 we use the strong
version of Brooks’ theorem, which states that χG ≤ ∆G if no component of G is an
odd cycle or a complete subgraph. Here ∆G = d, and d ≥ 3 implies there are no odd
cycles, while the condition n < 2(d+1) prohibits any connected component being the
complete subgraph Kd, for any other components must be d-regular but have at most
d vertices, a contradiction.

To show part (b), suppose that n ≥ 2(d+1). Let G ∈ G(n, d) consist of a complete
graph Kd+1 plus a d-regular graph G′ on the other n− (d+1) ≥ d+1 vertices. If d is
odd then n is even, so that n− (d+ 1) is even, and the existence of G′ is assured by
a theorem of Erdős and Gallai [8] for simple graphs with specified degree sequences.
If γ ≤ d, at least two vertices of Kd+1 interfere, so L > 0.

Suppose that n = 2(d + 1 − a), a ≥ 1. This implies d ≥ 2a because we presume
that n ≥ d+ 2. Let G consist of two disjoint copies of Kd+1−a, adding edges between
them that increase every degree to d. Each vertex requires a such edges, and this is
feasible because d+ 1− a > a. If γ ≤ d− a, at least two vertices of Kd+1−a interfere,
so L > 0.

Suppose finally that n = 2(d + 1 − a) + 1, a ≥ 1. Then n is odd, so d must be
even. Moreover, n ≥ d + 2 ⇒ n ≥ d + 3 ⇒ d ≥ 2a. Let G consist of two disjoint
graphs G1 = Kd+1−a and G2 = Kd+2−a with edge additions and deletions as follows.
Add a edges from each G1 vertex to G2 vertices in as equal a way as possible for
resulting vertex degrees in G2. Then each vertex in G1 has degree d, x vertices in G2

have degree d+ 1, and y vertices in G2 have degree d, where

x+ y = d+ 2− a ,

xa+ y(a− 1) = a(d+ 1− a) .

These equations imply that x = d+2−2a > 0, so x is even. We then remove x/2 edges
within G2 so that all vertices have degree d. We thus arrive at a graph G ∈ G(n, d).
If γ ≤ d − a then at least two vertices in G1 interfere, so L > 0. Thus part (b)
holds.



INTERFERENCE-MINIMIZING COLORINGS 39

Proof of Theorem 2.6. Suppose that 3 ≤ d ≤ n− 1 and that γ ≤ d. Let P , Q, U ,
and W be nonnegative integers that satisfy

d+ 1 = Pγ +Q, 0 ≤ Q < γ ;

n = (d+ 1)U +W, 0 ≤W < d+ 1 .

To derive the upper bound on L in Theorem 2.6, let G be any graph in G(n, d).
Let S denote the family of all partitions of the vertex set of G into γ groups, with q
groups of size p + 1 and γ − q groups of size p. We adopt a probability model for S
that assigns probability 1/|S| to each partition. Whichever partition obtains, we use
γ mutually noninterfering colors for the γ groups in the partition. Suppose {u, v} is
an edge in G. The probability that u and v lie in the same part of a member of S, so
that {u, v} is an interference edge, is

q
(
p+1
2

)
+ (γ − q)

(
p
2

)(
n
2

) =
n(n− γ) + q(γ − q)

γn(n− 1)
.

The expected number E[I] of interference edges is nd/2 times this amount, i.e.,

E[I] =
d(n(n− γ) + q(γ − q))

2γ(n− 1)
,

so some member of S has a coloring that gives less than or equal to E[I] edges whose
vertices interfere. This is true for every G ∈ G(n, d). Therefore we get the upper
bound

L(n, α, d) ≤ d

2γ(n− 1)
[n(n− γ) + q(γ − q)] .

For the lower bound, assume initially that (d + 1) divides n, so W = 0 and
U = n/(d + 1). Let G consist of U disjoint copies of Kd+1. Then L(n, α, d) ≥
UL(d+ 1, α), where L(d+ 1, α) is the minimum number of interfering edges in Kd+1

for an f : Vd+1 → [n]. The analysis in Lemma 4.1 shows that L(d + 1, α) is attained
by an equi-γ-partition of Vd+1 with f constant in each part. Since an equi-γ-partition
of Vd+1 has {

Q groups of P + 1 vertices each,

γ −Q groups of P vertices each,

we have

L(d+ 1, α) = [Q(P + 1)P + (γ −Q)P (P − 1)]/2

=
(d+ 1)(d+ 1− γ) +Q(γ −Q)

2γ
.

Since L(n, α, d) ≥ UL(d+ 1, α), this gives

L(n, α, d) ≥ n(d+ 1− γ)

2γ
+
nQ(γ −Q)

2γ(d+ 1)
,

when d+ 1 divides n.
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Suppose (d+1) does not divide n. Let n = (d+1)U +W , where U = bn/(d+ 1)c
and 0 < W ≤ d. To form G we begin with U disjoint copies of Kd+1 and a disjoint
KW . Each vertex in KW needs d− (W − 1) more incident edges, so we add a total of
W (d+ 1−W ) edges between KW and the Kd+1 in such a way that W (d+ 1−w)/2
edges can be removed from within the Kd+1 to end up with degree d for every vertex.
Note that W (d+1−W ) is even, for otherwise both n and d would be odd. We ignore
possible interference within KW and allow for the possibility that every edge removed
from the Kd+1 is an interference edge to get the lower bound

L(n, α, d) ≥ UL(d+ 1, α)−W (d+ 1−W )/2

=
bn/(d+ 1)c

2γ
[(d+ 1)(d+ 1− γ) +Q(γ −Q)]− W (d+ 1−W )

2
.
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Abstract. In this paper, we investigate combinatorial properties and constructions of two recent
topics of cryptographic interest, namely frameproof codes for digital fingerprinting and traceability
schemes for broadcast encryption. We first give combinatorial descriptions of these two objects in
terms of set systems and also discuss the Hamming distance of frameproof codes when viewed as
error-correcting codes. From these descriptions, it is seen that existence of a c-traceability scheme
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and traceability schemes by using combinatorial structures such as t-designs, packing designs, error-
correcting codes, and perfect hash families. We also investigate embeddings of frameproof codes and
traceability schemes, which allow a given scheme to be expanded at a later date to accommodate
more users. Finally, we look briefly at bounds which establish necessary conditions for existence of
these structures.

Key words. traceability scheme, frameproof code, t-design, hash family

AMS subject classifications. 94A60, 05B05, 05B15, 05B40

PII. S0895480196304246

1. Introduction. Traceability schemes for broadcast encryption were defined
by Chor, Fiat, and Naor [8], and frameproof codes for digital fingerprinting were
proposed by Boneh and Shaw [4]. Although these two objects were designed for
different purposes, they have some similar aspects. One of the purposes of this paper
is to investigate the relations between traceability schemes and frameproof codes.
We first give combinatorial descriptions of these two objects in terms of set systems
and also discuss the Hamming distance of frameproof codes when viewed as error-
correcting codes. From these descriptions, it is seen that existence of a c-traceability
scheme implies the existence of a c-frameproof code.

In [4, 8], some constructions of frameproof codes and traceability schemes were
provided. We will provide new (explicit) constructions by using combinatorial struc-
tures such as t-designs, packing designs, error-correcting codes, and perfect hash fam-
ilies. We also investigate embeddings of frameproof codes and traceability schemes,
which allow a given scheme to be expanded at a later date to accommodate more
users. Finally, we look briefly at bounds which establish necessary conditions for
existence of these structures.

In this rest of this section we review the definitions of c-frameproof codes and
c-traceability schemes which were given in [4] and [8], respectively.

1.1. Frameproof codes. In order to protect a product (such as computer soft-
ware, for example), a distributor marks each copy with some codeword and then ships
each user his data marked with that codeword (for some examples of how this might
be done in practice, see [5]). This marking allows the distributor to detect any unau-
thorized copy and trace it back to the user. Since a marked object can be traced, the
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users will be deterred from releasing an unauthorized copy. However, a coalition of
users may detect some of the marks, namely the ones where their copies differ. They
can then change these marks arbitrarily. To prevent a group of users from “fram-
ing” another user, Boneh and Shaw [4] defined the concept of c-frameproof codes. A
c-frameproof code has the property that no coalition of at most c users can frame a
user not in the coalition.

Let v and b be positive integers (b denotes the number of users in the scheme). A
set Γ = {w(1), w(2), . . . , w(b)} ⊆ {0, 1}v is called a (v, b)-code, and each w(i) is called a
codeword. So a codeword is a binary v-tuple. We can use a b× v matrix M to depict
a (v, b)-code, in which each row of M is a codeword in Γ.

Let Γ be a (v, b)-code. Suppose C = {w(u1), w(u2), . . . , w(ud)} ⊆ Γ. For i ∈
{1, 2, . . . , v}, we say that bit position i is undetectable for C if

w
(u1)
i = w

(u2)
i = · · · = w

(ud)
i .

Let U(C) be the set of undetectable bit positions for C. Then

F (C) = {w ∈ {0, 1}v : w|U(C) = w(ui)|U(C) for all w(ui) ∈ C}

is called the feasible set of C. (If U(C) = ∅, then we define F (C) = {0, 1}v.) The
feasible set F (C) represents the set of all possible v-tuples that could be produced by
the coalition C by comparing the d codewords they jointly hold. If there is a codeword
w(j) ∈ F (C)\C, then user j could be “framed” if the coalition C produces the v-tuple
w(j). The following definition from [4] is motivated by the desire for this situation
not to occur.

Definition 1.1. A (v, b)-code Γ is called a c-frameproof code if, for every W ⊆ Γ
such that |W | ≤ c, we have F (W ) ∩ Γ = W . We will say that Γ is a c-FPC(v, b) for
short.

Thus, in a c-frameproof code the only codewords in the feasible set of a coalition
of at most c users are the codewords of the members of the coalition. Hence, no
coalition of at most c users can frame a user who is not in the coalition.

Example 1.1 (see [4]). For any integer b, there exists a b-FPC(b, b). The matrix
depicting the code is a b× b identity matrix.

Example 1.2. There exists a 2-FPC(3, 4). The matrix depicting the code is as
follows: 


1 0 0
0 1 0
0 0 1
1 1 1


 .

1.2. Traceability schemes. In many situations, such as a pay-per-view televi-
sion broadcast, the data is only available to authorized users. To prevent an unau-
thorized user from accessing the data, the data supplier will encrypt the data and
give the authorized users keys to decrypt it. Some unauthorized users (pirate users)
might obtain some decryption keys from a group of one or more authorized users
(called traitors). Then the pirate users can decrypt data that they are not entitled
to. To prevent this, Chor, Fiat and Naor [8] devised a traitor tracing scheme, called
a traceability scheme, which will reveal at least one traitor on the confiscation of a
pirate decoder.
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Suppose there are a total of b users. The data supplier generates a base set T
of v keys and assigns k keys to each user. These k keys comprise a user’s personal
key, and we will denote the personal key for user U by P (U). A message consists of
an enabling block and a cipher block. A cipher block is the encryption of the actual
plaintext data using some secret key S. The enabling block consists of data, which is
encrypted using some or all of the v keys in the base set, the decryption of which will
allow the recovery of S. Every authorized user should be able to recover S using his
or her personal key and then decrypt the cipher block using S to obtain the plaintext
data.

Some traitors may conspire and give an unauthorized user a “pirate decoder,”
F . The pirate decoder F will consist of k base keys, chosen from T , such that
F ⊆ ∪U∈CP (U), where C is the coalition of traitors. An unauthorized user may be
able to decrypt S using a pirate decoder F . The goal of the data supplier is to assign
keys to the users in such a way that when a pirate decoder is captured and the keys
it possesses are examined, it should be possible to detect at least one traitor in the
coalition C, provided that |C| ≤ c (where c is a predetermined threshold).

Traitor detection would be done by computing |F ∩ P (U)| for all users U . If
|F ∩P (U)| ≥ |F ∩P (V )| for all users V 6= U , then U is defined to be an exposed user.

Definition 1.2. Suppose any exposed user U is a member of the coalition C
whenever a pirate decoder F is produced by C and |C| ≤ c. Then the scheme is called
a c-traceability scheme and it is denoted by c-TS(k, b, v).

Let us now briefly discuss the difference between our scheme and that of [8]. In
[8], v = nk for some integer n, and the set T of base keys is partitioned into k subsets
Si, each of size n. We will denote Si = {si,1, si,2, . . . , si,n}, 1 ≤ i ≤ k. Each personal
key P (U) is a transversal of (S1, . . . , Sk) (i.e., it contains exactly one key from each
Si). Suppose the secret key S is chosen from an abelian group G. To encrypt S, the
data supplier splits S into k shares r1, r2, . . . , rk ∈ G such that

∑
ri = S. Then, for

1 ≤ i ≤ n, he encrypts every share ri with each of the n keys in Si by computing
ti,j = ri + si,j . The nk values ti,j comprise the enabling block. Each authorized user
has one key from Si, so he or she can decrypt every ri, and thus compute S.

In our definition, we do not require that each personal key be a transversal. A
personal key can be made up of any selection of k base keys from the set T . The data
supplier can use a k out of v threshold scheme (such as the Shamir scheme [13], for
example) to construct v shares of the key S and then encrypt each share ri with the
key si, for every si ∈ T .

Note that our definition is a generalization of the one given in [8]. However, the
generalization has to do with the way that the enabling block is formed, and not with
the traceability property of the scheme. Our definition of the traceability property is
the same as in [8].

Example 1.3. We present a 2-TS(5, 21, 21). The set of base keys is Z21. The
personal key for user i (0 ≤ i ≤ 20) is

P (i) = {3 + i, 6 + i, 7 + i, 12 + i, 14 + i},
where all arithmetic is done in Z21. (This is an application of a construction we will
present in Theorem 3.6.) It can be shown that any two base keys occur together
in exactly one personal key. Now, consider what happens when two traitors U and
V construct a pirate decoder, F . The pirate decoder F must contain at least three
personal keys from P (U) or P (V ). However, for any other user W 6= U, V , |F ∩
P (W )| ≤ 2. Hence either U or V will be the exposed user if the pirate decoder F is
examined.
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1.3. Previous results. In the construction of frameproof codes and traceabil-
ity schemes, the main goal is to accommodate as many users as possible. In other
words, we want to find constructions with b as large as possible, given values for the
parameters c and v (and k, in the case of traceability schemes). In general, we would
prefer explicit constructions for these objects as opposed to nonconstructive existence
results.

For example, Boneh and Shaw [4] proved the following interesting result.

Theorem 1.3. For any integers c, v > 0, there exists a c-FPC (v, 2v/(16c
2)).

However, as noted in [4], the proof is not constructive. Hence, they also provide
an explicit construction for a c-FPC(v, 2

√
v/c).

Similarly, Chor, Fiat, and Naor [8] gave an interesting nonconstructive existence
result for traceability schemes, as follows.

Theorem 1.4. For any integers c, v > 0, there exists a c-TS(v/(2c2), 2v/(8c
4), v).

We will provide several explicit constructions for frameproof codes and trace-
ability schemes later in this paper. Although our constructions may not be as good
asymptotically as those in [4] and [8], they will often be better for relatively small val-
ues of c and v. (For example, in order to obtain b ≥ 2 in Theorem 1.3, it is necessary
to take v ≥ 16c2, so the construction is not useful for small values of v.) As well, our
constructions are very simple and could be implemented very easily and efficiently.

2. Combinatorial descriptions. In this section, we give combinatorial descrip-
tions of c-frameproof codes and c-traceability schemes. From these descriptions, it is
fairly easy to see that the existence of a c-TS(k, b, v) implies the existence of a c-
FPC(v, b).

We will use the terminology of set systems. A set system is a pair (X,B) where
X is a set of elements called points and B is a set of subsets of X, the members of
which are called blocks. A set system can be described by an incidence matrix. Let
(X,B) be a set system where X = {x1, x2, . . . , xv} and B = {B1, B2, . . . , Bb}. The
incidence matrix of (X,B) is the b× v matrix A = (aij), where

aij =

{
1 if xj ∈ Bi,
0 if xj 6∈ Bi.

Conversely, given an incidence matrix, we can define an associated set system in an
obvious way.

2.1. Description of c-frameproof codes. Since a c-FPC(v, b) is a b×v (0, 1)-
matrix, we can view a frameproof code as an incidence matrix or as a set system,
as defined above. We have the following characterization of frameproof codes as set
systems.

Theorem 2.1. There exists a c-FPC(v, b) if and only if there exists a set system
(X,B) such that |X| = v, |B| = b and for any subset of d ≤ c blocks B1, B2, . . . , Bd ∈
B, there does not exist a block B ∈ B\{B1, B2, . . . , Bd} such that

d⋂
i=1

Bi ⊆ B ⊆
d⋃
i=1

Bi.

Proof. Suppose w(1), w(2), . . . , w(d) are d codewords in a c-FPC(v, b) (d ≤ c).
Without loss of generality, assume that in these codewords the first s bit positions are
0, the next t bit positions are 1, and in every other bit position at least one of the d
codewords has the value 0 and at least one has the value 1. (Hence, the undetectable
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bit positions are the first s + t bit positions.) Then it is not hard to see that the
frameproof property is equivalent to saying that any other codeword w has at least
one 1 in the first s bit positions or at least one 0 in the next t bit positions. In other
words, there does not exist a codeword with 0’s in the first s bit positions and 1’s in
the next t bit positions.

Suppose B1, B2, . . . , Bd are the blocks in the set system corresponding to the d
codewords w(1), w(2), . . . , w(d). Then

d⋂
i=1

Bi = {xs+1, . . . , xs+t},

and

d⋃
i=1

Bi = {xs+1, . . . , xv}.

Hence the frameproof condition is equivalent to saying that there does not exist a
block B such that ∩Bi ⊆ B ⊆ ∪Bi.

2.2. Description of c-traceability schemes. Since a c-TS(k, b, v) consists of
b k-subsets of a v-set, we can think of it as a set system, where X is the set of base
keys and B is the set of personal keys.

Theorem 2.2. There exists a c-TS(k, b, v) if and only if there exists a set system
(X,B) such that |X| = v, |B| = b, and |B| = k for every B ∈ B, with the property that
for every choice of d ≤ c blocks B1, B2, . . . , Bd ∈ B and for any k-subset F ⊆ ∪dj=1Bj,
there does not exist a block B ∈ B\{B1, B2, . . . , Bd} such that |F ∩Bj | ≤ |F ∩B| for
1 ≤ j ≤ d.

Proof. Suppose (X,B) is a c-TS(k, b, v). For every set of d ≤ c personal keys
B1, B2, . . . , Bd ∈ B, for any k-subset F ⊆ ∪dj=1Bj (i.e., a pirate decoder) and for any
other personal key B, there exists a Bj (1 ≤ j ≤ d) such that |F ∩Bj | > |F ∩B|. So
there is no block B ∈ B\{B1, B2, . . . , Bd} satisfying |F ∩Bj | ≤ |F ∩B| for 1 ≤ j ≤ d.
The converse is also straightforward.

2.3. Relationship of traceability schemes and frameproof codes. We
prove the following theorem relating traceability schemes and frameproof codes.

Theorem 2.3. If there exists a c-TS(k, b, v), then there exists a c-FPC(v, b).
Proof. Let (X,B) be the set system corresponding to a c-TS(k, b, v). We prove

that (X,B) is a c-FPC(v, b). Suppose not; then there exist d ≤ c blocks, B1, B2, . . . ,
Bd ∈ B, and a block B ∈ B\{B1, B2, . . . , Bd} such that B ⊆ ∪di=1Bi. Then |B∩Bj | ≤
|B ∩B| for 1 ≤ j ≤ d. But this contradicts Theorem 2.2 (letting F = B).

2.4. Hamming distance of 2-frameproof codes. Now we investigate some
properties of the Hamming distance of c-frameproof codes. For any (v, b)-code, let
d(x, y) denote the Hamming distance of two codewords x, y.

Denote

dmax = max{d(w(i), w(j)) : w(i), w(j) ∈ Γ, i 6= j},

and

dmin = min{d(w(i), w(j)) : w(i), w(j) ∈ Γ, i 6= j}.
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Theorem 2.4. A (v, b)-code Γ is 2-frameproof if and only if

d(w(i), w(j)) < d(w(i), w(h)) + d(w(h), w(j)),

for all i 6= j 6= h 6= i.
Proof. Let w(i), w(j) and w(h) be any three distinct codewords. Without loss of

generality, assume that U({w(i), w(j)}) = {1, . . . , r}, so the first r bits of w(i) and w(j)

are the same.
We have that d(w(i), w(j)) = v− r. Since Hamming distance is a metric, we have

that

d(w(i), w(h)) + d(w(h), w(j)) ≥ v − r.

Now, it will be the case that

d(w(i), w(h)) + d(w(h), w(j)) > d(w(i), w(j))

if and only if there is at least one bit position within the first r bit positions such that
w(h) is different from w(i) and w(j). But this is just the condition that the code is
2-frameproof (as stated in the proof of Theorem 2.1).

The following result is an immediate corollary of the previous lemma.
Corollary 2.5. A (v, b)-code Γ is 2-frameproof if dmax < 2dmin.
We give an example to illustrate the application of this corollary. In [6], a simple

explicit construction is given for a (q, (q2 − q)/2)-code with dmax ≤ q/2 + 3
√
q/2

and dmin ≥ q/2 − 3
√
q/2, for any prime power q. Hence, for q > 81, we see that

dmax < 2dmin. In fact, we have verified by computer that dmax < 2dmin for the codes
produced by this construction for all odd prime powers q such that 31 ≤ q ≤ 79.
Applying Corollary 2.5, we obtain the following result.

Theorem 2.6. For any odd prime power q ≥ 31, there exists a 2-FPC(q, (q2 −
q)/2).

3. Constructions from combinatorial structures. In this section, we will
give some constructions of frameproof codes and traceability schemes from certain
combinatorial designs, including t-designs, packing designs, and orthogonal arrays.
All the results on design theory that we require can be found in standard references
such as the CRC Handbook of Combinatorial Designs [9].

3.1. Constructions using t-designs. First we give the definition of a t-design.
Definition 3.1. A t-(v, k, λ) design is a set system (X,B), where |X| = v,

|B| = k for every B ∈ B, and every t-subset of X occurs in exactly λ blocks in B.
Note that, by simple counting, the number of the blocks in a t-(v, k, 1) design

is b =
(
v
t

)
/
(
k
t

)
. We will use t-(v, k, 1) designs to construct frameproof codes and

traceability schemes, as described in the following theorems.
Theorem 3.2. If there exists a t-(v, k, 1) design, then there exists a

c-FPC(v,
(
v
t

)
/
(
k
t

)
), where c = b(k − 1)/(t− 1)c .

Proof. Denote c = b(k − 1)/(t− 1)c. Let B1, B2, . . . , Bd be d ≤ c distinct blocks,
and let B ∈ B\{B1, B2, . . . , Bd}. If B ⊆ ∪di=1Bi, then there exists a Bi, where
1 ≤ i ≤ d, such that |B ∩ Bi| ≥ t. Since we have a t-design with λ = 1, it follows
that B = Bi, a contradiction. Hence, for any B ∈ B\{B1, B2, . . . , Bd}, we have that
B 6⊆ ∪di=1Bi. The t-design is a set system satisfying the conditions of Theorem 2.1,
so the conclusion follows.
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Similarly, we can construct traceability schemes from t-(v, k, 1) designs; the value
of c obtained is smaller, however.

Theorem 3.3. If there exists a t-(v, k, 1) design, then there exists a

c-TS(k,
(
v
t

)
/
(
k
t

)
, v), where c =

⌊√
(k − 1)/(t− 1)

⌋
.

Proof. Suppose there exists a t-(v, k, 1) design (X,B). Let B1, B2, . . . , Bd be d ≤ c
distinct blocks. Let B ∈ B\{B1, B2, . . . , Bd}. If F ⊆ ∪di=1Bi, where |F | = k, then
there exists a Bi, where 1 ≤ i ≤ d, such that

|F ∩Bi| ≥
⌈
k

c

⌉

≥ k

√
t− 1

k − 1

>
√

(k − 1)(t− 1).

On the other hand, since |B ∩Bj | ≤ t− 1 for 1 ≤ j ≤ c, we have

|B ∩ F | ≤ c(t− 1)

≤
√

(k − 1)(t− 1).

Hence, it follows that |F ∩Bi| > |F ∩B|. This shows that the t-design is a set system
satisfying the conditions of Theorem 2.2, and the conclusion follows.

There are many known results on existence and construction of t-(v, k, 1) designs
for t = 2, 3. On the other hand, no t-(v, k, 1) design with v > k > t is known to
exist for t ≥ 6. However, known infinite classes of 2- and 3-designs provide some nice
infinite classes of frameproof codes and traceability schemes. We illustrate with a few
samples of typical results that can be obtained.

First, for 3 ≤ k ≤ 5, a 2-(v, k, 1) design exists if and only if v ≡ 1 or k mod (k2−k)
(see [9, Chapter I.2]. Hence, we obtain the following theorem.

Theorem 3.4. There exist frameproof codes as follows.
1. There exists a 2-FPC(v, v(v − 1)/6) for all v ≡ 1, 3 mod 6.
2. There exists a 3-FPC(v, v(v − 1)/12) for all v ≡ 1, 4 mod 12.
3. There exists a 4-FPC(v, v(v − 1)/20) for all v ≡ 1, 5 mod 20.

Similarly, we have the following theorem about the existence of 2-traceability
schemes (note that to get c ≥ 2 when t = 2 in Theorem 3.3, we need k ≥ 5).

Theorem 3.5. There exists a 2-TS(5, v(v − 1)/20, v), for all v ≡ 1, 5 mod 20.
A 2-(q2 + q + 1, q + 1, 1) design is known as a projective plane of order q; such

a design exists whenever q is a prime power (see [9, Chapter VI.7]). In a projective
plane we have b = v, so the frameproof codes obtained from it are not interesting (in
view of Example 1.1, which does better). However, the traceability schemes will be
of interest.

Theorem 3.6. There exists a b√qc-TS(q+1, q2 + q+1, q2 + q+1), for all prime
powers q.

Example 1.3 is in fact obtained from the case q = 4 of Theorem 3.6.
We give another class of examples derived from 3-(q2 + 1, q + 1, 1) designs (these

designs are called inversive planes and exist if q is a prime power; see [9, Chapter
VI.7]).

Theorem 3.7. For any prime power q, there exists a
⌊
q
2

⌋
-FPC(q2 + 1, q3 + q)

and a
⌊√

q
2

⌋
-TS(q + 1, q3 + q, q2 + 1).
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3.2. Constructions using packing designs. Another type of combinatorial
design which can be used to construct frameproof codes and traceability schemes are
packing designs. We give the definition as follows.

Definition 3.8. A t-(v, k, λ) packing design is a set system (X,B), where |X|
= v, |B| = k for every B ∈ B, and every t-subset of X occurs in at most λ blocks in
B.

Using the same argument as in the proof of Theorem 3.2, we have the following
construction for frameproof codes.

Theorem 3.9. If there exists a t-(v, k, 1) packing design having b blocks, then
there exists a c-FPC(v, b), where c = b(k − 1)/(t− 1)c.

Similarly, we have the following construction for traceability schemes, using the
same argument as in the proof of Theorem 3.3.

Theorem 3.10. If there exists a t-(v, k, 1) packing design having b blocks, then

there exists a c-TS(k, b, v), where c =
⌊√

(k − 1)/(t− 1)
⌋
.

We mentioned previously that no t-(v, k, 1) designs are known to exist if v > k >
t ≥ 6. However, for any t, there are infinite classes of packing designs with a “large”
number of blocks (i.e., close to

(
v
t

)
/
(
k
t

)
). These can be obtained from designs known

as orthogonal arrays, which are defined as follows.
Definition 3.11. An orthogonal array OA(t, k, s) is a k× st array, with entries

from a set of s ≥ 2 symbols, such that in any t rows, every t×1 column vector appears
exactly once.

It is easy to obtain a packing from an orthogonal array, as shown in the next
lemma.

Lemma 3.12. If there is an OA(t, k, s), then there is a t-(ks, k, 1) packing design
that contains st blocks.

Proof. Suppose that there is a OA(t, k, s) with entries from the set {0, 1, . . . , s−1}.
Define X = {(x, y) : 0 ≤ x ≤ k−1, 0 ≤ y ≤ s−1}. For every column (y0, y1, . . . , yk−1)
in the orthogonal array, define a block B = {(0, y0), (1, y1), . . . , (k − 1, yk−1)}. Let B
consist of the st blocks thus constructed. It is easy to check that (X,B) is a t-(ks, k, 1)
packing design.

The following Lemma ([9, Chapter VI.7]) provides infinite classes of orthogonal
arrays, for any integer t.

Lemma 3.13. If q is a prime power and t < q, then there exists an OA(t, q+1, q),
and hence a t-

(
q2 + q, q + 1, 1

)
packing design with qt blocks exists.

From Theorem 3.9 and Lemma 3.13, we obtain the following.
Theorem 3.14. For any prime power q and any integer t < q, there exists a⌊

q
t−1

⌋
-FPC(q2 + q, qt) and a

⌊√
q

t−1

⌋
-TS(q + 1, qt, q2 + q).

In this construction, b ≈ 2
√
v log v
2c (for frameproof codes) and b ≈ 2

√
v log v

2c2 (for
traceability schemes). Also, the resulting traceability schemes are of the “transversal
type” considered in [8].

3.3. Constructions using perfect hash families. In this section, we present
another method to construct frameproof codes, which uses a perfect hash family.

Definition 3.15. An (n,m,w)-perfect hash family is a set of functions F such
that f : {1, 2, . . . , n} → {1, 2, . . . ,m} for each f ∈ F , and for any X ⊆ {1, 2, . . . , n}
such that |X| = w, there exists at least one f ∈ F such that f |X is one-to-one.

When |F| = N , an (n,m,w)-perfect hash family will be denoted by
PHF(N ;n,m,w). Observe that a PHF(N ;n,m,w) can be depicted as an N × n
matrix with entries from {1, 2, . . . ,m}, having the property that in any w columns
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there exists at least one row such that the w entries in the given w columns are
distinct. Results on perfect hash families can be found in numerous textbooks and
papers. Mehlhorn [12] is a good textbook source; more recent constructions can be
found in the papers [2] and [3].

The following theorem tells us how to use a perfect hash family to enlarge a
frameproof code.

Theorem 3.16. If there exists a PHF(N ;n,m, c + 1) and a c-FPC(v,m), then
there exists a c-FPC(Nv, n).

Proof. Let Γ = {w(1), w(2), . . . , w(m)} be a c-FPC(v,m), and let F be a
PHF(N ;n,m, c+ 1). Let Γ′ be the (Nv, n)-code consisting of the n codewords

u(j) =
⊎
h∈F

wh(j),

j = 1, . . . , n, where ] means concatenation of strings. We will show that Γ′ is a
c-FPC(Nv, n).

Let W ⊆ Γ′, W = {u(i1), u(i2), . . . , u(ic)}. Recall that U(W ) is the set of unde-
tectable bit positions of W . Assume that there exists a codeword u(ic+1) ∈ Γ′\W such
that u(ic+1)|U(W ) = u(ij)|U(W ) for 1 ≤ j ≤ c. Since F is a PHF(N ;n,m, c+ 1), there
exists an h ∈ F such that h|C is one-to-one, where C = {i1, i2, . . . , ic+1}. Thus we
have c + 1 different codewords w(h(ij)) ∈ Γ, 1 ≤ j ≤ c + 1, such that w(h(ic+1)) is in
the feasible set of {w(h(ij)) : 1 ≤ j ≤ c}. This contradicts the fact that Γ is c-
frameproof.

In [4], the following construction of c-frameproof codes from error-correcting codes
is given.

Theorem 3.17. If there exists a c-FPC(v, q) and an (N,n) q-ary code with
minimum Hamming distance dmin > N(1− 1/c), then there exists a c-FPC(vN, n).

Alon [1] gave a construction of perfect hash families from error-correcting codes.
We observe that if we use a perfect hash family constructed by Alon’s method to
obtain a c-frameproof code by applying Theorem 3.16, then the resulting code is
essentially the same as the one constructed using Theorem 3.17. However, it is pos-
sible to use other constructions for perfect hash families to obtain new examples of
frameproof codes. We provide one illustration now, which uses the following recursive
construction from [3].

Lemma 3.18. Suppose there exists a PHF(N0;n0,m,w), where gcd
(
n0,
(
w
2

)
!
)

=

1. Then there exists a PHF ((
(
w
2

)
+ 1)jN0;n

2j

0 ,m,w) for any integer j ≥ 1.
Example 3.1. There exists a PHF(2; 5, 4, 3) as follows:

1 2 3 4 3
1 1 2 1 3

Theorem 3.19. For any integer j ≥ 1, there exists a 2-FPC(6× 4j , 52j ).

Proof. From Lemma 3.18 and Example 3.1, we obtain a PHF(2× 4j ; 52j , 4, 3) for
all j ≥ 1. Combine this perfect hash family with the 2-FPC(3, 4) given in Example
1.2, and apply Theorem 3.16.

4. Embeddings. In many cases the number of users of a scheme will increase
after the system is set up. Initially, the data supplier will construct a scheme that will
accommodate a fixed number of users (which we denoted by b). If the number of users
eventually surpasses b, we would like a simple method of extending the scheme which
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is “compatible” with the existing scheme. In the case of a traceability scheme, we do
not want to change the personal keys already issued when the scheme is expanded.
In the case of a frameproof code, we do not want to have to recall software that has
already been sold.

To solve this problem, we will introduce the concept of embedding frameproof
codes and traceability schemes in larger ones.

Definition 4.1. Let Γ be a c-FPC(v, b) and let Γ′ be a c-FPC(v′, b′), where
v < v′, b < b′. Suppose that, for every codeword w ∈ Γ, there exists a codeword
w′ ∈ Γ′ such that the first v bit positions of w′ are the same as w, and the remaining
v′ − v bit positions of w′ are all 0’s. Then we say that Γ is embedded into Γ′.

Initially, the distributor could use the code Γ to mark the products. When the
number of users surpasses b, then codewords in Γ′\Γ are used. Note that the embed-
ding property ensures that the codewords in Γ do not have to be changed when we
proceed to the larger code.

A similar definition can be given for traceability schemes.

Definition 4.2. Let T be the set of v base keys of a c-TS(k, b, v), and let T ′ be
the set of v′ base keys of a c-TS(k, b′, v′), where v < v′, b < b′ and T ⊆ T ′. Suppose
that every personal key of the c-TS(k, b, v) is also a personal key of the c-TS(k, b′, v′).
Then we say that the first scheme is embedded into the second scheme.

Note that the definition of embedding is even simpler if we consider the set system
formulation of frameproof codes and traceability schemes. Namely, we say that (X,B)
is embedded into (X ′,B′) if X ⊆ X ′ and B ⊆ B′.

Since t-designs and packing designs are set systems, the above definition of em-
bedding applies. In fact, embeddings of combinatorial designs have been extensively
studied, so we have a convenient method of constructing frameproof codes and trace-
ability schemes which can be embedded.

For example, in the case of 2-designs, we have the following result.

Theorem 4.3. If there exists a 2-(v, k, 1) design that can be embedded into a
2-(v′, k, 1) design, then there exists a (k − 1)-FPC(v, (v2 − v)/(k2 − k)) that can be
embedded into a (k − 1)-FPC(v′, ((v′)2 − v′)/(k2 − k)); and a

⌊√
k − 1

⌋
-TS(k, (v2 −

v)/(k2 − k), v) that can be embedded into a
⌊√

k − 1
⌋
-TS(k, ((v′)2 − v′)/(k2 − k), v′).

We give a couple of illustrations of this idea. For k = 3 and 4, necessary and suf-
ficient conditions for embedding 2-(v, k, 1) designs into 2-(v′, k, 1) designs are known,
namely v ≡ 1 or k mod (k2 − k), v′ ≡ 1 or k mod (k2 − k), and v′ ≥ (k − 1)v + 1.
(For k = 3, this result is known as the Doyen-Wilson Theorem [9, Chapter I.4]; for
k = 4, see [9, Chapter III.1].) This provides a convenient way of embedding 2- and
3-frameproof codes into larger ones by application of Theorem 4.3. The following
theorems are obtained.

Theorem 4.4. For all v ≡ 1, 3 mod 6 and v′ ≡ 1, 3 mod 6 such that v′ ≥ 2v+ 1,
there exists a 2-FPC(v, (v2 − v)/6) that can be embedded into a 2-FPC(v′, ((v′)2 −
v′)/6).

Theorem 4.5. For all v ≡ 1, 4 mod 12 and v′ ≡ 1, 4 mod 12 such that v′ ≥ 3v+1,
there exists a 3-FPC(v, (v2 − v)/12) that can be embedded into a 2-FPC(v′, ((v′)2 −
v′)/12).

Here is a small example to illustrate.

Example 4.1. Given an embedding of a 2-(7, 3, 1) design into a 2-(15, 3, 1) design,
a 2-FPC(7, 7) can be embedded into a 2-FPC(15, 35). The 35 codewords of the 2-
FPC(15, 35) are given in Figure 4.1 (the first seven codewords, when restricted to the
first seven bit positions, form the embedded 2-FPC(7, 7)).
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1101000 00000000
0110100 00000000
0011010 00000000
0001101 00000000
1000110 00000000
0100011 00000000
1010001 00000000

1000000 00110000
0100000 00011000
0010000 00001100
0001000 00000110
0000100 10000010
0000010 11000000
0000001 01100000
1000000 00001010
0100000 10000100
0010000 01000010
0001000 10100000
0000100 01010000
0000010 00101000
0000001 00010100
1000000 01000100
0100000 00100010
0010000 10010000
0001000 01001000
0000100 00100100
0000010 00010010
0000001 10001000
1000000 10000001
0100000 01000001
0010000 00100001
0001000 00010001
0000100 00001001
0000010 00000101
0000001 00000011




Fig. 4.1. A 2-FPC(7, 7) embedded into a 2-FPC(15, 35).

It is also well known that for any prime power q and for any integers i ≤ j, there
exists a 2-(qi, q, 1) design which can be embedded into a 2-(qj , q, 1) design (in other
words, the affine geometry AG(i, q) is a subgeometry of AG(j, q); see [9, Chapter
VI.7]). The following result is obtained.

Theorem 4.6. Let q be a prime power, and let i and j be positive integers such
that i ≤ j. Then there exists a (q − 1)-FPC(qi, qi−1(qi − 1)/(q − 1)) which can be
embedded into a (q−1)-FPC(qj , qj−1(qj−1)/(q−1)), and a

⌊√
q − 1

⌋
-TS(q, qi−1(qi−

1)/(q−1), qi) which can be embedded into a
⌊√

q − 1
⌋
-TS(q, qj−1(qj−1)/(q−1), qj).

5. Bounds. In this section, we investigate necessary conditions for existence for
frameproof codes and traceability schemes. These take the form of upper bounds on
b, as a function of c and v (and k, in the case of traceability schemes).

First we will give a bound for frameproof codes. Let Γ = {w(1), . . . , w(b)} be
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a c-FPC(v, b). Recall that U(C) denotes the set of undetectable bit positions for a
subset C ⊆ Γ and F (C) denotes the feasible set of C. For 1 ≤ d ≤ c, let

td = min{|U(C)| : C ⊆ {1, . . . , b}, |C| = d}.

We begin by stating and proving a simple lemma.
Lemma 5.1. Suppose Γ = {w(1), . . . , w(b)} is a c-FPC(v, b), and suppose t1, . . . , tc

are as defined above. Then 0 < tc < tc−1 < . . . < t1 = v.
Proof. Suppose td = td−1 for some d. Let C = {w(u1), . . . , w(ud)} ⊆ Γ be such

that |U(C)| = td, and let C ′ = {w(u1), . . . , w(ud−1)}. Clearly U(C) ⊆ U(C ′); however,
since td = td−1, it follows that U(C) = U(C ′). But then C ⊆ F (C ′) ∩ Γ, which
contradicts Definition 1.1.

The next result provides an upper bound on b which depends on tc−1.
Theorem 5.2. Suppose Γ = {w(1), . . . , w(b)} is a c-FPC(v, b), and suppose

t1, . . . , tc are as defined above. Then

b ≤ c− 1 +

(
tc−1⌈
tc−1

2

⌉).

Proof. Let W ⊆ Γ be chosen such that |W | = c − 1 and |R| = tc−1, where
R = U(W ). For any codeword w(i) ∈ Γ\W , let Ri = U(W ∪ {w(i)}). It is easy to see
that Ri ⊆ R for all w(i) ∈ Γ\W . Further, Ri 6⊆ Rj for all w(i), w(j) ∈ Γ\W , i 6= j
(for if Ri ⊆ Rj , say, then w(j) ∈ F (W ∪ {w(i)}), which contradicts the fact that Γ
is c-frameproof). In other words, the subsets Ri constructed above form a Sperner
family with respect to the ground set R. By Sperner’s Theorem (see, for example [11,
Theorem 6.3]), we see that

|Γ\W | ≤
(

tc−1⌈
tc−1

2

⌉).

Since |Γ\W | = b− c+ 1, the result follows.
The following bound on b is an immediate corollary.
Corollary 5.3. If Γ is a c-FPC(v, b), then

b ≤ c− 1 +

(
v − c+ 2⌈
v−c+2

2

⌉
)
.

Proof. From Lemma 5.1, we have that tc−1 ≤ v − c + 2. The conclusion follows
from Theorem 5.2.

Recall that Example 1.1 gave a construction for c-FPC(c, c), and we constructed
a 2-FPC(3, 4) in Example 1.2. In both of these examples, the bound of Corollary 5.3
is met with equality.

Now we turn our attention to traceability schemes, where we provide an upper
bound on b. In [8], it was shown that b ≤ vk/c if a c-TS(k, v, b) exists. We give a
stronger bound, which is also based on the following observation made in [8].

Lemma 5.4. Suppose (X,B) is a c-TS(k, v, b). Then, for any subset of d ≤ c
blocks B1, B2, . . . , Bd ∈ B, there does not exist a block B ∈ B\{B1, B2, . . . , Bd} such

that B ⊆ ⋃d
i=1 Bi.

Proof. The proof is essentially the same as the proof of Theorem 2.3.
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For obvious reasons, the collection of subsets B is called c-cover-free. Now, ap-
plying [10, Proposition 2.1], which gives an upper bound on the cardinality of a
c-cover-free collection of sets, the following result is immediate.

Theorem 5.5. If a c-TS(k, b, v) exists, then the following bound holds:

b ≤

(
v

t

)
(
k − 1

t− 1

) ,

where t = dkc e.
6. Comments. Further results on frameproof codes can be found in the Ph.D.

thesis of Yeow Meng Chee [7, Chapter 9]. Chee gives a probabilistic construction for
2-frameproof codes that improves upon results in [4] and provides efficient explicit
constructions for frameproof codes using the idea of superimposed codes.

Acknowledgments. We thank the referee for several helpful comments.
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Abstract. If f(m,n) is the (vertex) independence number of the m × n grid graph, then we

show that the double limit η =
def

limm,n→∞ f(m,n)
1
mn exists, thereby refining earlier results of Weber

[Rostock. Math. Kolloq., 34 (1988), pp. 28–36] and Engel [Fibonacci Quart., 28 (1990), pp. 72–78].
We establish upper and lower bounds for η and prove that 1.503047782 . . . ≤ η ≤ 1.5035148 . . ..
Numerical computations suggest that the true value of η (the “hard square constant”) is around
1.5030480824753323 . . ..
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Let Gm,n be the m × n grid graph. That is, the vertices of Gm,n are the (m +
1)(n+1) points (i, j) (0 ≤ i ≤ m, 0 ≤ j ≤ n) in the plane, and its edges consist of the
pairs (i, j), (i′, j′) of vertices for which |i− i′|+ |j−j′| = 1. Let f(m,n) be the number
of independent sets of vertices in Gm,n. We study the growth of f(m,n). Figure 1
shows an independent set S in G4,6.

Clearly Gm,n contains an independent set of size ≥ mn/2, and that set has
≥ 2mn/2 subsets, so certainly

lim inf
m,n→∞ f(m,n)

1
mn ≥

√
2 = 1.4142 . . . .

In [2], Weber showed the existence of the limits

lim
n→∞ f(m,n)1/mn and lim

n→∞ f(n, n)1/n
2

,

and estimated their values. In [1], Engel proved some inequalities for these quantities,
deduced that 1.50304808 ≤ η ≤ 1.51316067, and conjectured that η = 1.50304808 . . . .

We will prove that the double limit

(1) η =
def

lim
m,n→∞ f(m,n)

1
mn

exists, and that 1.503047782 . . . ≤ η ≤ 1.5035148 . . ., the latter by exhibiting (rela-
tively) easily computable upper and lower bounds. Numerical computations suggest
that the true value of η is around 1.5030480824753323 . . . .

1. The transfer matrix. We use the transfer matrix method, in a manner that
is similar to the way it was used in [3]. Let S be an independent set in Gm,n. Consider
the portion of S that lies in a fixed column of the graph. This can be regarded as an
(m + 1)-vector of 0’s and 1’s, in which a 1 indicates that the vertex is in S, and a 0
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Fig. 1.

indicates that the vertex is not in S. The (m+ 1)-vectors that can arise this way are
those that have the property that no two consecutive 1’s occur.

Example. Figure 1 above shows an independent set S in G4,6. The portions of S
that lie in each of the seven columns can be represented by the respective 5-vectors

(0, 1, 0, 1, 0), (1, 0, 0, 0, 0), (0, 0, 1, 0, 1), (0, 1, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 1, 0).

Each of these 5-vectors has the property that no two consecutive 1’s occur.
Thus, for m,n fixed, we can think of assembling the independent sets of the

grid graph by gluing together columns that are chosen from the collection of possible
columns, making sure that when we glue an additional column onto the right-hand
edge of the structure, the new column does not clash with the previous right-hand
column.

The collection of possible columns Cm is the set of all (m+1)-vectors v, of 0’s and
1’s, such that v contains no two consecutive 1’s. The number of these is well known
to be Fm+2, the Fibonacci number.

The condition that vectors v′, v′′ in Cm are a possible consecutive pair of columns
in an independent set of Gm,n is simply that they have no 1’s in common position,
i.e., that v′ · v′′ = 0 in the sense of the usual dot product of vectors over the reals.

Thus, all possible independent sets in the grid graph are obtained by beginning
with some vector of Cm, and in general, having arrived at some sequence of vectors of
Cm, adjoin any vector of Cm that is orthogonal to the last one previously chosen until
(n + 1) vectors have been selected.

We define a matrix T = Tm, the transfer matrix of the problem, as follows. T
is an Fm+2 × Fm+2 symmetric matrix of 0’s and 1’s whose rows and columns are
indexed by vectors of Cm. The entry of T in position (v′,v′′) is 1 if the vectors v′,v′′

are orthogonal, and is 0 otherwise. T depends only on m, not on n.
Let f(m,n,u) denote the number of independent sets of Gm,n whose rightmost

column vector is u. Then, clearly, we have

f(m,n + 1,v) =
∑

u∈Cm
f(m,n,u)Tu,v (n ≥ 0;v ∈ Cm),
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or, in matrix-vector notation, fn+1 = T fn, with f0 = 1 the vector whose entries are
all 1’s. It follows that fn = Tn1, for all n ≥ 0. The number of independent sets of
Gm,n is the sum of the entries of the vector fn. Thus

f(m,n) = 1 · Tn1,

i.e., f(m,n) is the sum of all of the entries of the matrix Tn.
Since T has nonnegative entries, its dominant eigenvector cannot be orthogonal

to 1, and so we have at once that limn→∞ f(m,n)1/n exists for each m, and is equal
to Λm, the largest eigenvalue of the (real, symmetric) transfer matrix T (the existence
of that limit also follows from an obvious subadditivity argument). It follows that

lim inf Λ1/m
m = lim inf

m,n
f(m,n)1/mn ≤ lim sup

m,n
f(m,n)1/mn = lim sup Λ1/m

m .

We remark in passing that some interesting generating functions can be found in
moderately explicit form. Indeed, since f(m,n) is the sum of the entries of Tn, we
see that for m fixed, the numbers f(m,n) can be read off as the coefficient of xn in
the power series expansion of the sum of the entries of the matrix (I − xT )−1.

For instance, take m = 2. The possible column vectors in an independent set are

(000), (001), (010), (100), (101).

If we index the rows and columns in this order, then the transfer matrix is

(2) T =




1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0


 .

If we find the sum of the entries of (I − xT )−1 we see that f(2, n) is the coefficient of
xn in

5 + 7x− x2 − x3

1− 2x− 6x2 + x4
= 5 + 17x+ 63x2 + 227x3 + 827x4 + 2999x5 + 10897x6 +O(x7).

2. The lower bound. In this section we will first prove the existence of the
limit η, and then by a slight refinement of the argument, we will give a close lower
bound for η.

By the maximum principle, since the transfer matrix T is real and symmetric, we
have, for every positive integer p,

(3) Λp
m ≥ (1, T p

m1)

(1,1)
,

where we now explicitly exhibit the dependence of the transfer matrix on m by the
subscript. But (1, T p

m1) = (1, Tm
p 1), since both sides count the independent sets in

the grid graph Gm,p. Thus, after taking mth roots we have

(4) (Λ1/m
m )p ≥

(
(1, Tm

p 1)

(1,1)

)1/m

.
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Now take the lim inf of both sides of this inequality, as m→∞. We obtain

(5) (lim inf
m→∞ Λ1/m

m )p ≥ Λp

1+
√

5
2

.

Now take the pth root, and the lim sup as p→∞ to discover that

lim inf
m→∞ Λ1/m

m ≥ lim sup
p→∞

Λ1/p
p .

The reverse inequality being obvious, we have that the limit limm→∞ Λ
1/m
m exists,

and hence by (3) so does the limit

(6) η = lim
m,n

f(m,n)1/mn = lim
m→∞Λ1/m

m .

Next we will refine the above argument to obtain a good numerical lower bound
for η. We replace (4) by

Λp
m ≥ (T q

m1, T p
mT

q
m1)

(T q
m1, T q

m1)
,

which, by the maximum principle, is true for every positive integer q. But the right-
hand side can be rewritten as

(1, T q
mT

p
mT

q
m1)

(1, T q
mT

q
m1)

=
(1, T p+2q

m 1)

(1, T 2q
m 1)

=
(1, Tm

p+2q1)

(1, Tm
2q1)

,

where we have again used the fact that ∀p,m : T p
m = Tm

p . Hence

ηp = lim
m→∞(Λ1/m

m )p ≥ Λp+2q

Λ2q
,

and so

(7) η ≥
(

Λp+2q

Λ2q

) 1
p

.

Example. We now work out the case p = 2, q = 1 of this lower bound. The
transfer matrix T2 is shown in (2) above, and its largest eigenvalue is the largest zero
of 1− 6x2 − 2x3 + x4 = 0, i.e., Λ2 = 3.6313812604036 . . ..

The transfer matrix T4 is 13× 13, and it is given by

T4 =




∅ v w x y z v∧x v∧y v∧z w∧y w∧z x∧z v∧x∧z

∅ 1 1 1 1 1 1 1 1 1 1 1 1 1
v 1 0 1 1 1 1 0 0 0 1 1 1 0
w 1 1 0 1 1 1 1 1 1 0 0 1 1
x 1 1 1 0 1 1 0 1 1 1 1 0 0
y 1 1 1 1 0 1 1 0 1 0 1 1 1
z 1 1 1 1 1 0 1 1 0 1 0 0 0
v∧x 1 0 1 0 1 1 0 0 0 1 1 0 0
v∧y 1 0 1 1 0 1 0 0 0 0 1 1 0
v∧z 1 0 1 1 1 0 0 0 0 1 0 0 0
w∧y 1 1 0 1 0 1 1 0 1 0 0 1 1
w∧z 1 1 0 1 1 0 1 1 0 0 0 0 0
x∧z 1 1 1 0 1 0 0 1 0 1 0 0 0
v∧x∧z 1 0 1 0 1 0 0 0 0 1 0 0 0




.
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The largest eigenvalue of T4 is the largest root of the equation

1− 4t− 20t2 + 64t3 + 15t4 − 105t5 + 36t6 + 4t7 − t8 = 0,

namely, Λ4 = 8.2032591937550246879103 . . . . Hence we have the lower bound

η ≥
(

Λ4

Λ2

) 1
2

= 1.502994159 . . . .

We have in fact worked out the case p = 2, q = 3, though we will not show the
details here, with the result that η ≥ 1.503047782 . . . .

3. The upper bound. In this section we will exhibit another transfer matrix
problem with the property that it provides upper bounds for the problem in which
we are interested. Further, the upper bounding problem will be independent of m,n,
and will depend on a new integer parameter p. There will be a valid upper bound for
each positive integer p.

For each positive integer p, the largest eigenvalue of the transfer matrix T obvi-
ously satisfies

(8) Λm ≤ Trace(T 2p)1/2p,

and indeed the right-hand side approaches the left for p→∞. However,

Trace(T 2p) =
∑

Tx0,x1
Tx1,x2

· · ·Tx2p−1,x0
.

Now each term in this sum is 0 or 1; hence the sum is equal to the number of good
2p-tuples of subsets of 1, 2, . . . ,m, that is, the number of 2p-tuples (x0, x1, . . . , x2p−1)
of subsets of 1, 2, . . . ,m for which

(a) each xi contains no two consecutive entries, and
(b) each consecutive (on the circle) pair of x’s is disjoint.

We will find another way to count these tuples that will enable us to eliminate the
dependence on m completely.

Define the associated transfer matrix B2p to be the matrix whose rows and
columns are indexed by all subsets of 2p abstract “objects” which contain no two
objects that are consecutive (on the circle). The matrix is Np × Np, where Np =
F2p−1 +F2p+1, and the F ’s are the Fibonacci numbers. The entries of this matrix are

(B2p)X,Y =

{
1, if X ∩ Y = ∅;
0, otherwise.

Note that this matrix is independent of m. Its utility rests in the following fact.
Proposition. The trace of T 2p is equal to the sum of all of the entries of the

matrix Bm−1
2p .

Proof. Consider a nonvanishing term of Trace(T 2p), say, the term Tx0,x1Tx1,x2 · · ·
Tx2p−1,x0

. Now each xi is a subset of 1, 2, . . . ,m. Define sets

Sj =
{
k : (0 ≤ k ≤ 2p− 1) ∧ (j ∈ xk)

}
(j = 1, 2, . . . ,m).

Then each Sj is a subset of 2p objects. Each Sj contains no two objects that are
consecutive on the circle, for otherwise j would belong to two consecutive xk’s on
the circle. Further, Si, Si+1 (on the circle) are disjoint, for otherwise two consecutive
letters i, i + 1 would both belong to one of the xk’s, which is a contradiction.
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Hence this collection of sets Sj corresponds to a nonvanishing expression

(9) (B2p)S1,S2
(B2p)S2,S3

· · · (B2p)Sm−1,Sm .

But this is just one of the terms in the expansion of the sum of all of the entries of
the matrix Bm−1

2p , i.e., in the expansion of (1, Bm−1
2p 1).

Conversely, consider a nonvanishing term of (1, Bm−1
2p 1), say, the term shown in

(9) above. Define a (2p)-tuple (x0, . . . , x2p−1) of subsets of 1, 2, . . . ,m by

xj =
{
i : (1 ≤ i ≤ m) ∧ (j ∈ Si)

}
(j = 0, 1, . . . , 2p− 1).

Then each xi has no two consecutive entries, for otherwise j would belong to two
consecutive Si’s and one of the factors (B2p)Si,Si+1 would vanish. Likewise, each
consecutive (on the circle) pair of sets xj is disjoint, for otherwise some Si would
contain two consecutive (on the circle) values of j. This completes the proof of the
proposition.

Now, for each fixed positive integer p we have

Λm ≤ Trace(T 2p)1/2p = (1, Bm−1
2p 1).

If we take the mth root and then the limit as m→∞, we find that

η = lim
m,n→∞ f(m,n)1/mn = lim sup

m→∞
Λ1/m
m leξ

1/2p
2p ,

where ξ2p is the largest eigenvalue of B2p.

Example. We consider the case 2p = 6.

Here, Trace(T 6) is the number of good 6-tuples (u, v, w, x, y, z), such that each of
the six is a subset of [1,m], none of them contains any two consecutive elements, and
all of the pairs

(u, v), (v, w), (w, x), (x, y), (y, z), (z, u)

are disjoint pairs. Thus, a single letter i might belong to any of the 18 combinations

∅, u, v, w, x, y, z, u∧w, u∧x, u∧y, v∧x, v∧y, v∧z, w∧y, w∧z, x∧z, u∧w∧y, v∧x∧z.

The associated transfer matrix B6 is 18× 18, and its entries are 1 or 0 depending on
whether the membership combination that is labeled by the row is disjoint from the
membership combination that is labeled by the column. The full matrix B6, with its
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lines labelled in the order shown above, is




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1
1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0
1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1
1 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1
1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0
1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 0 1
1 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0
1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 1
1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0 0
1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1
1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1
1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1 0




.

Calculation then reveals that the largest eigenvalue of B6 is the largest root of
the equation

−1 + 2t + 25t2 + 3t3 − 12t4 + t5 = 0,

namely, 11.55170956604814509 . . .. Therefore,

η = lim
m,n

f(m,n)1/mn ≤ 11.55170956604814509 . . .1/6 = 1.503514809475903023 . . . .
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Abstract. We study the role of randomness in multiparty private computations. In particular,
we give several results that prove the existence of a randomness-rounds tradeoff in multiparty private
computation of xor. We show that with a single random bit, Θ(n) rounds are necessary and sufficient
to privately compute xor of n input bits. With d ≥ 2 random bits, Ω(log n/d) rounds are necessary,
and O(logn/ log d) are sufficient.

More generally, we show that the private computation of a boolean function f , using d ≥ 2
random bits, requires Ω(log S(f)/d) rounds, where S(f) is the sensitivity of f . Using a single random
bit, Ω(S(f)) rounds are necessary.

Key words. private distributed computations, randomness, lower bounds, sensitivity
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1. Introduction. A 1-private (or simply, private) protocol A for computing a
function f is a protocol that allows n players, Pi, 1 ≤ i ≤ n, each possessing an
individual secret input, xi, to compute the value of f(~x) in a way that no single
player learns more about the initial inputs of other players than what is revealed
by the value of f(~x) and its own input1. The players are assumed to be honest
but curious. Namely, they all follow the prescribed protocol A but they could try
to get additional information by considering the messages they receive during the
execution of the protocol. Private computations in this setting were the subject of a
considerable amount of work, e.g., [BGW88, CCD88, BB89, CK89, K89, B89, FY92,
CK92, CGK90, CGK92, KMO94]. One crucial ingredient in private protocols is the
use of randomness. Quantifying the amount of randomness needed for computing
functions privately is the subject of the present work.

Randomness as a resource was extensively studied in the last decade. Meth-
ods for saving random bits range over pseudorandom generators [BM84, Y82, N90],
techniques for recycling random bits [IZ89, CW89], sources of weak randomness
[CG88, VV85, Z91], and constructions of different kinds of small probability spaces
[NN90, AGHP90, S92, KM93, KM94, KK94] (which sometimes even allow one to
eliminate the use of randomness). A different direction of research is a quantitative
study of the role of randomness in specific contexts, e.g., [RS89, KPU88, BGG90,
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CG90, BGS94, BSV94]. In this work, we initiate a quantitative study of randomness
in private computations. We mainly concentrate on the specific task of computing
the xor of n input bits. However, most of our results extend to any boolean function.
The task of computing xor was the subject of previous research due to its being a
basic linear operation and to its relative simplicity [FY92, CK92].

It is known as a “folklore theorem” (and is not difficult to show) that private
computation of xor cannot be carried out deterministically (for n ≥ 3). On the other
hand, with a single random bit, such a computation becomes possible: at the first
round, player Pn chooses a random bit r and sends to P1 the bit xn ⊕ r. Then, in
round i (2 ≤ i ≤ n) player Pi−1 xors its bit xi−1 with the message it received in the
previous round and sends the result to Pi. Finally, Pn xors the message it received
with the random bit r. Both the correctness and privacy of this protocol are easy to
verify. The main drawback of this protocol is that it takes n rounds. Another protocol
for this task computes xor in two rounds but requires a linear number of random bits:
In the first round each player Pi chooses a random bit ri. Then, player Pi sends xi⊕ri
to P1 and ri to P2. In the second round, P2 xors all the (random) bits it received
in the first round and sends the result to P1 which xors all the messages it received
during the protocol to get the value of the function. Again, both the correctness and
privacy of this protocol are not hard to verify.

In this work we prove that there is a tradeoff between the amount of randomness
and the number of rounds in private computations of xor. For example, we show that
while with a single random bit Θ(n) rounds are necessary and sufficient2, with two
random bits O(logn) rounds suffice.3 Namely, with a single additional random bit, the
number of rounds is significantly reduced. Additional bits give a much more “modest”
saving. More precisely, we prove that with d ≥ 2 random bits, O(logn/ log d) rounds
suffice and Ω(log n/d) rounds are required. Our upper bound is achieved using a new
method that enables us to use linear combinations of random bits again and again
(while preserving the privacy). The lower bounds are proved using combinatorial
arguments, and they are strong in the sense that they also apply to protocols that are
allowed to make errors, and that they actually show a lower bound on the expected
number of rounds. We also show that if protocols are restricted to certain natural
types (that include, in particular, the protocol that achieves the upper bound) we can
even improve the lower bound and show that Θ(log n/ log d) rounds are necessary and
sufficient.

Our lower bound techniques apply not only to the xor function but in fact give
lower bounds on the number of rounds for any boolean function in terms of the sensi-
tivity of the function. Namely, we prove that with d ≥ 2 random bits, Ω(logS(f)/d)
rounds are necessary to privately compute a boolean function f , whose sensitivity is
S(f). With a single random bit (d = 1), Ω(S(f)) rounds are necessary.

The question of whether private computations in general can be carried out in
constant number of rounds was previously addressed [BB89, BFKR90]. In light of

2 More precisely, dn/2e rounds. This upper bound is achieved by a slight modification of the first
protocol above. Assume, for simplicity, that n is even. At the first round, player Pn sends xn ⊕ r to
player P1, and at the same time sends r to player Pn−1. The players then continue as in the above
protocol, forwarding messages in parallel until the two messages meet. More precisely, in round i,
2 ≤ i ≤ n

2
, player Pi−1 xors the message it received with its own input and sends it to player Pi

and player Pn−(i−1) xors the message it received with its own input and sends it to player Pn−i.
In round n

2
, player Pn/2 receives two messages and can compute the value of the function by xoring

the two messages together with its own input.
3 All logarithms are base 2, unless otherwise indicated.



A RANDOMNESS-ROUNDS TRADEOFF IN PRIVATE COMPUTATION 63

our results, a promising approach to investigate this question may be by proving that
if a constant number of rounds is sufficient, then a large number of random bits is
required.

Subsequent to our work, several other works were done regarding the amount of
randomness in privacy. In particular, the amount of randomness required for com-
puting the function xor t-privately, for t ≥ 2, was studied in [BDPV95, KM96]; in
[KOR96] it is shown that the boolean functions that can be computed privately with a
constant number of random bits are exactly the functions that have linear-size boolean
circuits. Further results on randomness in private computations appear in [CKOR97].

The rest of the paper is organized as follows: in section 2 we give some definitions.
In section 3 we give an upper bound on the number of rounds required to privately
compute xor. In section 4 we give lower bounds on the number of rounds to privately
compute a boolean function, in terms of its sensitivity. In section 5 we give lower
bounds on the expected number of rounds in terms of the average sensitivity of the
function being computed. Section 6 includes some conclusions and ideas for further
research. The appendix contains the improved lower bounds for restricted types of
protocols.

2. Preliminaries. We give here a description of the protocols we consider, and
define the privacy property of protocols. More rigorous definitions of the protocols
are given in section 4.1.

Let f : {0, 1}n → {0, 1} be any boolean function. A set of n players Pi (1 ≤ i ≤ n),
each possessing a single input bit xi (known only to player P ), collaborate in a protocol
to compute the value of f(~x). The protocol operates in rounds. In each round each
player may toss some coins, and then sends messages to the other players (messages
are sent over private channels so that, other than the intended receiver, no other player
can listen to them). It then receives the messages sent to it by the other players. In
addition, each player at a certain round chooses to output the value of the function.
We assume that each player knows its serial number and the total number of players
n. We may also assume that each player Pi is provided with a read-only random tape
Ri from which it reads random bits (rather than tossing coins).

During the execution of the protocol, each player Pi receives a sequence of mes-
sages. Let ci be a random variable of the communication string seen by player Pi,
and let Ci be a particular communication string seen by Pi. Informally, privacy with
respect to player Pi means that player Pi cannot learn anything (in particular, the
inputs of the other players) from Ci, except what is implied by its input bit, and the
value of the function computed. Formally, we have the following definition.

Definition 2.1 (privacy). A protocol A for computing a function f is private
with respect to player Pi if for any two input vectors ~x and ~y, such that f(~x) = f(~y)
and xi = yi, for any sequence of messages Ci, and for any random tape Ri provided
to Pi,

Pr[ci = Ci|Ri, ~x] = Pr[ci = Ci|Ri, ~y],

where the probability is over the random tapes of all other players.

3. Upper bound. This section presents a protocol which allows n players to use
d ≥ 2 random bits for computing xor privately. This protocol takes O(logd n) rounds.
(For the case d = 1 a similar protocol that uses dn/2e rounds was already described
in the introduction.) All arithmetic operations in this section are done modulo 2.

Consider the following protocol (which we call the basic protocol): first organize
the n players in a tree. The degree of the root of the tree is d+ 1, and the degree of



64 EYAL KUSHILEVITZ AND ADI ROSÉN

any other internal node is d (assume for simplicity that n is such that this forms a
complete tree). The computation starts from the leaves and goes towards the root by
sending messages (each of them of a single bit) as follows: each leaf player Pi sends
its input bit xi to its parent in the tree. Each internal node, after receiving messages
from its d children, sums them up (modulo 2), together with its input bit xi, and
sends the result to its parent. Finally, the root player sums up the d+ 1 messages it
receives, together with its input bit, and the result is the output of the protocol.

While a simple induction shows the correctness of this protocol, and it clearly
runs in O(logd n) rounds, it is obvious that it does not maintain the required privacy.
The second idea will be to “mask” each of the messages sent in the basic protocol by
an appropriate random bit (constructed using the d-random bits available) in a way
that these masks will disappear at the end, and we will be left with the (unmasked)
output. To do so we assign the nodes of the above tree vectors in GF [2d] as follows
(the meaning of those vectors will become clear soon): assign to the root the vector
(0, . . . , 0). The children of the root will be assigned d+ 1 (nonzero) vectors such that
the vectors in any d-size subset of them are linearly independent and the sum of all the
d+1 vectors is (0, . . . , 0) (for example, the d unit vectors, together with the (1, . . . , 1)
vector, satisfy these requirements). Finally, in a recursive way, given an internal node
which is assigned a vector v, we assign to its d children d linearly independent vectors
whose sum is v (note that, in particular, none of these vectors is the ~0 vector)4.

We now show how to use the vectors we assigned to the nodes so as to get a private
protocol. We will assume that the random bits b1, . . . , bd are chosen by some external
processor. We will later see that this assumption can be eliminated easily. Let v be
the vector assigned to some player which is a leaf in the tree. We will give this player
a single bit rv = v · b, where b = (b1, . . . , bd) is the vector consisting of the d random
bits and the product is an inner product (modulo 2). The players will use the basic
protocol, described above, with the modification that a player in a leaf also xors its
message with the bit rv it received (the other players behave exactly as before). We
claim that for every player Pi, if in the basic protocol it sends the message m when the
input vector is ~x, then in the modified protocol it sends the message m+(vi ·b), where
vi is the vector assigned to this player. The proof goes by induction: it is trivially true
for the leaf players. For internal nodes the message is calculated by adding the input
of the players to the sum of the incoming messages. Using the induction hypothesis
this sum is

∑d
k=1[m

k + (vk · b)], where mk is the message received from the kth
child in the basic protocol, and vk is the vector assigned to the kth child. Since the
construction is such that vi, the vector assigned to Pi, satisfies vi =

∑d
k=1 v

k, then a
simple algebraic manipulation proves the induction step. In particular, since the root
is assigned the vector (0, . . . , 0), its output equals the output of the basic protocol.
Hence, the correctness follows.

We now prove the privacy property of the protocol. The leaf players do not
receive any message, hence there is nothing to prove. Let Pj be an internal node in
the tree. Denote by s1, . . . , sd the messages it receives. We claim that for every vector
w = (w1, . . . , wd) ∈ GF [2d], and for any input vector, we have

Pr[(s1 = w1) ∧ · · · ∧ (sd = wd)] =
1

2d
,

4 For example, such a collection of d vectors can be constructed as follows: since v 6= ~0,
there exists an index i such that vi = 1. The first d − 1 vectors will be the d − 1 unit vectors
e1, . . . , ei−1, ei+1, . . . , ed. The last vector will be v −∑j 6=i ej . Obviously the sum of these d vectors

is v and they are linearly independent.
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where the probability is over the random choice of b1, . . . , bd (note that in this protocol
the players do not make internal random choices). In other words, fix any specific
input vector ~x, then for every vector w there exists exactly one choice of values for
b1, . . . , bd such that the (vector of) messages that Pj receives, when the protocol is

executed with input ~x, is identical to the vector w. Denote by ~v1, . . . , ~vd the vectors
corresponding to the d children of Pj in the tree and let m1, . . . ,md be the messages
they have to send in the basic protocol given the input vector ~x. As claimed, for
every 1 ≤ k ≤ d, the message that the kth child sends in the modified protocol can
be expressed as sk = mk + (~vk · ~r). With this notation, to have s1 = w1, . . . , s

d = wd

the following linear system has to be satisfied:

~v1

...

~vd


 · ~r =




w1 −m1

...
wd −md


 .

Since ~v1, . . . , ~vd are linearly independent, this system has exactly one solution, as
needed.

As for the root player the same argument can be applied to any fixed d-size subset
of the d + 1 messages it receives. This gives us that given any input vector ~x, for all
d-size messages vectors ~w,

Pr[(s1 = w1) ∧ · · · ∧ (sd = wd)] =
1

2d
.

Now take two input vectors ~x and ~y such that xroot = yroot and such that f(~x) = f(~y).
Then by the correctness of the protocol, given a specific d-size messages vector, the
d+1st message is the same for ~x and ~y. Thus the privacy property holds with respect
to the root also.

Finally, note that we assumed that the random choices were made by some ex-
ternal processor. However, we can let one of the leaf players randomly choose the
bits b1, . . . , bd and supply each of the leaf players with the appropriate bit rv. As the
leaf players only send messages in the protocol, the special processor that selects the
random bits gets no advantage.

Note that if a player is nonhonest it can easily prevent the other players from
computing the correct output. However, it cannot get any additional information
in the above protocol, since the only message each player gets after sending its own
message is the value of the function. We have thus proved the following theorem.

Theorem 3.1. The function xor on n input bits can be computed privately using
d ≥ 2 random bits in O(logn/ log d) rounds.

4. Lower bounds. In this section we prove several lower bounds on the number
of rounds required to privately compute a boolean function, given that the total
number of random bits the players can toss is d. The lower bound is given in terms
of the sensitivity of the function. In section 4.1 we give some formal definitions. In
section 4.2 we introduce the notion of sensitivity and present a lemma, central to
our proofs, about sensitivity of functions. The proof of the lower bound appears in
section 4.3.

4.1. Preliminaries. We first give a formal definition for the protocols. A pro-
tocol operates in rounds. In each round each player Pi, based on the value of its input
bit xi, the values of the messages it received in previous rounds, and the values of
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the coins it tossed in previous rounds, tosses a certain number of additional coins and
sends messages to the other players. The values of these messages may depend on all
of the above, including the coins just tossed by Pi. The player may also choose to
output the value of the function as calculated by itself (this is done only once by each
player). Then, each player Pi receives the messages sent to it by the other players.
To define the protocol more formally, we give the following definition.

Definition 4.1 (view).
• A time-t partial view of player Pi consists of its input bit xi, the messages

it received in the first t − 1 rounds, and the coins it tossed in the first t − 1
rounds. We denote it by PV iewt

i.
• A time-t view of player Pi consists of its input bit xi, the messages it received

in the first t − 1 rounds, and the coins it tossed in the first t rounds. We
denote it by V iewt

i.
Intuitively, the partial view of a player Pi in round t determines how many coins

(if at all) Pi will toss in round t. Then, its view in round t (which includes those
newly tossed coins) determines, for round t, the messages that Pi will send and which
value it will output (if at all) as the value of f . The formal definition of a protocol is
given below.

Definition 4.2. A protocol consists of a set of functions Rk
i : PV iewk

i → N
which determine how many coins are tossed by Pi in round k, and a set of functions
Mk

i→j : V iewk
i → M , 1 ≤ i, j ≤ n (where M is a finite domain of possible message

values), which determine the message sent by Pi to Pj at round k.
To quantify the amount of randomness used by a protocol we give the following

definition.
Definition 4.3. A d-random protocol is a protocol such that for any input

assignment, the total number of coins tossed by all players in any execution is at
most d.

Note that the definition allows that in different executions different players will
toss the coins. This may depend on both the input of the players and previous coin
tosses. Next we define the correctness of a protocol. We usually consider proto-
cols that are always correct; protocols that are allowed to err will be considered in
section 5.1.

Definition 4.4. A protocol to compute a function f is a protocol such that for
any input vector ~x and every i, player Pi always correctly outputs the value of f(~x).

It is sometime convenient to assume that each player Pi is provided with a random
tape Ri, from which it reads random bits (rather than to assume that the player tosses
random coins). The number of random coins tossed by player Pi is thus the rightmost
position of this tape that it reads. We thus denote by Ri a specific random tape
provided to player Pi, and denote by ~R = (R1, . . . , Rn) the vector or the random
tapes of all the players (~r = (r1, . . . , rn) will denote the random variable for these

tapes and vector of tapes). Note that if we fix ~R, we obtain a deterministic protocol.
Furthermore, V iewt

i, for any i and t, is a function of the input assignment ~x and
the random tapes of the players. We can thus write it as V iewt

i(~x,~r). We denote by

Ti(~x, ~R) the round number in which player Pi outputs its result given input assignment

~x and random tapes for the players ~R.
Definition 4.5 (rounds complexity). An r-round protocol to compute a function

f is a protocol to compute f such that for all i, ~x, ~R, we have Ti(~x, ~R) ≤ r.
For the purpose of our proofs, we slightly modify our view of the protocol in the

following way. Fix an arbitrary binary encoding for the messages in M . We will
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consider a protocol where each player sends, instead of a single message from M , a
set of boolean messages that represent the binary encoding of the message to be sent
in the original protocol. These messages are sent “in parallel” in the same round.
Hence, when we refer to messages we refer to these binary messages. Clearly, the
number of rounds remains the same.

4.2. Sensitivity of functions. In this section we include some definitions re-
lated to functions f : {0, 1}n → D, where D is some finite domain. Then, we present
some useful properties related to these definitions.

Definition 4.6 (sensitivity).
• For a binary vector Y , denote by Y (i) the binary vector obtained from Y by

flipping the ith entry.
• A function f is sensitive to its ith variable on assignment Y , if f(Y ) 6=
f(Y (i)).

• Sf (Y ) is the set of variables to which the function f is sensitive on assignment
Y .

• The sensitivity of a function f , denoted S(f), is S(f)
4
= maxY |Sf (Y )|.

• The average sensitivity of a function f , denoted AS(f), is the average of

|Sf (Y )|. That is, AS(f)
4
= 1

2n

∑
Y ∈{0,1}n |Sf (Y )|.

• The set of variables on which f depends, denoted D(f), is D(f)
4
=

{i : ∃Y s.t. i ∈ Sf (Y )}. If i ∈ D(f) we say that f depends on its ith variable.
The following claim gives a lower bound on the degree of error if we evaluate a

function f by means of another function g, in terms of the average sensitivities of
these functions. We use this property in our proofs.

Claim 4.7. Consider any two functions f, g : {0, 1}n → D. Then f(~x) = g(~x)

for at most 2n · (1− AS(f)−AS(g)
2n ) input assignments ~x.

Proof. Consider the n-dimensional hypercube. An f -good edge is an edge e =
(~x, ~y) such that f(~x) 6= f(~y). By the definitions, the number of f -good edges is

exactly 2nAS(f)
2 . Therefore, there are at least 2n AS(f)−AS(g)

2 edges which are f -good
but not g-good. For each such edge e = (~x, ~y) either f(~x) 6= g(~x) or f(~y) 6= g(~y). Since

the degree of each vertex in the hypercube is n there must be at least 2n · AS(f)−AS(g)
2n

inputs on which f and g do not agree.
Next, we prove a lemma that bounds the growth of the sensitivity of a combination

of functions. This lemma plays a central role in the proofs of our lower bounds, and
any improvement on it will immediately improve our lower bounds.

Lemma 4.8. Let F = {fj}, 1 ≤ j ≤ m be a set of m functions fj : {0, 1}n →
{0, 1}, for some n. Assume S(fj) ≤ C for all j. Define the function F (Y )

4
=

(f1(Y ), . . . , fm(Y )). If F assumes at most 2d different values (different vectors), then
the sensitivity of F is at most C · (2d − 1).5

Proof. Let Y be the assignment on which F has the largest sensitivity, i.e.,
|Sf (Y )| ≥ |Sf (Y ′)| for any assignment Y ′. Without loss of generality, assume that
F (Y ) = (0, . . . , 0). Consider the set of neighbors of Y on which F has a value different
than (0, . . . , 0) (the cardinality of this set is the sensitivity of F ). There are at most
2d − 1 values of F attained on the assignments in this set. Consider one such value
q ∈ {0, 1}m. There is at least one index j such that qj = 1, and since the sensitivity
of fj is at most C, there can be at most C assignments Y (i) with the value q. We

5 An obvious bound is S(F ) ≤ C ·m. However, for reasons that will become clear soon we are
interested in bounds which are independent of m.
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get that the total number of assignments Y (i) for which F has a value other than
(0, . . . , 0) is at most C · (2d − 1).

4.3. Lower bound on the number of rounds. In this section we prove the
following theorem.

Theorem 4.9. Let A be an r-round d-random (d ≥ 2) private protocol to compute
a boolean function f . Then, r = Ω(logS(f)/d).

The lower bound for the case d = 1 is given in section 4.3.1. The first step of
our proof uses the d-randomness property of the protocol to show that the number
of views a player can see on a fixed input ~x is at most 2d (over the different random
tapes of all the players). Note that this is not obvious; although only d coins are
tossed during every execution, the identity of the players that toss these coins may
depend on the outcome of previous coin tosses.

Lemma 4.10. Consider a private d-random protocol to compute a boolean func-
tion f . Fix an input ~x. Let Ck

i (~x,~r) be the communication string seen by player Pi up
to round k on input ~x and vector of random tapes ~r. Then, for every player
Pi, Ck

i (~x,~r) can assume at most 2d different values (over the different vectors of
random tapes ~r).

Proof. For each execution we can order the coin tosses (i.e., readings from the
local random tapes) according to the rounds of the protocol and within each round
according to the index of the players that toss them. The identity of the player to
toss the first coin is fixed by ~x. The identity of the player to toss any next coin
is determined by ~x and the outcome of the previous coins. Therefore, the different
executions on input ~x can be described using the following binary tree: in each node
of the tree we have a name of a player Pj that tosses a coin. The two outgoing edges
from this node, labeled 0 and 1 according to the outcome of the coin, lead to two
nodes labeled Pk and P`, respectively (k, `, and j need not be distinct) which is the
identity of the player to toss the next coin. If no additional coin toss occurs, the node
is labeled “nil”; there are no outgoing edges from a nil node. By the d-randomness
property of the protocol, the depth of the above tree is at most d; hence it has at
most 2d root-to-leaf paths. Every possible run of the protocol is described by one
root-to-leaf path. Such a path determines all the messages sent in the protocol, which
player tosses coins and when, and the outcome of these coins. In particular each path
determines for any Pi the value of Ck

i (~x,~r) (for any k). Hence, Ck
i (~x,~r) can assume

at most 2d different values.

In the following proof we restrict our attention to a specific deterministic protocol
derived from the original protocol by fixing a specific vector of random tapes ~R =
(R1, . . . , Rn) for the n players. In such a deterministic protocol the views of the
players are functions of only the input assignment ~x.

Lemma 4.11. Consider a private d-random protocol to compute a boolean function
f . Fix random tapes ~R = (R1, . . . , Rn). Recall that V iewk

i (~x,~r) is the view of player

Pi at round k on input ~x and vector of random tapes ~r. Then, for any Pi, V iew
k
i (~y,

~R)
can assume at most 2d+2 different values (over the values of ~y).

Proof. Partition the input assignments ~x into 4 groups according to the value of
xi (0 or 1) and the value of f(~x) (0 or 1). We argue that the number of different values
the view can assume within each such group is at most 2d. Fix an input ~x in one of
these four groups and consider any other input ~y pertaining to the same group. Recall
that Ck

i (~y, ~R) is the communication string seen by player Pi until round k on input

~y and when the random tapes of the players are ~R. If the value of Ck
i (~y, ~R) is some
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communication string Ci, then by the privacy requirement6, communication Ci must
also occur by round k when the input is ~x, and the vector of random tapes is some
~R
′

= (R′1, . . . , R
′
n), where R′i = Ri. Thus, the value of Ck

i (~y, ~R) must also appear
as Ck

i (~x,~r) for some vector of random tapes. However, by Lemma 4.10, Ck
i (~x,~r) can

assume at most 2d values (over the values of ~r). Thus, Ck
i (~y, ~R) can assume at most

2d values over the possible input assignments that pertain to the same group.
Now, observe that V iewk

i (~y, ~r) is determined by the input bit yi, the communi-

cation string Ck
i (~y, ~r), and the random tape ri. Therefore, on ~R and on two input

assignments ~y and ~y′ of the same group (in particular yi = y′i), if V iewk
i (~y,

~R) 6=
V iewk

i (~y
′, ~R), then Ck

i (~y, ~R) 6= Ck
i (~y′, ~R). Thus, V iewk

i (~y,
~R) can assume at most 2d

different values over the input assignments that pertain to the same group.
The following lemma gives an upper bound on the sensitivity of the view of a

player at a given round, in terms of the number of random bits and the round number.
This will enable us to give a lower bound on the number of necessary rounds.

Lemma 4.12. Consider a private d-random protocol to compute a boolean function
f , and consider a specific vector of random tapes ~R, and the deterministic protocol
derived by it. Then for every player Pi, the function V iewk

i (~x,
~R) (as a function of ~x

only) has sensitivity of at most Q(k)
4
= (2d+2)k−1.

Proof. First note that since we fix the random tapes, the views of the players
are functions of the input assignment ~x only. We prove the lemma by induction. For
k = 1 the view of any player depends only on its single input bit. Thus, the claim is
obvious. For k > 1 assume the claim holds for any ` < k. This implies, in particular,
that all messages received by player Pi and included in the view under consideration
have sensitivity of at most Q(k − 1). Clearly, the input bit itself has sensitivity 1
which is at most Q(k − 1). Thus, the view under consideration is composed of bits
each having sensitivity at most Q(k − 1). Moreover, by Lemma 4.11 the view can
assume at most 2d+2 values. It follows from Lemma 4.8 that the sensitivity of the view
under consideration is at most Q(k − 1) · (2d+2 − 1) ≤ Q(k). (Note that Lemma 4.8
allows us to give a bound which does not depend on the number of messages received
by Pi.)

We can now give the lower bound on the number of rounds, in terms of the
sensitivity of the function and the number of random bits.

Theorem 4.13. Given a private d-random protocol (d ≥ 2) to compute a boolean
function f , consider the deterministic protocol derived from it by any given random
tapes ~R. For any player Pi, there is at least one input assignment ~x such that
Ti(~x, ~R) = Ω(logS(f)/d).

Proof. Consider a fixed but arbitrary player Pi. Denote by t the largest round
number in which Pi outputs a value, i.e., t = max~x{Ti(~x, ~R)}. We claim that as long
as the sensitivity of the view of Pi does not reach S(f), there is at least one input
assignment for which Pi cannot output the correct value of f . Let Y be an input
assignment on which the sensitivity S(f) is obtained. That is, the value of F (Y ) is
different than the value of F on S(f) of Y ’s “neighbors.” Hence, if the sensitivity of
the view of Pi is less than S(f), then the output of Pi must be wrong on either Y or
on at least one of these “neighbors” (as the sensitivity of the view is an upper bound

on the sensitivity of the output). Thus, t is such that S(V iewt
i(~x,

~R)) ≥ S(f). By

Lemma 4.12, we get 2(d+2)(t−1) ≥ S(f), i.e., t ≥ log S(f)
(d+2) + 1.

6 The privacy requirement is defined on the final communication string, but this clearly implies
the same requirement on any prefix of it.



70 EYAL KUSHILEVITZ AND ADI ROSÉN

This proves Theorem 4.9; moreover, it shows not only that there is an input
assignment ~x and random tapes ~R for which the protocol runs “for a long time,” but
also that for each vector of random tapes ~R there is such input assignment. The
following corollary follows for the function xor (using the fact that S(xor) = n).

Corollary 4.14. Let A be an r-round d-random private protocol (d ≥ 2) to
compute xor of n bits. Then r = Ω(logn/d).

4.3.1. Lower bound for a single random bit (d = 1). For the case of a
single random bit (d = 1), we have the following lower bound.

Theorem 4.15. Let A be an r-round 1-random private protocol to compute a
boolean function f . Then, r = Ω(S(f)).

To prove the theorem, we restrict our attention to one of the two deterministic
protocols derived from the original protocol by fixing the value of the random bit7.
The messages and views in this protocol are functions of the input vector, ~x, only.
Let Y be an assignment on which S(f), the sensitivity of f , is obtained. For a
given function m, a variables xj is called good for m on Y if both m and f are
sensitive to xj on Y . We denote by Gm(Y ) the set of good variables on Y , i.e.,

Gm(Y )
4
= Sm(Y ) ∩ Sf (Y ). We first prove the following two lemmas.

Lemma 4.16. Consider any player Pi. Denote by m1 a message that Pi receives
such that |Gm1(Y ) \ {xi}| ≥ 1. Then for any other message m2 received by Pi such
that |Gm2

(Y ) \ {xi}| ≥ 1, either (a) Gm1
(Y ) \ {xi} = Gm2

(Y ) \ {xi}, or (b) |Gm1
(Y )∪

Gm2
(Y )| ≥ S(f)− 1.

Proof. Assume, toward a contradiction, that both (a) and (b) do not hold. First,
since |Gm1(Y )\{xi}| ≥ 1 and |Gm2(Y )\{xi}| ≥ 1 there are two variables xk ∈ Gm1(Y ),
x` ∈ Gm2(Y ) such that k 6= i and ` 6= i. Moreover, by the assumption that (a) does
not hold, we can assume, without loss of generality, (as to the names of m1 and m2)
that x` /∈ Gm1

(Y ) (in particular, ` 6= k). By the assumption that (b) does not hold,
there is a variable xj (j 6= i) such that f is sensitive to xj on Y , but both m1 and m2

are not sensitive to xj on Y . Now consider the following three input assignments:

• Y0 = Y (j).
• Y1 = Y (k).
• Y2 = Y (`).

Consider V iewi on the above three inputs and assume, without loss of generality,
that m1(Y ) = m2(Y ) = 0. Since both m1 and m2 are not sensitive to xj on Y , then
m1(Y

(j)) = 0 and m2(Y
(j)) = 0. Since m1 is sensitive to xk on Y , then m1(Y

(k)) = 1.
Since m2 is sensitive to x` on Y , but m1 is not, then m1(Y

(`)) = 0 and m2(Y
(`)) = 1.

Hence, V iewi assumes three different values for Y0, Y1, and Y2. The function f is
sensitive on Y to all of j, k, and `; therefore, f(Y0) = f(Y1) = f(Y2), and xi is equal
in all three assignments. However, in the proof of Lemma 4.11, it is shown that the
number of values of V iewi corresponding to inputs with the same value of f and the
same value of xi is at most 2d = 2—a contradiction.

The following lemma gives an upper bound on the sensitivity of the view of the
player in terms of the round number. We then use this lemma to give a lower bound
on the number of necessary rounds.

Lemma 4.17. Let t ≤ (S(f) − 1)/2 be a round number and Pi be any player.
Then, |GV iewt

i
(Y )| ≤ t.

7 We let the identity of the player that tosses this coin possibly depend on the input ~x. However,
note that if we want the privacy and 1-randomness properties to hold, this cannot be the case.
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Proof. We prove the claim by induction on t. For t = 1, clearly |GV iewt
i
(Y )| ≤ 1

(since before getting any messages, the view depends only on xi). For 1 < t ≤
(S(f)− 1)/2 assume the claim holds for any k < t. Denote by M the set of messages
received by Pi and included in the view under consideration. Clearly GV iewt

i
(Y ) ⊆

{xi} ∪ (∪m∈MGm(Y )). There could be one of three cases:
1. For any message m ∈ M , |Gm(Y ) \ {xi}| = 0. In this case the claim clearly

holds.
2. Any two messages m1,m2 ∈M , such that |Gm1(Y )\{xi}| ≥ 1, and |Gm2(Y )\

{xi}| ≥ 1, satisfy Gm1
(Y )\{xi} = Gm2

(Y )\{xi}. It follows that |GV iewt
i
(Y )| ≤

|{xi} ∪ (∪m∈MGm(Y ))| ≤ |Gm1
(Y )| + 1. Since by the induction hypothesis

|Gm1(Y )| < t, then |GV iewt
i
(Y )| ≤ t.

3. There are two messages m1,m2 ∈ M , such that |Gm1
(Y ) \ {xi}| ≥ 1, and

|Gm2
(Y ) \ {xi}| ≥ 1, but Gm1

(Y ) \ {xi} 6= Gm2
(Y ) \ {xi}. By Lemma 4.16,

|Gm1
(Y ) ∪ Gm2

(Y )| ≥ S(f) − 1, and (without loss of generality) |Gm1
(Y )| ≥

(S(f) − 1)/2. This contradicts the induction hypothesis as m1 was received
in some round k < t ≤ (S(f) − 1)/2 and therefore generated by a view of
round k. By the induction hypothesis, |Gm1(Y )| ≤ k < (S(f)− 1)/2.

We can now give the proof of Theorem 4.15.
Proof of Theorem 4.15. Consider any player Pi. Denote by t the largest round

number in which Pi outputs a value, i.e., t = max~x{Ti(~x, 0)}. As in the proof of
Theorem 4.13, it must be that |GV iewt

i
(Y )| ≥ S(f), and therefore, by Lemma 4.17 we

have t > (S(f)− 1)/2.
For the function xor we have the following corollary.
Corollary 4.18. Let A be an r-round 1-random private protocol to compute

xor of n bits. Then r = Ω(n).

5. Lower bounds on the expected number of rounds. As the protocols we
consider are randomized, it is possible that for the same input ~x, different random
tapes for the players will result in executions that run for different number of rounds.
Hence, it is natural to consider not only the worst-case running time but also the
expected running time. Usually, saying that a protocol has expected running time r
means that for every input ~x the expected time until all players finish the execution
is bounded by r (where the expectation is computed over the choices of the random
tapes of the players). Here we consider a weaker definition, which requires only the
existence of a player i whose expected running time is bounded by r. As we are
proving a lower bound, this only makes our result stronger: it would mean that for
every player there is an input assignment for which the expected running time is
high. Note that it is not necessarily the case that the first player that computes the
value of the function can announce this value (and thus all players compute the value
within one round). The reason is that the fact that a certain player computes the
function at a certain round may reveal some information on the inputs, and hence
such announcing may violate the privacy requirement (see [CGK90]). We first define
the expected rounds complexity of a protocol.

Definition 5.1 (expected rounds complexity). An expected r-round protocol to
compute a function f is a protocol to compute f such that there exists a player Pi
such that for all ~x, E~r[Ti(~x,~r)] ≤ r.

The lower bound that we prove in this section is in terms of the average sensitivity
of the computed function. In particular, we prove an Ω(logn/d) lower bound on the
expected number of rounds required by protocols that privately compute xor of n
bits. We will prove the following theorem.
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Theorem 5.2. Let f be a boolean function and let A be an expected r-round
d-random private protocol (d ≥ 2) to compute the function f . Then, r = Ω(AS(f) ·
logAS(f)/nd).

To prove the theorem we consider a protocol A and fix any player Pi. We say that

the protocol is late on input ~x and vector of random tapes ~R if Ti(~x, ~R) ≥ logAS(f)
2(d+2) +1.

We define a 0− 1 random variable L(~x,~r) to be 1 if and only if the protocol is late on
~x and ~r. For the purpose of our proofs in this section we define a uniform distribution
on the 2n input assignments (this is not to say that the input is actually drawn by
such distribution). Moreover, note that the domain of vectors of random tapes is
enumerable.

We first show that for any deterministic protocol derived from a private protocol
to compute f , not only is there at least one input on which the protocol is late, but
this happens for a large fraction of the inputs.

Lemma 5.3. Consider a player Pi and any fixed vector of random tapes ~R =
(R1, . . . , Rn). Then

E~x[L(~x, ~R)] ≥ AS(f)−√AS(f)

2n
.

Proof. Consider the views of Pi, V iew
t
i, given the vector of random tapes ~R.

For any round t such that t < logAS(f)
2(d+2) + 1, by Lemma 4.12, we get S(V iewt

i) <

2(d+2)
logAS(f)
2(d+2) =

√
AS(f). Any function g computed from such a view can have at

most the same sensitivity, and thus clearly an average sensitivity of at most
√
AS(f).

By Claim 4.7, such a function g can have the correct value for the function f for at

most 2n(1− AS(f)−
√
AS(f)

2n ) input assignments. Since we assume that A is correct for

all input assignments, it follows that at least 2n
AS(f)−

√
AS(f)

2n nput assignments are
late.

We can now give a lower bound on the expected number of rounds.
Lemma 5.4. Consider a player Pi. There is at least one input assignment ~x for

which

E~r[Ti(~x,~r)] ≥
(
AS(f)−√AS(f)

2n

)(
logAS(f)

2(d+ 2)
+ 1

)
= Ω(AS(f) · logAS(f)/nd) .

Proof. By Lemma 5.3, E~r,~x[L(~x,~r)] ≥ AS(f)−
√
AS(f)

2n . Hence, there is at least

one input assignment ~x for which E~r[L(~x,~r)] ≥ AS(f)−
√
AS(f)

2n . For such ~x we get

E~r[Ti(~x,~r)] ≥
(
AS(f)−√AS(f)

2n

)
·
(

logAS(f)

2(d+ 2)
+ 1

)
,

as needed.
Theorem 5.2 follows from the above lemma. The following corollary applies to

the function xor.
Corollary 5.5. Let A be an expected r-round d-random private protocol (d ≥ 2)

to compute xor of n bits. Then, r = Ω(logn/d).
Proof. The proof follows from Theorem 5.2 and the fact that AS(xor) = n.
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5.1. Weakly correct protocols. In this section we consider protocols that are
allowed to make a certain amount of errors. Given a protocol A, denote by Ai(~x,~r)
the output of the protocol in player Pi, given input assignment ~x and vector of random
tapes ~r = (r1, . . . , rn).

Definition 5.6. For δ < 1/2, a (1−δ)-correct protocol to compute a function f is
a protocol that, for every player Pi and every input vector ~x, satisfies Pr~r[Ai(~x,~r) =
f(~x)] ≥ (1− δ).

Note that while designing a protocol one usually wants a stronger requirement;
that is, with high probability all players compute the correct value. With the above
definition, it is possible that in every execution of the protocol at least one of the
players is wrong. However, as our aim now is to prove a lower bound this weak
definition only makes our result stronger.

In the following theorem we give lower bounds on the number of rounds and on
the expected number of rounds for weakly correct protocols.

Theorem 5.7. Let f be a boolean function.

• Let A be a (1 − δ)-correct r-round, d-random private protocol (d ≥ 2) to

compute f . If δ <
AS(f)−

√
AS(f)

2n then r = Ω(logAS(f)/d).
• Let A be a (1−δ)-correct expected r-round, d-random private protocol (d ≥ 2)

to compute f . Then r = Ω((1−√
2δ) · (AS(f)−

√
AS(f)

2n −√δ/2) · logAS(f)
d ).

Proof. We first prove the lower bound on the number of rounds and then turn
our attention to the expected number of rounds. The correctness requirement implies
that for any player Pi, Pr~r[Ai(~x,~r) = f(~x)] ≥ 1− δ, for all ~x. This implies that there

exists a vector of random tapes ~R such that for at least 2n(1− δ) input assignments

~x, Ai(~x, ~R) = f(~x). As in the proof of Lemma 5.3 (using Claim 4.7), it follows

that before round number logAS(f)
2(d+2) +1, the protocol can be correct on at most 2n(1−

AS(f)−
√
AS(f)

2n ) inputs (with random tapes ~R). Since we require that at least 2n(1−δ)
are correct, we have that at least

2n(1− δ)− 2n

(
1− AS(f)−√AS(f)

2n

)
= 2n

(
AS(f)−√AS(f)

2n
− δ

)

inputs are late. To get a lower bound on r for an r-round protocol, it is sufficient
to have a single input vector ~x such that the execution on (~x, ~R) is “long.” For

this, note that if δ <
AS(f)−

√
AS(f)

2n , then (for random tapes ~R) the number of late
inputs is greater than 0. This gives us a lower bound of r = Ω(logAS(f)/d) for any
(1− δ)-correct r-round, d-random protocol, with δ as above.

We now turn to the lower bound on the expected number of rounds of (1 − δ)-
correct protocols. Consider a player Pi. Define a 0 − 1 random variable G(~x,~r) to
be 1 if and only if Ai(~x,~r) = f(~x). Then, the correctness requirement implies that

E~r[G(~x,~r)] ≥ 1− δ, for all ~x. It follows that for any ~R the probability that ~R satisfies

E~x[G(~x, ~R)] ≥ 1 −√δ/2 is at least 1 − √
2δ.8 For any such vector of random tapes

~R, consider the deterministic protocol derived from it. In such a protocol there are

8 Otherwise, E~r,~x[G(~x, ~r)] < (1−√2δ) · 1 +
√

2δ · (1−√δ/2) = 1−√2δ+
√

2δ− δ = 1− δ. Thus

there is at least one input assignment ~x such that E~r [G(~x, ~r)] < 1 − δ, which is a contradiction to

the protocol being 1− δ-correct.
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at least

2n

(
1−

√
δ

2

)
− 2n

(
1− AS(f)−√AS(f)

2n

)
= 2n

(
AS(f)−√AS(f)

2n
−
√
δ

2

)

late input assignments; that is, E~x[L(~x, ~R)] ≥ (
AS(f)−

√
AS(f)

2n −√δ/2). Thus,

E~r,~x[L(~x,~r)] ≥ (1−
√

2δ) ·
(
AS(f)−√AS(f)

2n
−
√
δ

2

)
.

It follows that there is at least one input assignment ~x for which

E~r[L(~x,~r)] ≥ (1−
√

2δ) ·
(
AS(f)−√AS(f)

2n
−
√
δ

2

)
,

which implies that

E~r[Ti(~x,~r)] ≥ (1−
√

2δ) ·
(
AS(f)−√AS(f)

2n
−
√
δ

2

)
· logAS(f)

d
,

as claimed.
The following gives the lower bounds for the function xor.
Corollary 5.8. For fixed δ < 1/2 let A be a (1− δ)-correct d-random expected

r-round private protocol to compute xor of n bits. Then r = Ω(logn/d). (Obviously
the same lower bound holds for r-round protocols.)

Proof. The proof follows from Theorem 5.7 and the fact that AS(xor) = n. Note
that the expression (1−√2δ)( 1

2 −
√
δ/2− 1

2
√
n
) is greater than 0 for any δ < 1/2 (and

sufficiently large n).

6. Conclusion. In this paper we initiate the quantitative study of randomness
in private computations. As mentioned in the introduction, our work was already
followed by additional work on this topic [BDPV95, KM96, KOR96, CKOR97].

We give upper and lower bounds on the number of rounds required for computing
xor privately with a given number of random bits. Alternatively, we give bounds
on the number of random bits required for computing xor privately within a given
number of rounds. Our lower bounds extend to other functions in terms of their
sensitivity (and average sensitivity).

An obvious open problem is to close the gap between the upper bound and the
lower bound for computing xor using d-random bits. One possible way of doing this
is to improve the bound given by Lemma 4.8.

Appendix. Improved lower bounds for some special cases.

A.1. A special case. Each player sends a single message. In section 3
we show that xor can be computed privately with d random bits, in O(logn/ log d)
rounds. Corollary 4.14 shows a lower bound of Ω(logn/d) rounds for such a computa-
tion. In this section we prove a stronger lower bound than the one proved in section 4,
but in a weaker model. In this model, each player is allowed to send a single noncon-
stant message. More precisely, each player sends only a single nonconstant message
to a specific other player, and this other player is the same in all runs. Note that the
protocol presented in section 3 has this property.



A RANDOMNESS-ROUNDS TRADEOFF IN PRIVATE COMPUTATION 75

Again, we consider the protocol obtained by fixing a specific vector of random
tapes ~R = (R1, . . . , Rn). The main observation is that the above property implies
that if a player receives two messages, then the sets of variables on which the two
messages depend are disjoint.

In the following we prove an extension of Lemma 4.12, which gives an upper
bound on the sensitivity of the view of the players. To do so, we first prove a stronger
version of Lemma 4.8 for the case that each function depends on a different set of
variables. We then give a slight variation of the proof of Lemma 4.12, using the new
lemma instead of Lemma 4.8.

Lemma A.1. Let F = {fj}, 1 ≤ j ≤ m be a set of m functions fj : {0, 1}n →
{0, 1}, for some n. Assume S(fj) ≤ C for all j. Further assume that, for all i 6= j,
D(fi) ∩ D(fj) = ∅. Define F (Y ) = (f1(Y ), . . . , fm(Y )). If F assumes at most 2d

different values (different vectors), then the sensitivity of F is at most C · d.
Proof. Let F ′ ⊆ F be the set of functions which are not constant functions. Let

m′ = |F| be the cardinality of this set. Since for every i 6= j such that fi, fj ∈ F ′, we

have D(fi) ∩ D(fj) = ∅, then the number of values assumed by F is 2m
′
. Therefore

m′ ≤ d.
Let Y be the assignment on which F has the largest sensitivity, i.e., |Sf (Y )| ≥

|Sf (Y ′)| for any assignment Y ′. If F is sensitive to i on Y , then there is some function
fj ∈ F ′ such that fj is sensitive to i on Y . However every function fj has sensitivity
at most C. Therefore F is sensitive on Y to at most C ·m′ ≤ C · d variables.

We remark that the bound proved by the above lemma is tight.
Lemma A.2. Consider a private d-random protocol to compute a boolean function

f with the additional property under consideration, and consider a specific vector of
random tapes ~R. Then V iewk

i (~x,
~R), for any player Pi, has sensitivity of at most

Q(k)
4
= (d+ 1)k−1.

Proof. First note that, since we fix the random tapes, the views of the players
are functions of the input assignment ~x only. We prove the lemma by induction. For
k = 1 the view of any player depends only on its single input bit. Thus the claim is
obvious. For k > 1 assume the claim holds for any ` < k. This implies in particular
that all messages received by player Pi and included in the view under consideration
have sensitivity of at most Q(k − 1). Consider the view without the input bit xi
and denote it by F ; this is composed of only the messages received by Pi and the
bits read from the (local) random tape. Using Lemma 4.11, and Lemma A.1 with
C = Q(k−1), we have that F has sensitivity at most Q(k−1) ·d = (d+1)k−2 ·d. The

view under consideration, V iewk
i (~x,

~R), has an additional single bit, which clearly has

sensitivity at most 1. We thus have that the sensitivity of V iewk
i (~x,

~R) is at most
(d+ 1)k−2 · d+ 1 ≤ Q(k).

Theorem A.3. Given a private d-random protocol (d ≥ 2) to compute a boolean
function f that has the special property under consideration, consider the deterministic
protocol derived from it by any given vector of random tapes ~R. For every player Pi,
there is at least one input assignment ~x such that Ti(~x, ~R) = Ω(logS(f)/ log d).

The proof follows the proof of Theorem 4.13, using Lemma A.2 instead of Lemma
4.12. The lower bound of this section is stated in the following corollary.

Corollary A.4. Let A be an r-round d-random private protocol (d ≥ 2) to
compute a boolean function f that has the property under consideration. Then r =
Ω(logS(f)/ log d).

The following lower bound applies for the function xor.
Corollary A.5. Let A be an r-round d-random private protocol (d ≥ 2)
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to compute xor of n bits that has the property under consideration. Then r =
Ω(logn/ log d).

A.2. A special case. Protocols with messages of a special type. As
proved in section 3, xor can be computed privately with d-random bits inO(logn/ log d)
rounds. For general protocols, Corollary 4.14 shows a lower bound of Ω(logn/d)
rounds, while in a special case (in which the upper bound falls) Corollary A.5 gives
a tight Ω(logn/ log d) lower bound on the number of rounds. Here we consider an-
other special case in which each message m can be expressed as a boolean function
f(~x) ⊕ g(~r), of the n-entry input vector ~x, and a d-entry binary random tape, ~r.
Again, our upper bound satisfies this restriction, and the lower bound we prove in
this case is tight (i.e., Ω(log n/ log d)). One can think of such protocols as those which
are designed (as we do in section 3) by first designing a nonprivate protocol, and
then “masking” the messages with random noise (which is canceled at the end). In
particular, each player can toss all of its coins before the protocol starts (the number
of coins tossed may depend, however, on the outcome of previous coin tosses). The
particular masking bit that is used for each message is not to depend on the input to
the players.

The idea of the proof is to consider the number of input variables which are good
(with respect to the computed function f) in the view of a player at some round k (as
in section 4.3.1).9 Clearly, the input variable of the player may be good. Other good
variables can be those that are good for any of the messages that this player received in
a previous round. The key ingredient in the proof will be to show that the number of
messages received by any player, that are “beneficial” to increase the number of good
variables in its view, is at most d (otherwise, the privacy requirement is violated).
From this we get that the number of good variables at round k is O((d + 1)k−1). In
order for a player to output the correct value of f its view must have at least S(f)
good variables. The result will follow.

More precisely, consider a private protocol (with the property under considera-
tion) to compute a boolean function f . Consider the messages M1, . . . ,Mm received
by some player Pj during the protocol. By assumption, we can write each of these
messages, M`, as M`(~x,~r) = f`(~x) ⊕ g`(~r). Denote by Y an input assignment on
which f achieves its sensitivity S(f). Let GM`

(Y ) denote the set of good variables
of the message M` on Y ; henceforth we denote good to mean “good on Y .” Note
that for any message M`, due to the special structure of messages in this proto-
col, GM`

(Y ) = Gf`(Y ). First, ignore those messages M` for which GM`
(Y ) ⊆ {xj}.

Assume that the rest of the messages are ordered in a way such that each mes-
sage Mi (where i ≤ m′ ≤ m) has at least one good variable that is not good
for any of M1, . . . ,Mi−1 (i.e., GMi

(Y ) \ ∪i′<iGMi′ (Y ) 6= ∅). Further assume that

| ∪m′
i=1 GMi

(Y ) ∪ (Sf (Y ) ∩ {xj})| ≤ S(f) − 1. We first present a claim which gives a
property of g1, . . . , gm′ . This claim is then used to prove that m′ ≤ d.

Claim A.6. Let M1, . . . ,Mm′ be as above, and let g1, . . . , gm′ be the corresponding
gi’s. Then, the vector (g1(~r), . . . , gm′(~r)) assumes all 2m

′
values (over the choices of

the random tapes ~r).

Proof. Suppose this is not the case. Then there exists a minimal k such that
(g1(~r), . . . , gk−1(~r)) assumes all 2k−1 values, but (g1(~r), . . . , gk(~r)) does not assume
all 2k values. In particular, there are k−1 bits a1, . . . , ak−1 for which (without loss of

9 Let Y be an assignment and f be the computed function. Recall that for a given function m, a
variable xj is called good for m on Y if both m and f are sensitive to xj on Y .
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generality) the values vector (a1, . . . , ak−1, 0) is assumed but (a1, . . . , ak−1, 1) is not.
By the assumptions on the Mi’s, there exists a variable xik , ik 6= j, such that xik

is good for Mk (and hence for fk), but is not good for any of f1, . . . , fk−1. This implies
that both f and fk are sensitive to xik (on Y ). In particular, fk(Y ) 6= fk(Y

(xik )). On
the other hand, for any ` < k, f`(Y ) = f`(Y

(xik )). Since | ∪m′
i=1 GMi(Y ) ∪ (Sf (Y ) ∩

{xj})| ≤ S(f) − 1, there is a variable xs, s 6= j, such that f is sensitive to xs on Y ,
but fi, i ≤ k are not.

Now consider the two input assignments Y (xs) and Y (xik ). Without loss of gener-
ality, assume that (f1(Y ), . . . , fk(Y )) = (0, . . . , 0). Then, (f1(Y

(xs)), . . . , fk(Y
(xs))) =

(0, . . . , 0), and (f1(Y
(xik )), . . . , fk(Y

(xik ))) = (0, . . . , 0, 1). Therefore, on the assign-
ment Y (xs), player Pj can see (with a positive probability) the vector of messages
(a1, . . . , ak−1, 0), but not (a1, . . . , ak−1, 1), and vice versa for the input assignment
Y (xik ). Since f(Y (xik )) = f(Y (xs)), and xj is equal in both of them, the privacy
requirement (with respect to Pj) is violated.

The important consequence of the above claim is that m′ ≤ d. This is because,
by Lemma 4.10, there are at most 2d different vectors for (g1(~r), . . . , gm′(~r)). We are
now ready to prove the theorem.

Theorem A.7. Let A be an r-round d-random private protocol (d ≥ 2) to com-
pute a boolean function f , such that A has the property that each message M` can be
expressed as f`(~x)⊕ g`(~r). Then r = Ω(logS(f)/ log d).

Proof. Recall that Y is an input assignment on which f has sensitivity S(f) and
that by “good” we mean “good on Y .” We first prove by induction that the view
of any player in round k, on input Y , can have at most (d + 1)k−1 good variables,
or at least S(f) good variables. This is certainly true in the first round, where the
view can have at most one good variable. Now consider the view of Pj in round k.
Denote by M the set of messages received by the player. If the view has less than
S(f) good variables, then |∪m∈M Gm(Y )∪ (Sf (Y )∩{xj})| ≤ S(f)−1. By Claim A.6,
it follows that there can be at most d messages, each of which has at least one good
variable which is not xj , and such that each has at least one such good variable that
the previous ones (in the order we defined) do not have. Each of these messages was
received in one of the previous rounds, and has less than S(f) good variables; hence,
by the induction hypothesis each has at most (d + 1)k−2 good variables. Thus, the
view of Pj at round k can have at most d · (d+1)k−2 +1 ≤ (d+1)k−1 good variables.

To prove the theorem, fix some vector of random tapes ~R and consider the views
obtained when running the deterministic protocol derived by it. As remarked before,
due to the special type of message, the set of good variables is the same for all random
tapes. Obviously, the view of a player that outputs the value f must have S(f) good
variables (on Y ). Let t be the first round in which some player Pj has view with
at least S(f) good variables. Order the messages received by Pj in round t in an
arbitrary order. Then, there is the first message m after which the view of Pj has at
least S(f) good variables. This message m has at most (d+ 1)t−2 good variables, by
the above claim (as m was produced from a view of a previous round, which has less
than S(f) good variables). On the other hand, just before this message is received,
the view of the player does not have S(f) good variables; therefore, by the above
claim, it has at most (d+ 1)t−1 good variables. We thus have

S(f) ≤ (d+ 1)t−1 + (d+ 1)t−2 ,

which gives the required lower bound on t.
Corollary A.8. Let A be an r-round d-random private protocol (d ≥ 2)
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to compute xor of n bits that has the property under consideration. Then r =
Ω(logn/ log d).
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Abstract. In 1975, Kalmanson proved that if the distance matrix in the travelling salesman
problem (TSP) fulfills certain combinatorial conditions (that are nowadays called the Kalmanson
conditions) then the TSP is solvable in polynomial time [Canad. J. Math., 27 (1995), pp. 1000–
1010].

We deal with the problem of deciding, for a given instance of the TSP, whether there is a renum-
bering of the cities such that the corresponding renumbered distance matrix fulfills the Kalmanson
conditions. Two results are derived: first, it is shown that—in case it exists—such a renumbering can
be found in polynomial time. Secondly, it is proved that such a renumbering exists if and only if the
instance possesses the so-called master tour property. A recently posed question by Papadimitriou
is thereby answered in the negative.

Key words. travelling salesman problem, Kalmanson condition, master tour, combinatorial
optimization
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1. Introduction. The travelling salesman problem (TSP) is defined as follows.
Given an n× n distance matrix C = (cij), find a permutation π ∈ Sn that minimizes

the sum
∑n−1
i=1 cπ(i)π(i+1) + cπ(n)π(1). In other words, the salesman must visit cities 1

to n in arbitrary order and want to minimize the total travel length. This problem is
one of the fundamental problems in combinatorial optimization and known to be NP
hard. For more specific information on the TSP, the reader is referred to the book by
Lawler et al. [7].

In this paper, we are interested in a special case of the TSP where—due to special
combinatorial structures in the distance matrix—the problem is solvable in polynomial
time: the case of Kalmanson distance matrices. A symmetric n×n matrix C is called
a Kalmanson matrix if it fulfills the conditions

cij + ck` ≤ cik + cj` for all 1 ≤ i < j < k < ` ≤ n,(1.1)

ci` + cjk ≤ cik + cj` for all 1 ≤ i < j < k < ` ≤ n.(1.2)

Note that these conditions do not involve any diagonal entries cii. Since every city
is visited only once, diagonal entries are of no relevance for the TSP and may as
well be considered to be “undefined” or zero. Originally, Kalmanson introduced these
conditions in order to generalize the concept of convexity of finite point sets in the
plane: for some convex planar point set, let p1, . . . , pn denote its clockwise ordering
around the convex hull. Then the Euclidean distance matrix cij = d(pi, pj) fulfills
all conditions (1.1) and (1.2) (Proof: In a convex quadrangle, the total length of the
diagonals is greater or equal to the total length of two opposite sides.) Moreover, if we
“rotate” the ordering by one point, the distance matrix of the resulting rotated point
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sequence p2, p3, . . . , pn, p1 also is a Kalmanson matrix. It is easy to verify that this
“rotation property” does not result from special Euclidean features but solely from
inequalities (1.1) and (1.2). Hence, if one removes the first row and first column from
a Kalmanson matrix and appends them after the last row and column, the result of
this operation is another Kalmanson matrix. Similarly, reversing the ordering of the
rows and columns of a Kalmanson matrix will again yield a Kalmanson matrix.

Kalmanson [6] proved that for the TSP with a Kalmanson distance matrix, the
identity permutation 〈1, 2, 3, . . . , n〉 always constitutes an optimal tour and thus, the
TSP is easily solved for this special case. Observe that the length of the optimum TSP
tour is not changed when the cities are renumbered, i.e., when the rows and columns
of the distance matrix are permuted according to the same permutation. However,
such a renumbering will usually destroy the Kalmanson conditions. Intuition tells us
that a renumbered instance is still a rather trivial special case of the TSP, since it is
just a Kalmanson instance in disguise, but it is by no means obvious how to recognize
this disguise. Hence, the problem arises of finding a permutation that transforms the
distance matrix back into a Kalmanson matrix.

Another problem related to the TSP is the detection of a master tour, motivated
by the following observation. Suppose that all cities in a Euclidean instance of the
TSP are the vertices of a convex polygon. Then the optimum tour is not only easy to
find (it is the perimeter of the polygon), but the instance also fulfills the much stronger
master tour property: there is an optimum TSP tour π such that the optimum TSP
tour of any subset of cities can be obtained by simply omitting from the tour π the
cities that are not in the subset. Such a tour π is called a master tour. The concept
of a master tour was first formulated by Papadimitriou [8, 9]. It is easy to prove
that deciding whether a given instance of the TSP has the master tour property is in
the complexity class Σ2P. Papadimitriou also considered the corresponding decision
problem as a “good candidate for a natural Σ2P-complete problem.” In this paper,
we will prove that the following results hold true.

(1) For a symmetric n×n matrix C, it can be decided in O(n2 logn) time whether
C is a permuted Kalmanson matrix.

(2) A distance matrix allows a master tour if and only if it is a permuted Kalman-
son matrix.

Combining results (1) and (2) yields a polynomial-time algorithm for the master tour
problem. Hence, unless Σ2P=P, the conjecture of Papadimitriou is false.

Organization of the paper. Section 2 summarizes elementary definitions and
results on permutations and matrices. In section 3, several lemmas on the combinato-
rial structure of Kalmanson matrices are collected. These lemmas are used in section 4
to derive an O(n2 logn)-time algorithm for recognizing permuted n × n Kalmanson
matrices. Section 5 explains the connection between permuted Kalmanson matrices
and master tours and shows that a master tour can be detected in polynomial time.
Finally, section 6 closes with a short discussion.

2. Definitions and preliminaries. In this section, several basic definitions for
permutations and matrices are summarized.

For an n × n matrix C, denote by I = {1, . . . , n} the set of rows (columns). A
row i precedes a row j in C (i ≺ j for short), if row i occurs before row j in C. For
two sets K1 and K2 of rows, we write K1 ≺ K2 if and only if k1 ≺ k2 for all k1 ∈ K1

and k2 ∈ K2. Let V = {v1, v2, . . . , vr} and W = {w1, w2, . . . , ws} be two subsets of
I. We denote by C[V,W ] the r × s submatrix of C that is obtained by deleting all
rows not contained in V and all columns not in W .
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For permutations, we adopt the notation π = 〈x1, x2, . . . , xn〉 for “π(i) = xi for
1 ≤ i ≤ n.” The concatenation of permutations 〈x1, . . . , xn〉 and 〈y1, . . . , ym〉 is
〈z1, . . . , zn+m〉, where zi = xi for 1 ≤ i ≤ n and zn+j = yj for 1 ≤ j ≤ m. The
identity permutation is denoted by ε, i.e., ε(i) = i for all i ∈ I. For a permutation φ,
the permutation φ− defined by φ−(i) = φ(n− i+ 1) is called the reverse permutation
of φ. Permutation φ is called a cyclic shift or a rotation if there exists a k ∈ I such
that φ = 〈k, k + 1, . . . , n, 1, . . . , k − 1〉.

By Cφ,π we denote the matrix which is obtained from matrix C by permuting its
rows according to φ and its columns according to π, i.e., Cφ,π = (cφ(i),π(j)). For Cφ,φ,
we usually write Cφ. A permutation φ is called a Kalmanson permutation for some
matrix C if Cφ is a Kalmanson matrix. A matrix C is called a permuted Kalmanson
matrix if there exists a Kalmanson permutation for C.

For a partition V = 〈V1, . . . , Vv〉 of I into v subsets, the set Str(V1, . . . , Vv) is
defined to contain all permutations φ that fulfill φ(vi) ≺ φ(vj) for all vi ∈ Vi and
vj ∈ Vj with 1 ≤ i < j ≤ v. Str(V1, . . . , Vv) is called the set of permutations induced
by the sequence of stripes V1, . . . , Vv. An appropriate data structure for storing,
manipulating, and intersecting such sets of permutations are PQ trees as introduced
by Booth and Lueker [1] (in fact, PQ trees of height two suffice to represent these
permutations).

Proposition 2.1 (see Booth and Lueker [1]). For two partitions 〈U1, . . . , Uu〉
and 〈V1, . . . , Vv〉 of I, the set Str(U1, . . . , Uu) ∩ Str(V1, . . . , Vv) either equals
Str(W1, . . . ,Ww) for an appropriate partition W = 〈W1, . . . ,Ww〉 of I or it is empty.
The partition W can be computed in O(|I|) time.

An m× n matrix C is called a sum-matrix if there exist numbers x1, . . . , xm and
y1, . . . , yn such that cij = xi + yj for all i and j. Note that this implies cij + crs =
cis + crj for 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n (i.e. in any two by two submatrix,
both diagonals have equal sums). For convenience, single rows and columns are also
considered to be sum-matrices. Note that every sum-matrix is a Kalmanson matrix
and a Contra Monge matrix. An m× n matrix C is called a Contra Monge matrix if
cij + crs ≥ cis + crj holds for 1 ≤ i < r ≤ m and 1 ≤ j < s ≤ n. The combinatorial
structure of Contra Monge matrices and of permuted Contra Monge matrices is well
understood (see the original paper by Dĕineko and Filonenko [4] or the survey paper
by Burkard, Klinz, and Rudolf [2]). The known main results are summarized in the
following proposition.

Proposition 2.2. Let X = (xij) be an m× n matrix. Let Π ⊆ Sm × Sn denote
the set of all pairs of permutations (π, φ) such that Xπ,φ is a Contra Monge matrix.

(i) Then either Π is the empty set, or there exists an appropriate partition
R1, . . . , Rr of the set R of rows and an appropriate partition C1, . . . , Cc of
the set C of columns of X such that

Π = {(π, φ)|π ∈ ΠR, φ ∈ ΠC} ∪ {(π, φ)|π− ∈ ΠR, φ
− ∈ ΠC}

where ΠR = Str(R1, . . . , Rr) and ΠC = Str(C1, . . . , Cc).
(ii) The partitions R1, . . . , Rr and C1, . . . , Cc can be computed in O(mn+m logm+

n logn) time (in case they exist).
(iii) Every submatrix X[Ri, C] and every submatrix X[R,Cj ] is a sum-matrix.

These sum–matrices are maximal sum–matrices in X (i.e., neither rows nor
columns may be added without destroying the sum-matrix property).

(iv) In case Π is not empty, either r = c = 1 holds (and X is a sum-matrix), or
the numbers r and c are both at least two (and X is horizontally and vertically
divided into several stripes by Π).
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(v) Matrix X is a Contra Monge matrix if and only if for all pairs of indices
1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n− 1, the inequality

xij + xi+1,j+1 ≥ xi,j+1 + xi+1,j(2.1)

is fulfilled.
By IK we denote the set of Kalmanson matrices. Similarly to the above alter-

nate characterization (2.1) of Contra Monge matrices, an alternate characterization
of Kalmanson matrices can be given.

Proposition 2.3. An n× n symmetric matrix C is a Kalmanson matrix if

ci,j+1 + ci+1,j ≤ cij + ci+1,j+1 for all 1 ≤ i ≤ n− 3, i+ 2 ≤ j ≤ n− 1,(2.2)

ci,1 + ci+1,n ≤ cin + ci+1,1 for all 2 ≤ i ≤ n− 2.(2.3)

Observe that conditions (2.2) and (2.3) can be verified in O(n2) time. This yields
the following proposition.

Proposition 2.4. For a symmetric n× n matrix C, it can be decided in O(n2)
time whether C is a Kalmanson matrix.

Proposition 2.5. Let C be an n × n Kalmanson matrix, let I ′ ⊆ I, and let
φ ∈ Sn be a cyclic shift. Then (i) Cε− ∈ IK, (ii) C[I ′, I ′] ∈ IK, and (iii) Cφ ∈ IK hold.

3. Combinatorial properties of Kalmanson matrices. In this section, we
derive several technical lemmas on the combinatorial structure of Kalmanson matrices.

Lemma 3.1. Let C be an n × n symmetric Kalmanson matrix, 2 ≤ m ≤ n − 1,
let V = 〈1, 2, . . . ,m〉, and let W = 〈m+ 1, . . . , n〉. Then C[V,W ] is a Contra Monge
matrix.

Proof. This is a consequence of condition (2.2) in Proposition 2.3.
Lemma 3.2. Let C be a symmetric n × n matrix. Let V and W be a partition

of I with |V | = r ≥ 2, |W | = s ≥ 2 such that C[V,W ] is a sum-matrix. Let q ∈ W
and p ∈ V be arbitrary. Let D = C[V ∪ {q}, V ∪ {q}] and E = C[{p} ∪W, {p} ∪W ].
Assume that there is a permutation ψ = 〈v1, . . . , vr, q〉 of V ∪ {q} and a permutation
π = 〈p, w1, . . . , ws〉 of W ∪ {p} such that Dψ ∈ IK and Eπ ∈ IK.

Under these conditions either Cφ ∈ IK for φ = 〈v1, . . . , vr, w1, . . . , ws〉 or there
does not exist any permutation σ ∈ Str(V,W ) with Cσ ∈ IK.

Proof. We prove that under the conditions in the lemma either the inequality

cv1vr + cw1ws ≤ cv1w1 + cvrws(3.1)

is fulfilled and Cφ ∈ IK for φ = 〈v1, . . . , vr, w1, . . . , ws〉 or inequality (3.1) is not fulfilled
and there does not exist any permutation σ ∈ Str(V,W ) with Cσ ∈ IK.

First assume that inequality (3.1) is fulfilled. We prove that Cφ ∈ IK according
to Proposition 2.3 by verifying conditions (2.2) and (2.3). Consider two indices i and
j in Cφ, 1 ≤ i ≤ n − 3, and i + 2 ≤ j ≤ n − 1. In case i ≺ i + 1 ≺ j ≺ j + 1 are all
in V or are all in W , condition (2.2) holds for Cφ since Dψ ∈ IK and Eπ ∈ IK. If i
and i+ 1 are in V and j and j + 1 are in W , the four elements ci,j+1, ci+1,j , cij , and
ci+1,j+1 lie in the sum-matrix C[V,W ] and thus trivially fulfill (2.2). Next, if i is in
V and i + 1 ≺ j ≺ j + 1 are in W then i = vr and i + 1 = w1 holds. The relations
p ≺ w1 ≺ j ≺ j + 1 in Eπ ∈ IK yield cp,j+1 + cw1,j ≤ cpj + cw1,j+1. Since p, vr ∈ V ,
j, j + 1 ∈W, and C[V,W ] is a sum-matrix, cpj + cvr,j+1 = cp,j+1 + cvr,j . Adding this
equality to the previous inequality yields (2.2). The last case where i ≺ i+ 1 ≺ j are



THE MASTER TOUR PROBLEM 85

in V and j + 1 is in W is handled symmetrically. Summarizing, (2.2) is true in any
case.

Next, consider an index 2 ≤ i ≤ n− 2. In case i 6= vr, (2.3) is true since Dψ ∈ IK
(respectively, Eπ ∈ IK ) holds. In case i = vr, (2.3) is exactly (3.1). Hence, (3.1)
implies (2.3), and the first half of the lemma is proven.

To prove the remaining half, assume that for some σ ∈ Str(V,W ), Cσ ∈ IK holds.
We show how to derive inequality (3.1) from this. Since V precedes W in σ, only two
cases arise:

(i) v1 ≺ vr ≺ w1 ≺ ws or vr ≺ v1 ≺ ws ≺ w1 in σ. Then condition (1.1) yields
(3.1).

(ii) v1 ≺ vr ≺ ws ≺ w1 or vr ≺ v1 ≺ w1 ≺ ws in σ. Then condition (1.1)
yields cv1vr + cw1ws

≤ cvrw1
+ cv1ws

. Since C[V,W ] is a sum-matrix, cv1ws
+ cvrw1

=
cv1w1

+ cvrws
. Adding these two inequalities gives (3.1).

Lemma 3.3. Let C be a symmetric n × n matrix. Let U1, . . . , Um be a partition
of I such that C[Ui, I \ Ui] is a sum-matrix for 1 ≤ i ≤ m. Let ui be an arbitrary
element in Ui. Let πi be a Kalmanson permutation for C[Ui ∪ {ui+1}, Ui ∪ {ui+1}]
(indices are taken modulo m, i.e., um+1 = u1) that has ui+1 as its last element. Let
φi denote the permutation of Ui induced by πi.

Under these conditions either Cφ ∈ IK where φ is the concatenation of φ1, . . . , φm
or there does not exist any Kalmanson permutation for C in Str(U1, . . . , Um).

Proof. The proof is done by induction on the number t of stripes Ui with car-
dinality at least two. If t = 0, the statement trivially holds. Otherwise if t ≥ 1, we
may assume without loss of generality that |U1| ≥ 2. Moreover, we assume that there
exists a Kalmanson permutation for C in Str(U1, . . . , Um), since otherwise there is
nothing to show.

Set W = U2∪ · · ·∪Um and consider the sets U ′i where U ′1 = {u1} and U ′i = Ui for
2 ≤ i ≤ m. By the induction assumption, the concatenation of 〈u1〉, φ2, . . . , φm is a
Kalmanson permutation for C[{u1}∪W, {u1}∪W ]. Set V = U1. By the conditions of
the lemma, the concatenation π1 of φ1 and 〈u2〉 is a Kalmanson permutation for C[V ∪
{u2}, V ∪ {u2}]. Moreover, the matrix C[V,W ] is a sum-matrix. Summarizing, all
conditions for applying Lemma 3.2 with p = u1 and q = u2 are fulfilled. The statement
in Lemma 3.2 yields that the concatenation φ is indeed a Kalmanson permutation and
the inductive proof is complete.

The following notation is convenient. For two rows i and j of a matrix C, define
the set

M(i, j) =
{
k ∈ I \ {i, j} | cik − cjk = min

`6=i,j
{ci` − cj`}

}
.(3.2)

Note that C[{i, j},M(i, j)] is a sum matrix. In case |M(i, j)| = n−2 holds, cik−cjk =
const for all k ∈ I \{i, j}. Such a pair of rows is called equivalent , and this is denoted
by i ∼ j. We also define that every row is equivalent to itself.

Lemma 3.4. For any symmetric n×n matrix C, the relation ∼ is an equivalence
relation.

Proof. By definition, the relation ∼ is symmetric and reflexive. To prove that ∼
is transitive, consider i, j1, j2 ∈ I with j1 ∼ i and i ∼ j2. The goal is to show that
j1 ∼ j2, i.e., to show that for any k, ` ∈ I with {j1, j2} ∩ {k, `} = ∅ the equality (∗)
cj1k − cj2k = cj1` − cj2` holds. If i 6∈ {k, `} holds, we use j1 ∼ i and j2 ∼ i: subtract
the equalities cik − cj1k = ci` − cj1` and cik − cj2k = ci` − cj2` from each other, and
derive (∗). Otherwise, assume that k = i. Use i ∼ j2 to obtain cij1 − cj2j1 = ci`− cj2`
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and use i ∼ j1 to obtain cij2 − cj1j2 = ci` − cj1`. Subtracting these equations yields
(∗).

Lemma 3.5. Let C be a symmetric n × n matrix. If 1 ∼ i for all i ∈ I, then
C ∈ IK.

Proof. By Lemma 3.4 above, all inequalities (1.1) and (1.2) are fulfilled with
equality.

Lemma 3.6. Let C be a symmetric n× n Kalmanson matrix. Let i and j be two
rows of C with i ≺ j, let K1 = M(i, j) ∪ {i}, and let K2 = I \K1. Then there exists
a cyclic shift φ such that Cφ ∈ IK and K1 ≺ K2 in Cφ.

Proof. By definition, i ∈ K1 and j ∈ K2. Consider any k ∈ M(i, j). Then
cik − cjk = ci` − cj` for all ` ∈ K1 \ {i} and cik − cjk < ci` − cj` for all ` ∈ K2 \ {j}.
We distinguish the following three cases on the relative positions of i, j, and k in C.

(i) k ≺ i ≺ j. Then condition (1.2) yields cip − cjp ≤ cik − cjk for any p with
k ≺ p ≺ i ≺ j. Hence, p ∈ K1 for all p ∈ I with k ≺ p ≺ i.

(ii) i ≺ k ≺ j. Analogously to the argument in (i), condition (1.1) implies p ∈ K1

for all p ∈ I with i ≺ p ≺ k.
(iii) i ≺ j ≺ k. Analogously to the argument in (i), conditions (1.2) and (1.2)

imply p ∈ K1 for all p ∈ I with p ≺ i or k ≺ p.

Summarizing, we conclude that there exist two elements r and s such that either
K1 = {r, . . . , i, . . . , s} or K2 = {s + 1, . . . , j, . . . , r − 1}. By Proposition 2.5(iii),
every cyclic shift of C again yields a Kalmanson matrix. Hence, choosing φ =
〈r, . . . , s, . . . , n, 1, . . . , r − 1〉 or choosing φ = 〈r, . . . , n, 1, . . . , s, s+ 1, . . . , r − 1〉 com-
pletes the argument.

4. Recognition of permuted Kalmanson matrices. This section shows how
to recognize permuted Kalmanson matrices in polynomial time. The recognition al-
gorithm is described in two steps: first we give a rough outline of the algorithm in
subsection 4.1. We sketch a divide and conquer approach that is based on the lem-
mas derived in the preceding section. Then in subsection 4.2, we describe a fast
implementation of the algorithm that runs in O(n2 logn) time.

4.1. Outline of the algorithm. Given an n× n matrix C, we want to decide
whether there exists a permutation σ such that Cσ ∈ IK and we want to compute σ
in case it exists. Our solution algorithm follows a divide and conquer strategy. The
main goal is to find in polynomial time D(n) a so-called nice bipartition of the set
I of rows, i.e., a bipartition into two sets V and W that satisfies the following three
properties.

(N1) |V |, |W | ≥ 2.
(N2) C[V,W ] is a sum-matrix.
(N3) The matrix C is a permuted Kalmanson matrix if and only if there exists a

permutation σ ∈ Str(V,W ) with Cσ ∈ IK.

If we have found some nice bipartition, we choose rows q ∈ W and p ∈ V and
recursively compute Kalmanson permutations ψ and π for the two matrices C[V ∪
{q}, V ∪ {q}] and C[{p} ∪W, {p} ∪W ]. According to Lemma 3.2 and property (N3)
above, either the concatenation of ψ and π is a Kalmanson permutation for C, or
C cannot be a permuted Kalmanson matrix. By Proposition 2.4, it can be decided
in O(n2) time whether the concatenation of ψ and π indeed yields a Kalmanson
permutation. Summarizing, this results in a recursive algorithm with time complexity

T (n) ≤ max
2≤k≤n−2

{T (k + 1) + T (n− k + 1)} +D(n) +O(n2).(4.1)
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1. Find a row k with k 6∼ 1.
If k does not exist: =⇒ C itself is Kalmanson matrix. Stop.

2. From k, define an initial partition of I with two stripes K1 and K2.
3. If all stripes in the current partition of I have cardinality one:

=⇒ Only one potential Kalmanson permutation left. Stop.
4. Rotate the current partition such that the first stripe has cardinality at least

two.
5. If the first stripe in the current partition of I together with its complement

forms a nice bipartition: =⇒ Nice bipartition found. Stop.
6. Refine the partition by applying Proposition 2.2 to the submatrix whose

row set is the first stripe and whose column set is the complement of the
first stripe: =⇒ Refinement of partition found. Goto 3.

Fig. 4.1. A high-level description of how to find a nice bipartition.

It is easy to verify that T (n) = O(nD(n) + n3) and hence, the algorithm runs in
polynomial time. It remains to explain how to find a nice bipartition (a high-level
pseudocode description of this procedure is given in Figure 4.1).

First, we find a row k that is not equivalent to row 1 (if such a row k does not
exist, if follows from Lemma 3.5 that the identity permutation is a Kalmanson permu-
tation). Compute M(1, k) and define the sets K1 = M(1, k) ∪ {1} and K2 = I \K1.
Since 1 6∼ k, |K1|, |K2| ≥ 2 holds. By Lemma 3.6, it is sufficient to deal with per-
mutations φ for which K1 ≺ K2 holds, i.e., with permutations φ ∈ Str(K1,K2).
Now, if C[K1,K2] is a sum-matrix, K1 and K2 form a nice bipartition and we are
done. Otherwise, by Lemma 3.1, it is necessary to deal with permutations φ for
which the matrix Cφ[K1,K2] is a Contra Monge matrix. According to Proposi-
tion 2.2, these permutations can be described by φ ∈ Str1 ∪ Str∗1 where Str1 =
Str(K11, . . . ,K1r,K21, . . . ,K2s) and Str∗1 = Str(K1r, . . . ,K11,K2s, . . . ,K21) for
appropriate partitions K11, . . . ,K1r of K1 and K21, . . . ,K2s of K2. It is easy to
see that by rotation and reversion, every φ∗ ∈ Str∗1 can be transformed into some
φ ∈ Str1. By Proposition 2.5 we conclude that in case C can be permuted into a
Kalmanson matrix; this can also be reached by some φ ∈ Str1 and thus it is sufficient
to consider permutations in Str1.

In case all stripes in Str1 have cardinality one, there remains just a single po-
tential Kalmanson permutation (and it can be checked in O(n2) time whether the
permutation indeed is a Kalmanson permutation). Otherwise, there is some stripe
Kij of cardinality at least two. We rotate the sequence of stripes in Str1 in such a way
thatKij becomes the first stripe and rename the stripes into L1, . . . , L` with L1 = Kij .
In case C[L1, I \ L1] is a sum-matrix, V = L1 and W = I \ L1 form a nice bipar-
tition. Otherwise, we observe that any Kalmanson permutation in Str(L1, . . . , L`)
must transform C[L1, I \ L1] into a Contra Monge matrix. According to Proposi-
tion 2.2, we compute an appropriate partition of L1 and an appropriate partition
of I \ L1 that encodes all permutations that transform C[L1, I \ L1] into a Contra
Monge matrix. This either results in a refinement of the stripes in L1, . . . , L` (cf.
Proposition 2.1) or the set of potential permutations becomes empty (and C is not a
permuted Kalmanson matrix).

This procedure is repeated over and over again as long as there are stripes of
cardinality at least two. Either we find a nice bipartition of I, or we may refine the
stripes, or eventually all stripes are of cardinality one. Since the stripes can be refined
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at most (n− 1) times, a conservative estimation yields D(n) = O(n3). According to
the above arguments, the recognition algorithm runs in polynomial time O(n4).

4.2. Implementation of the algorithm. In this subsection, we explain how
to implement the divide and conquer algorithm described in the preceding section in
O(n2 logn) time. Our main tools are advanced data structures (PQ-trees and union-
find structures) and a slight modification of the divide step. Let us start with three
simple but important statements.

• All through the algorithm we will derive and exploit sufficient conditions on the
matrix for being Kalmanson. These conditions will restrict and cut down the set of
potentially feasible permutations. We will not verify at every single step whether we
are indeed dealing with Kalmanson permutations (this would be too time consuming).
Hence, the output of the algorithm will be some σ ∈ Sn with the following property:
“In case C is a permuted Kalmanson matrix, then Cσ ∈ IK.” (Cf. Lemma 4.1). The
verification of whether Cσ is indeed in IK is postponed to a single O(n2) check in the
end, after the algorithm.

• All sets of permutations induced by stripes are stored in PQ-trees of height two
(as already stated in section 2). For a set of permutations Π over I stored in a PQ-tree
of constant height and a subset J ⊆ I, the following operation can be performed in
O(|J |) time: “Restructure the PQ-tree in such a way that the restructured PQ-tree
stores exactly those permutations π ∈ Π in which the objects in J are consecutive”
(cf. Booth and Lueker [1]). Note that this operation might lead to an empty set of
permutations.

• The algorithm represents its knowledge on the equivalence of rows in a union–
find data structure in order to answer in constant time questions of the form “Are the
rows i and j already known to be equivalent?”. In case it receives new information on
the equivalence of two rows i and j, the corresponding two equivalence classes have to
be combined into a single class. We choose an implementation of this data structure
that supports the FIND operation in constant time and that supports the UNION
operation in time that is linear in the size of the merged classes (this can be done, for
example, via pointers from every element to the name of the corresponding class; see
Cormen, Leiserson, and Rivest [3]).

Next, we give a precise low-level description of the algorithm. The algorithm
performs the following five steps (S0)–(S4).

(S0) If n ≤ 3, output any permutation σ ∈ Sn.
(S1) Row 1 is compared to rows k, 2 ≤ k ≤ n until some row k is found that is not

equivalent to 1 or all rows are known to be equivalent to row 1. If 1 6∼ k, the
algorithm moves on to (S2). If all rows are found to be equivalent to row 1,
the algorithm outputs the identity permutation and stops.

Observing that any n × n matrix with n ≤ 3 is a Kalmanson matrix justifies step
(S0). In step (S1), a comparison between rows 1 and k is performed as follows: first,
the algorithm checks whether row 1 is already known to be equivalent to k (from
some higher level of the recursion). In case it is, the algorithm immediately moves
on to the next row. Otherwise, it scans row k in linear time. If it turns out that
1 ∼ k, this information is handed over to the union–find structure and the next row
is investigated.

The following step (S2) is a kind of initialization for step (S3).
(S2) Let k 6∼ 1 be the result of (S1). Compute M(1, k) and define the sets K1 =

M(1, k) ∪ {1} and K2 = I \ K1. Compute for C[K1,K2] the partitions
K11, . . . ,K1r of K1 and K21, . . . ,K2s of K2 that encode all permutations that
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Fig. 4.2. Illustration for step (S3) of the algorithm: the cross-hatched region is matrix D; the
last column of D is q.

transform C[K1,K2] into a Contra Monge matrix (this is done according to
Proposition 2.2).
Set Str0 = Str(K1,K2) and Str1 = Str(K11, . . . ,K1r,K21, . . . ,K2s).

By the discussion in subsection 4.1, it is sufficient to search for Kalmanson permu-
tations in Str1. Note that from the submatrix C[K1,K2], we will not receive any
further information on refining the stripes: by Proposition 2.2(iii) for every stripe
K1i, the matrix C[K1i,K2] is a sum-matrix and for every stripe K2j , the matrix
C[K1,K2j ] is a sum-matrix. However, we may receive information from C[K1i,K1]
and C[K2j ,K2].

In the following “refinement step” (S3), a sequence of sets of permutations

Str1,Str2, . . . is constructed with Stri = Str(Q
(i)
1 , . . . , Q

(i)
mi). The partition in

Stri+1 is always a refinement of the partition in Stri. The refinement procedure

stops as soon as, for every stripe Q = Q
(i)
j , the submatrix C[Q, I \Q] is a sum-matrix.

(S3) Starting with j = 1, perform the following refinement procedure for every

stripe Q = Q
(i)
j in Stri: rotate Stri in such a way that Q becomes the first

stripe in Stri. Let Q∗ be the mother stripe of Q in Stri−1, i.e., the stripe
that contains set Q. Let q be any column that is not in Q∗. In case Q 6= Q∗

holds, consider the matrix D = C[Q, (Q∗ \Q) ∪ {q}] and compute according
to Proposition 2.2 the partition of the rows and columns of D that implicitly
describe all permutations that transform D into a Contra Monge matrix. If

Q = Q∗ holds, consider the next set Q
(i)
j .

The set Stri+1 results from refining Stri according to all these new parti-
tions. Step (S3) is repeated until Stri+1 = Stri, i.e., the partition has not
been refined.

Consider the matrices E = [Q, I \Q] and F = [Q, I \Q∗] (cf. Figure 4.2). Since
Q was obtained as a stripe from Q∗, Proposition 2.2(iii) ensures that the matrix F
is a sum-matrix. By Lemma 3.1, we may restrict our attention to permutations that
transform matrix E into a Contra Monge matrix. E essentially decomposes into D
and F (where D and F have the common column q). Proposition 2.2 states that
in Contra Monge matrices, sum–submatrices may as well be represented by a single
column (in our case by column q). This simplifies matrix E down to matrix D.

If no more refinement of a stripe Q is possible, it follows from Proposition 2.2 that
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the corresponding matrix D is a sum-matrix. Since F is a sum-matrix, too, and the
sum-matrices D and F have a common column q, this implies that the matrix E itself
is a sum-matrix. Hence at the end of (S3), all matrices C[Q, I \Q] are sum-matrices.

Note that some of the derived refinements may contradict each other: we receive
constraints (i.e., subsets of I that must be consecutive) from every single stripeQ. The
constraints arise from the rows and from the columns of the Contra Monge matrices
and they also concern the other stripes withinQ∗. Another type of contradiction arises
if the Contra Monge conditions force q to become an interior column of D. Hence,
if some constraint cannot be fed into the PQ-tree, there does not exist a consistent
refinement for Q∗ and matrix C cannot be a permuted Kalmanson matrix. In this
case, the algorithm returns any permutation and stops.

(S4) Recursion. Let Stri = Str(Q
(i)
1 , . . . , Q

(i)
m ) be the resulting set of permuta-

tions as derived in step (S3). For every stripe Q
(i)
j , select any row qj+1 from

Q
(i)
j+1. Set Xj = Q

(i)
j ∪{qj+1} and determine the restriction of the union-find

structure to the elements in Xj . Compute recursively a Kalmanson permuta-
tion πj for C[Xj , Xj ] under this union-find structure. Afterwards, rotate πj
such that qj+1 becomes the last element and remove qj+1 from the rotated
permutation. This yields permutation σj .
The output consists of the concatenation of the permutations σ1, σ2, . . . , σm
in exactly this order.

Step (S4) essentially applies Lemma 3.3 to the stripes in Stri.
Lemma 4.1. Either matrix C is not a permuted Kalmanson matrix, or Cσ ∈ IK

holds for the output permutation σ ∈ Sn of the above algorithm.
The correctness of this statement follows from the lemmas derived in section 3.

It remains to investigate the time complexity of the algorithm. In doing this, it is
convenient to make a separate analysis for the main part of the algorithm and a
separate analysis for the UNION operations.

We first investigate the main part of the algorithm. Let Stri = Str(Q
(i)
1 , . . . , Q

(i)
m )

be the final set of permutations computed in step (S3) and let aj denote the cardinal-

ity of Q
(i)
j . Clearly, aj ≤ n− 2 for all j and

∑m
j=1 aj = n. Define Sa =

∑m
j=1 a

2
j . For

every j, the algorithm treats the submatrix corresponding to stripe Q
(i)
j recursively.

The remaining area of size n2 − Sa is covered by small, almost disjoint submatri-
ces (they are disjoint with the exception of the negligible columns used to represent
the sum-submatrices). Such a covering submatrix with dimensions x × y is handled
in O(xy + x log x + y log y) time according to Proposition 2.2. Hence, handling a
matrix of area A is done in O(A logA) time and this complexity is superlinear in
the concerned area. Thus, the total cost for handling all these matrices is at most
O
(
(n2 − Sa) log(n2 − Sa)

)
. Storing, refining, and modifying the partitions with the

help of PQ-trees costs time that is linear in the size of the concerned set (i.e., pro-
portional to the sidelengths of the submatrices) and thus is dominated by the cost for
handling the submatrices. The overall cost for the FIND operations in step (S1) is
O(n). Summarizing, the time T (n) for treating a matrix of sidelength n obeys

T (n) ≤ max
aj




m∑
j=1

T (aj + 1) + c1


n2 −

m∑
j=1

a2
j


 log2


n2 −

m∑
j=1

a2
j


+ c2n


 ,(4.2)

where the maximum is taken over all m-tuples of integers aj with 1 ≤ aj ≤ n− 2 and∑m
j=1 aj = n, and where c1 and c2 are appropriate positive constants.
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Lemma 4.2. T (n) = O(n2 logn).
Proof. Define c3 = max{20c1, 20c2, T (2), T (3)}. We prove by induction that for

all n ≥ 2, T (n) ≤ c3(n−1)2 log2 n holds. By the definition of c3, this inequality holds
true for n = 2 and n = 3. Next consider some fixed n ≥ 4 and consider an m-tuple of
integers aj that maximizes the expression in the right-hand side of (4.2). Observe that
Sa =

∑m
j=1 a

2
j ≤ n2 − 4n+ 8 holds, and use the inductive assumption to derive that∑m

j=1 T (aj +1) ≤ c3Sa log2 n. Hence, T (n) ≤ c3Sa log2 n+c1(n
2−Sa) log2(n

2)+c2n,
and the lemma follows.

Lemma 4.3. The total time needed for performing all UNION operations is
bounded by O(n2).

Proof. The union-find structure is only used in step (S1). Since the cost for the
FIND operations was already investigated above, it remains to analyze the UNION
operations. We represent the recursive process in the standard way by a tree: the
root of the tree represents the original problem. The sons of a vertex v in the tree
represent the subproblems originating in step (S4) when the problem corresponding
to v is treated. Every vertex v is labeled by two numbers av and bv, where av equals
the number of rows (i.e., the size) of the corresponding subproblem and bv denotes
the number of UNION operations that result from treating the subproblem. Clearly,
the a-label of the root equals n, and bv ≤ av holds for every vertex v.

Since every UNION operation decreases the number of equivalence classes by one
and since in every leaf of the tree there remains at least one equivalence class, on
every branch going from some leaf up to the root, the overall sum of all values bv is at
most n− 1. Moreover, the sum of the a-labels of all sons of vertex v is bounded by av
plus the number of sons of v. With this, the total sum of the a-labels of all leaves is
O(n). The overall cost of all UNION operations is O(

∑
avbv) where the sum is taken

over all vertices in the tree. This sum may be bounded from above by another sum
that runs over all leaves and adds up the a-label of the leaves times the overall sum
of all b-labels on the corresponding path leading from the leaf up to the root. By the
above inequalities, this second sum is dominated by O(n2). This completes the proof
of the lemma.

Theorem 4.4. For a symmetric n×n matrix C, it can be decided in O(n2 logn)
time whether C is a permuted Kalmanson matrix.

Proof. From Lemma 4.1, we get the correctness and from Lemmata 4.2 and 4.3,
we get the time complexity of the algorithm. In the end, we permute C according
to the output permutation σ and check whether the permuted matrix Cσ indeed is
Kalmanson. This is done in O(n2) time as described in Proposition 2.4.

5. Master tours in polynomial time. A master tour π for a set V of cities
fulfills the following property: for every V ′ ⊆ V , an optimum travelling salesman tour
for V ′ is obtained from π by removing from it the cities that are not in V ′. Given
the distance matrix C for a set of cities, the master tour problem consists in deciding
whether this set of cities possesses a master tour. In this section, we prove that the
master tour problem is closely related to permuted Kalmanson matrices and hence
solvable in polynomial time.

Theorem 5.1. For an n × n symmetric distance matrix C, the permutation
〈1, 2, . . . , n〉 is a master tour if and only if C is a Kalmanson matrix.

Proof. (Only if): Assume that 〈1, 2, . . . , n〉 is a master tour for the distance matrix
C. Then by definition, for each subset of four cities {i, j, k, `} with 1 ≤ i < j < k <
` ≤ n, the tour 〈i, j, k, `〉 is an optimal TSP tour. Since C is symmetric, there are only
three combinatorially different tours through those cities: (i) 〈i, j, k, `〉, (ii) 〈i, j, `, k〉
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and (iii) 〈i, k, j, `〉. The optimality of tour (i) implies that cij + cjk + ck` + c`i ≤
cij + cj` + c`k + cki and cij + cjk + ck` + c`i ≤ cik + ckj + cj` + c`i. By exploiting the
symmetry of C and simplifying, the above inequalities turn into

cjk + ci` ≤ cik + cj` and cij + ck` ≤ cik + cj`,(5.1)

which are exactly the conditions (1.2) and (1.1). Hence, C is a Kalmanson matrix.
(If): Let K = {x1, . . . , xk} be a subsequence of 〈1, 2, . . . , n〉. Then by Proposi-

tion 2.5(ii), the matrix C[K,K] is again a Kalmanson matrix and by Kalmanson’s
result [6] the tour 〈x1, . . . , xk〉 is an optimal tour for K. Consequently, 〈1, 2, . . . , n〉 is
a master tour.

Theorem 5.2. For a symmetric n×n matrix C, it can be decided in O(n2 logn)
time whether C possesses a master tour.

Proof. By Theorem 5.1, a symmetric distance matrix has a master tour if and
only if it is a permuted Kalmanson matrix. By Theorem 4.4, permuted Kalmanson
matrices can be recognized in O(n2 logn) time.

6. Discussion. In this paper we have developed an algorithm for recognizing
permuted n×n Kalmanson matrices in O(n2 logn) time and showed that this problem
is equivalent to detecting master tours. Since the input is of size n2, the derived time
complexity is close to optimal. Two questions remain open.

(1) We would like to know whether the logn factor in the time complexity can
be shaved off in the random access machine model of computation.

(2) The second question concerns characterizing all Kalmanson permutations for
some given input matrix C. Our algorithm just outputs a single Kalmanson per-
mutation. However, we would like to have a complete and concise description of all
Kalmanson permutation similar to the concise description of all Contra Monge permu-
tations in Proposition 2.2. One of the main obstacles in deriving such a description is
that we do not fully understand the structure of equivalent columns. For example, it
is not true that equivalent columns must stick together in Kalmanson permutations.
Consider the following two matrices.

A =




∗ 0 0 0
0 ∗ 0 1
0 0 ∗ 0
0 1 0 ∗


 Aσ =




∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 1
0 0 1 ∗




Matrix A is a Kalmanson matrix where rows 1 and 3 are equivalent. However, its
permutation Aσ is not a Kalmanson matrix and it is easy to check that no permutation
of A which makes rows 1 and 3 neighboring rows yields a Kalmanson matrix.

Note added in proof. In a recent paper presented at the 1996 European Sym-
posium on Algorithms, Christopher, Farach, and Trick answered both of the above
questions in the positive. They derived an O(n2) recognition algorithm and a simple
characterization of the set of all Kalmanson permutations that is based on PQ-trees.

Acknowledgment. We would like to thank Bettina Klinz for a careful reading
of the paper and for many helpful comments.
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CLASSES OF k-ARY STRINGS∗
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Abstract. We give efficient algorithms for listing equivalence classes of k-ary strings under
reversal and permutation of alphabet symbols. As representative of each equivalence class, we choose
that string which is lexicographically smallest. These algorithms use space O(n) and time O(

√
kN),

where N is the total number of strings generated and n is the length of each string. For k = 2, we
obtain a recursive decomposition of the set of binary strings that allows the strings to be generated
without rejecting any strings. For k ≥ 3, some strings must be rejected. The algorithm is simple
but its exact analysis is rather complicated. In the analysis we determine a quantity of independent
interest—the average length of the common prefix of two randomly chosen infinite length “restricted-
growth” strings.

Key words. combinatorial generation, k-ary strings, Stirling numbers, restricted growth func-
tion, k-paths

AMS subject classifications. 05A15, 05C30, 60J10, 68Q25, 68R05, 68R15

PII. S0895480192234009

1. Introduction. What are the most natural group actions on strings over a
fixed alphabet? Four actions immediately suggest themselves: (a) leaving the string
unchanged, (b) reversing a string, (c) rotating a string, and (d) permuting the symbols
of the string by a permutation of the alphabet. The four groups giving rise to these
actions are (a) Z1, (b) Z2, (c) the cyclic group Cn, and (d) the symmetric group Sk,
assuming the alphabet consists of k symbols.

Each group action, or composition of group actions, partitions the set of k-ary
strings into equivalence classes, namely the orbits of the action. To generate these
equivalence classes, it is natural to choose as representative the lexicographically
smallest string. With this representation, efficient algorithms are known for generat-
ing the equivalence classes of each of the actions (a), (b), (c), and (d). By “efficient”
we mean that the amount of computation used in generating the objects is propor-
tional to the number of objects generated. For (a) we are simply counting in base k
which is known to be efficient for k ≥ 2. For (b), efficient algorithms were developed
by Ruskey [15]. In case (c) the equivalence classes are usually called necklaces. Effi-
cient algorithms for generating necklaces were developed by Fredricksen and Kessler
[2] and Fredricksen and Maiorana [3]; these algorithms were proven to be efficient
by Ruskey, Savage, and Wang [14]. In case (d) the representative strings are usually
called restricted growth functions and efficient algorithms for generating them have
been developed by Er [1], Kaye [8], and others.

In contrast to the case where our three nontrivial actions are considered in isola-
tion, the composition of more than two of the actions gives rise to equivalence classes
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for which no efficient generation algorithms were previously known. For example,
composing (b) and (c) results in the dihedral group, with the resulting equivalence
classes known as bracelets. No more efficient algorithm is known than simply listing
all necklaces and rejecting those that are larger than their reversals (i.e., are not rep-
resentative of a bracelet). In this paper we compose (b) and (d) and develop efficient
(for fixed k) algorithms for generating the resulting equivalence classes. It remains an
interesting challenge to develop efficient algorithms for the other compositions.

Let us recast our problem. The problem is to list equivalence classes of k-ary
strings under the transitive closure of the binary relation R defined on k-ary strings
of length n by

x1 · · ·xn R y1 · · · yn ⇔
{

x1 · · ·xn = yn · · · y1 or
x1 · · ·xn = π(y1) · · ·π(yn) for some π ∈ Sk.

(1.1)

As representative of each equivalence class we choose the lexicographically smallest
string.

An important tool in listing sets of combinatorial objects consists of recurrence
relations describing the sets. The typical operation on lists is concatenation (⊕) cor-
responding to addition (+) of cardinalities and to union of disjoint sets, (]). Strings
are denoted using lowercase bold letters. Sets and lists of strings are indicated by
uppercase bold letters, with their corresponding cardinalities indicated by uppercase
(nonbold) roman letters. Thus, as a trivial example, the set of all binary strings of
length n will be denoted Bn fulfilling the recurrence relation

Bn = 0Bn−1 ] 1Bn−1 for n > 0,(1.2)

where B0 = {ε}; the corresponding recurrence relation for its cardinality is Bn =
2Bn−1 with B0 = 1, which has the closed form solution Bn = 2n. Additionally, strings
can be reversed. The reversal of a string s is denoted sR; this notation is extended
to sets of strings in the natural manner. For example, {0011, 0101}R = {1100, 1010}.
If s and t are strings then by s ≤ t we mean that s is lexicographically less than or
equal to t; comparisons among strings are always made with respect to lexicographic
order.

An algorithm for generating combinatorial objects is said to be CAT, standing for
Constant Amortized Time, if it has running time O(p(n) + N), where N is the total
number of objects generated, and p(n) is a polynomial in n, where n is the “size” of
the object being generated. The term p(n) is meant to represent any time spent in
preprocessing. In this paper N is exponential in n and so the p(n) term can be ignored.
The algorithms that we consider are recursive and the underlying computation tree
provides a great conceptual aid in analyzing the behavior of the algorithm. In many
algorithms the total amount of computation is proportional to the number of nodes
in the computation tree; the algorithms we present have this feature. A desirable
property of a generation algorithm is that an object is produced at every leaf (terminal
vertex) of the computation tree. We call this the BEST1 property (for Backtracking
Ensuring Success at Terminals). The CAT principle states sufficient conditions for a
BEST algorithm to run in constant amortized time. These conditions are that (a) in
the computation tree, there are not “too many” nodes in the computation tree with
a single child, and (b) the total computation can be partitioned so that each node is
assigned constant time computation. In particular, if the degree of each nonleaf is at

1The CAT and BEST acronyms are due to the second author.
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least two, then there are more leaves than internal nodes and so condition (a) is met.
The CAT principle is the most common way of showing that a recursive algorithm
runs in constant amortized time.

In section 2 we present a BEST CAT algorithm for the binary case k = 2. In
section 3 we present a nonBEST algorithm that is CAT for fixed k ≥ 2; this algorithm
is analyzed in sections 4 and 5. The analysis of section 4 provides an exact count of
the number of operations used by the algorithm for k = 3 and k = 4. In principle this
type of analysis could be extended to larger values of k. The asymptotic analysis of
section 5 is based on the expected length of the longest common prefix of two infinite
canonical k-ary strings. This quantity, which turns out to be O(

√
k), is of independent

mathematical interest. In section 6 we indicate how our algorithms solve the problem
of listing nonisomorphic k-paths, which was our initial motivation for studying the
problem. The final section suggest some interesting open problems.

2. Generating binary strings. In order to analyze equivalence classes under
the group actions of symbol permutations (i.e., complementation in the binary case)
and under string reversal, we shall look first at the problem of listing all equivalence
classes under reversal only. That is to say, two bitstrings a1a2 · · · an 6= b1b2 · · · bn are
considered equivalent if a1a2 · · · an = bn · · · b2b1. Given two equivalent bitstrings we
will list the one that is lexicographically (i.e., numerically) smaller. Thus, for example,
1010011 is listed but 1100101 is not. Let the set of listed bitstrings be denoted Mn.

Mn
def
= {s ∈ Bn | s ≤ sR}.(2.1)

The recurrence relation for this set follows the observation that only identical first
and last bits allow for symmetry under reversal. Thus, M0 = {ε}, M1 = {0, 1}, and

Mn = 0Mn−20 ] 0Bn−21 ] 1Mn−21.(2.2)

We use Ln to denote those elements of Mn that are nonpalindromic.

Ln
def
= {s ∈ Bn | s < sR} = {s ∈ Mn | s 6= sR}.

These sets of strings satisfy a recurrence relation of the same form as (2.2), but with
different initial conditions. Here, L0 = L1 = ∅. The recurrence relation is

Ln = 0Ln−20 ] 0Bn−21 ] 1Ln−21.(2.3)

If s is a bitstring then by s we denote the complement of s. For example,
1010011 = 0101100.

Observation 1. The operations of complement and reversal commute. That is,
for all binary strings s, we have sR = sR.

Observation 2. For all binary strings s and t, we have s ≤ t if and only if
s ≥ t.

Observation 3. For all binary strings, if s ≤ sR and s ≤ sR, then s ≤ s.2

Observations 1 and 2 are trivial. To prove Observation 3, note that by Observation
2, if s ≤ sR, then s ≥ sR. Thus, s ≥ sR ≥ s.

Let Yn denote the set of all bitstrings of length n that are lexicographically
smallest in the equivalence classes induced by relation R, which is defined by (1.1)

2Also, s ≤ s and s ≤ sR implies that s ≤ sR. However, the example of s = 0100 shows that
s ≤ s and s ≤ sR do not imply s ≤ sR.
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procedure Y ( lo, hi : integer );

begin

if lo = hi then begin

s[lo] := 0; {s[hi] := 0;} PrintIt;

end else

if lo+1 = hi then begin

s[lo] := 0; s[hi] := 0; PrintIt;

s[lo] := 0; s[hi] := 1; PrintIt;

end else begin

s[lo] := 0; s[hi] := 0; Mr( lo+1, hi-1 );

{s[lo] := 0;} s[hi] := 1; Nr( lo+1, hi-1 );

{s[lo] := 0;} {s[hi] := 1;} Y( lo+1, hi-1 );

end

end {of Y};

Fig. 2.1. Pascal code for generating Yn.

in the introduction. Let Nn be the set of all nonpalindromic elements of Yn. For
example, N4 = {0010, 0001, 0011, 0101} and Y4 = N4 ∪ {0000, 0110}. More formally,

Yn
def
= {s ∈ Bn | s ≤ s, s ≤ sR, and s ≤ sR}(2.4)

and

Nn
def
= {s ∈ Yn | s 6= sR}.(2.5)

The sets Yn and Nn admit the following recursive decompositions.
Lemma 2.1. For all n > 1,

Yn = 0Yn−21 ] 0NR
n−21 ] 0Mn−20(2.6)

and

Nn = 0Yn−21 ] 0NR
n−21 ] 0Ln−20.(2.7)

The initial values are Y0 = {ε}, Y1 = {0}, and N0 = N1 = ∅.
Proof. To prove (2.6), first note that a string s in Yn cannot start with a 1.

If s = 0t0, then s ≤ s and s ≤ sR, so the only remaining condition that has to
be satisfied is s ≤ sR. This is true if and only if t ≤ tR. Thus, a string of the
form 0t0 is in Yn if and only if t ∈ Mn−2. If s = 0t1, then s ≤ sR and s ≤ s,
so the only remaining condition that has to be satisfied is s ≤ sR. By Observation
3, Yn = {s ∈ Bn | s ≤ sR, s ≤ sR}. By Observation 2, the condition s ≤ sR is
equivalent to the condition sR ≤ s. Thus,

{s ∈ Bn | s ≤ sR} = {s ∈ Bn | (s ≤ sR and s ≤ sR) or (sR ≤ s and sR ≤ s)}
= Yn ∪YR

n .

Hence, a string of the form 0t1 is in Yn if and only if t ∈ Yn−2 ∪YR
n−2. Recurrence

relation (2.6) follows by partitioning Yn−2 ∪ YR
n−2 into the two disjoint sets Yn−2

and NR
n−2.

The proof of (2.7) is similar and is omitted.
These equations allow us to write a program for listing the elements of Yn that

runs in constant amortized time. One could write separate procedures for listing the
elements of Yn, Nn, Ln, Mn, and Bn. Pascal code for Yn is given in Figure 2.1.
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The array s[1· · ·n] of bits is global. Each procedure has two parameters lo and
hi indicating the subarray of s whose bits still remain to be set. The initial call is
Y(1,n), with no initialization necessary. Note that, aside from the recursive calls,
only a constant amount of computation is done within Y. Furthermore, any nonleaf
call to Y has at least two (in fact three) children in the computation tree. Since each
of the recurrences (1.2), (2.2), (2.3), (2.6), and (2.7) has at least two terms, these
same observations apply to other procedures called by Y. Thus we can invoke the
CAT principle to conclude that the algorithm runs in constant amortized time.

3. Generating k-ary strings for k > 2. In this section, we develop an algo-
rithm for generating the lexicographically smallest k-ary strings from each equivalence
class induced by the actions of reversing a string and permuting the symbols of its
alphabet. We first generate the lexicographically smallest k-ary strings from each
equivalence class induced only by the action of permuting alphabet symbols, and
then reject those strings that are not also lexicographically smallest when both group
actions are used.

Definition 3.1. If s is a k-ary string, then by can(s) we denote the lexico-
graphically smallest string π(s), taken over all permutations π of {0, 1, . . . , k − 1}. If
s = can(s), then we say that s is canonical. The set of canonical k-ary strings of
length n is denoted Xn,k.

For example, can(660240032644) = 001231142033. There may be several permu-
tations π for which π(s) = can(s) (we think of the permutation π as an element of
a group acting on the string s). In the example above, π = (0 1 6)(2)(3 4)(5) and
π = (0 1 5 6)(2)(3 4) are such permutations. In order to define a unique permutation
πs such that πs(s) = can(s), we assume that all elements of 0, 1, . . . , k − 1 not used
in s or in can(s) form 1-cycles in πs. Thus πs = (0 1 6)(2)(3 4)(5) in our example.
We will write permutations in cycle notation because it is the cycle structure of these
permutations that will be of most importance to us in the ensuing discussion.

The following lemma, whose proof is immediate, characterizes canonical strings.
Lemma 3.2. A string s = s1s2 · · · sn is canonical if and only if s1 = 0 and for

all i = 1, . . . , n− 1,

si+1 ≤ min(k − 1, 1 + max{s1, . . . , si}).(3.1)

Sequences satisfying the conditions of Lemma 3.2 are often called “restricted-
growth” functions (see Stanton and White [17]) and are studied in connection with set
partitions. The Stirling numbers of the second kind, denoted

{
n
k

}
, count the number

of restricted growth functions of length n with maximal value k. Let Xn,k = |Xn,k|.
It is well known that

Xn,k =
k∑
i=1

{
n

i

}
.(3.2)

What is the asymptotic value of Xn,k for fixed k and large n? Note that Xn,k is
the number of ways of placing n labeled balls into k unlabeled boxes and thus that
kn/k! ≤ Xn,k since there are at most k! distinct ways of labeling the boxes once the
balls have been placed. On the other hand,

{
n
i

} ≤ in/i! since i!
{
n
i

}
is the number of

surjective functions from an n-set onto an i-set. Thus

kn

k!
≤ Xn,k ≤

k∑
i=1

in

i!
.
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From these upper and lower bounds we obtain the following asymptotic expression
for Xn,k (with k fixed and n large).

Xn,k ∼ kn

k!
.(3.3)

Definition 3.3. If s is a canonical k-ary string, then by mate(s) we denote the
string can(sR). If s = mate(s), then we say that s is symmetric. Let c(s) denote the
length of the longest prefix common to both of s and mate(s).

Since the first symbol of both s and mate(s) is a zero, 1 ≤ c(s) ≤ n, where n
is the length of s. Continuing our example, if s = 001231142033, then mate(s) =
can(330241132100) = 001234402411 and c(s) = 5 since the largest prefix on which
they agree is 00123. An example of a symmetric string is 0010231011.

We define Yn,k
def
= {s ∈ Xn,k | s ≤ mate(s)}.

Lemma 3.2 gives rise to a simple-minded algorithm generating all canonical strings
of length n. The algorithm, which we call gen, is given in Figure 3.1. A similar
algorithm for generating all set partitions (i.e., when the maximum block size k is n)
was given by Er [1], and other iterative algorithms are given by Hutchinson [7], Kaye
[8], Semba [16], and Stanton and White [17].

procedure gen( l, m : integer );

var i : integer;

begin

if l > n (* and Check *) then PrintIt

else begin

for i := 0 to m do begin

s[l] := i;

gen( l+1, m );

end;

if m < k-1 then begin

s[l] := m+1;

gen( l+1, m+1 );

end;

end;

end {of gen};

Fig. 3.1. Pascal procedure to generate Xn,k (and Yn,k).

The call gen(l,m) generates all sequences s[l], . . . , s[n] such that 0 ≤ s[i] ≤
min(k − 1, 1 + max{m, s[l], . . . , s[i − 1]}) for i = l, l + 1, . . . , n. Here, parameter m is
the maximum value of s[1..l-1]. Given n, the initial call is gen(1,0). Assuming
k > 1, note that every call to gen(l,m) for which l ≤ n generates at least two calls
to gen(l+1,i) for some value of i. Thus there are more leaves than internal nodes
in the computation tree and so the CAT principle implies that the algorithm runs in
constant amortized time. Observe that the algorithm is BEST.

In order to generate the elements of Yn,k we use gen and check whether each
generated string s satisfies s ≤ mate(s). This checking is done by the procedure
Check of Figure 3.2. With the addition of Check, algorithm gen is no longer BEST.
Clearly, the amount of computation done by Check(s) is O(k+c(s)). The term k comes
from the initialization (marked #1 in Figure 3.2), but that term can be eliminated
by using a constant-time array initialization as explained, for example, in Lewis and
Denenberg [10]. With this modification the running time of Check is O(c(s)).

To find the amortized cost per string generated we need to determine the average

value of c(s), taken over all strings s in Xn,k. Denoting by X
(c)
n,k the number of strings
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function Check : boolean;

var

i, last: integer;

pi : array[0..100] of integer;

begin

for i := 0 to k - 1 do pi[i] := maxint; {#1}

last := 0;

i := n;

pi[s[n]] := 0;

while (i >= 1) and (s[n-i+1] = pi[s[i]]) do begin

i := i - 1;

if pi[s[i]] > last then begin

last := last + 1;

pi[s[i]] := last;

end;

end;

Check := (i = 0) or (s[n-i+1] < pi[s[i]]);

end {of Check};

Fig. 3.2. The Pascal function Check.

s ∈ Xn,k for which c(s) = c, we define the weighted sum

Sn,k
def
=

n∑
c=1

c·X(c)
n,k.(3.4)

Define

An,k
def
=

Sn,k
Xn,k

.(3.5)

The quantity of interest is Sn,k/Yn,k, which is at most 2An,k.

4. Exact analysis for small values of k. In this section we give a general
classification scheme useful in deriving exact expressions for Sn,k. Given a canonical
string s, this classification is based upon the value of c(s) relative to the length of s
and the cycle structure of πs. This scheme is then used to derive exact expressions
for Sn,3 and Sn,4. The details of these derivations may be found in [12].

We wish to count those strings s ∈ Yn,k with a fixed value of c(s). Let us first
make a couple of observations. Consider a fixed canonical string s and let c = c(s)
and π = πsR . If c < n, then let x = sc+1 and y = sn−c. Clearly, π(y) 6= x. There are
five basic cases to consider: [I] 1 ≤ c < (n− 1)/2; [II] n is odd and c = (n− 1)/2; [III]
n is even and c = n/2; [IV] n/2 < c < n; and [V] c = n.

α x β y γ

[I]: In this case x is to the left of y in s as illustrated above. We denote by α the
string s1s2 · · · sc, β = sc+2 · · · sn−c−1, and γ = sn−c+1 · · · sn.

α x γ

[II]: In this case x = y as illustrated above. Clearly, we must have π(x) 6= x.
Here α = s1s2 · · · sm and γ = sm+2 · · · sn, where n = 2m+ 1.

[III]: In cases III and IV, x is to the right of y in s. We must have π(x) =
y (and π(y) 6= x). Thus there is a j-cycle, for some j ≥ 3, in π of the form
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(... x π(x) π(π(x)) ...) = (... x y z ...) for some z distinct from x and y. Hence,
we must have k ≥ 3 for case III or IV to occur.

α y β x γ

[IV]: This case is illustrated above. Let β denote the string of symbols between
x and y, β = sn−c · · · sc. If a = sj and b = sn−j+1 for some n − c < j < c, then we
must have π(a) = b and π(b) = a. Thus both a and b are either in 1-cycles (a)(b) or a
2-cycle (a b) of π. Hence, in order for case IV to occur (i.e., β is nonempty), we must
have k ≥ 4.

[V]: In case V the string is symmetric and π must consist of 1-cycles and 2-cycles.

4.1. Ternary strings. Here case [IV] cannot occur. For k = 3 and even n,

Sn,3 =
5

16
3n +

1

6
(2n− 3)3n/2 +

n

4
+

3

16
.

For odd n,

Sn,3 =
5

16
3n +

1

2
(n− 2)3(n−1)/2 +

n− 1

4
+

9

16
.

The above expressions, together with (3.3) for k = 3 show that the average value
of c(s) tends to 3! · 5/16 = 15/8 = 1.875 as n gets large.

4.2. Quaternary strings. We now show the results for k = 4. If n = 2m, then

Sn,4 =
26

315
4n +

5

12
m2n +

5

18
2n − 15

14
2m +

4

3
m+

32

45
.(4.1)

If n = 2m+ 1 is odd then we have

Sn,4 =
26

315
4n +

1

3
m2n +

7

18
2n − 9

7
2m +

4

3
m+

53

45
.(4.2)

Thus, when k = 4, the average value of c(s) tends to 24·26/315 = 1.980952381...
as n gets large.

In the next section we will show that asymptotically An,k is O(
√
k) as n→∞.

5. Asymptotic analysis. For fixed k, we now show how to determine the
asymptotic value of An,k. We first show that, asymptotically, the average value of
c(s) is the same as the expected position of the first mismatch between two canonic
infinite length k-ary strings.

Lemma 5.1. Let s be chosen uniformly at random from Xn,k. With probability
tending to 1 as n increases, c(s) < n/2.

Proof. If the mismatch occurs at a position greater than n/2, then the reversal
of the last n/2 symbols of s is equivalent, under some permutation of the k alphabet
symbols, to the first n/2 symbols of s. The number of such strings is thus at most
k!Xn/2,k. By (3.3), the fraction of these strings in the set Xn,k is k! · k−n/2, which
tends to 0 when n grows.

Denote by c(s, t) the length of the longest prefix common to both s and t. The
previously used notation c(s) is the same as c(s,mate(s)).
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Lemma 5.2. Let s be chosen uniformly at random from Xn,k and t′ be chosen
uniformly at random from Bn,k. Let t = can(t′). Then

lim
n→∞An,k =

∑
i≥1

i · Prob(c(s, t) = i).

Proof. The fraction of strings in Xn/2,k not using symbol k is Xn/2,k−1/Xn/2,k.

By (3.3), this is asymptotically k((k − 1)/k)n/2, which tends to 0 as n grows. Thus,
with probability tending to 1, every symbol 0, 1, . . . , k− 1 occurs among the first n/2
symbols of a string s chosen uniformly at random from Xn,k. Thus, asymptotically,
the substring sn/2 · · · sn of s is a random string in Bn/2,k. By the previous lemma,
c(s) < n/2 with probability tending to 1. Therefore, comparing s with its mate is
asymptotically equivalent to comparing it with any random string in Bn,k.

It proves useful to have a notation Xn,k,p for the number of strings s = s1s2 · · · sn
satisfying s1 = p and the restricted growth condition (3.1). Thus Xn,k,0 = Xn,k.
These numbers have also been studied before in connection with ranking algorithms
for restricted growth functions in lexicographic order (see Williamson [19], [20] where
they are called “restricted tail coefficients”). These numbers satisfy the following
recurrence relation for n > 0.

Xn,k,p = (p+ 1)Xn−1,k,p +Xn−1,k,p+1.(5.1)

Lemma 5.3. The following two limits hold.

lim
n→∞

Xn,k,p

Xn+1,k,p
=

1

k
,(5.2)

lim
n→∞

Xn,k,p+1

Xn+1,k,p
= 1− p+ 1

k
.(5.3)

Proof. Recall that by (3.3) Xn,k ∼ kn/k!. The lemma follows from the following
asymptotic, which may be proven by induction using (5.1).

Xn,k,p ∼ (k)p+1k
n−1

k!
.

Note. By (k)j we denote the falling factorial power (k)j = k(k − 1) · · ·
(k − j + 1).

Lemma 5.4. Let s be an element - of Xn,k chosen uniformly at random. Then

lim
n→∞Probn(si = j | max(s1, . . . , si−1) = p) =

{
1/k if 0 ≤ j ≤ p,

1− (p+ 1)/k if j = p+ 1.

Proof. The number of strings in Xn,k whose largest value in the first i−1 positions
is p is

{
i−1
p

}
Xn−i+2,k,p. The number of strings that, in addition, have a j in position

i is
{
i−1
p

}
Xn−i+1,k,p if 0 ≤ j ≤ p, and is

{
i−1
p

}
Xn−i+1,k,p+1 if j = p+ 1. To complete

the proof, divide each of the latter numbers by the first and apply Lemma 5.3 to the
respective quotients.
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Let s′ be an infinite length k-ary string chosen uniformly at random and s =
can(s′). Note that

Prob(si = j | max(s1, . . . , si−1) = p) =

{
1/k if 0 ≤ j ≤ p,
1− (p+ 1)/k if j = p+ 1.

exactly the same as the probabilities given in Lemma 5.4 above.
Let s′ and t′ be two infinite k-ary strings chosen uniformly at random and let

s = can(s′) = s1s2s3 · · · and t = can(t′) = t1t2t3 · · ·. We have proven that

Ak = lim
n→∞An,k =

∑
i≥1

i · Prob(c(s, t) = i).(5.4)

Computing and analyzing Ak using (5.4) is the subject of the next two sub-
sections.

5.1. The value of Ak. The purpose of this section is to prove the following
rather attractive expression for Ak (below, the notation (k)2j means [(k)j ]

2, the square
of the falling factorial).

Theorem 5.5.

Ak =
k∑

j=1

(k)2j
(k2 − 1)j

.

Select s′ and t′ uniformly at random from the set of infinite length k-ary strings
and let s = can(s′) and t = can(t′). Denote by βp the probability that the first p
symbols of s and t agree.

βi
def
= Prob(s1 = t1, s2 = t2, . . . , si = ti).(5.5)

By classifying the prefix of the first i symbols of s′ and t′ according to j, the
number of distinct symbols in that prefix, we obtain the following expression for βi.

βi =
1

k2i

k∑
j=1

(k)2j

{
i

j

}
.

By (5.4),

Ak =
∑
i≥0

i · Prob(s1 = t1, s2 = t2, . . . , si = ti, si+1 6= ti+1)

=
∑
i≥0

i · (βi − βi+1)

=
∑
i≥0

i
k∑

j=1

(k)2j

({
i
j

}
k2i

−
{
i+1
j

}
k2i+2

)
(5.6)

=
k∑

j=1

(k)2j
∑
i≥0

1

k2i

{
i

j

}
.
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The inner sum of (5.7) can be simplified by using the following identity from Wilf
[18, equation (1.6.5), page 19].

∑
n

{
n

k

}
xn =

xk

(1− x)(1− 2x) · · · (1− kx)
.(5.7)

Setting x to k−2 and k to j in (5.7) and substituting into (5.7) finishes the proof of
Theorem 5.5. It is remarkable that Ak has such a simple expression; perhaps there is
a direct combinatorial proof.

5.2. The asymptotic value of Ak. Our goal in this section is to prove the
following theorem.

Theorem 5.6.

An =
1

2

√
π · n− 1

6
+ o(1).

In this section we will use An instead of Ak as is customary in the asymptotics
literature. Our main technique is called “trading tails,” from Graham, Knuth, and
Patashnik [4, starting at page 452]. In principle, our techniques could be applied to
obtain additional terms in the asymptotic expansion of An. With this in mind, some
of the expressions below are given with greater generality than is strictly necessary
to prove Theorem 5.6.

We start by presenting Taylor’s expansion of ln(1− z) and an identity involving
the Bernoulli numbers. The expansion below is valid for z → 0 (see page 438 of [4]).
This is just Taylor’s expansion with remainder.

ln(1− z) = −
p∑

k=1

zk

k
+O(zp+1).(5.8)

From Concrete Mathematics [4, exercise 9.30, page 477, with solution on page
570],

∑
r≥0

rl−1e−r
2/n =

1

2
nl/2Γ

(
l

2

)
−

p∑
k=0

(−1)kBl+2k

nk(l + 2k)!k!
+O

(
1

np+1

)
,(5.9)

where B0, B1, B2, B3, B4, . . . = 1,− 1
2 ,

1
6 , 0,− 1

30 , 0, . . . are the Bernoulli numbers (see,
for instance, section 6.5 of [4]) and Γ is the gamma function with Γ(1/2) =

√
π,

Γ(3/2) = 1
2

√
π, Γ(5/2) = 3

4

√
π, and Γ(l) = (l − 1)! if l is an integer.

In particular, setting l = 1, 2, 4, 5 in (5.9) yields

∑
r≥1

e−r
2/n =

1

2

√
πn− 1

2
+ o(1),(5.10)

1

n

∑
r≥1

re−r
2/n =

1

2
+ o(1),(5.11)

1

n2

∑
r≥1

r3e−r
2/n =

1

2
+ o(1),(5.12)
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1

n3

∑
r≥1

r4e−r
2/n = o(1).(5.13)

Recall that

An =
n∑

r=1

(n)2r
(n2 − 1)r

=
n∑

r=1

r−1∏
x=0

(n− x)2

n2 − x− 1
,

and define

T (n, r)
def
=

n2

n2 − r

r−1∏
x=1

(n− x)2

n2 − x
=

1

1− r
n2

r−1∏
x=1

(1− x
n )2

1− x
n2

.(5.14)

For any small fixed ε > 0 we may write An as

An =

n∑
r=1

T (n, r) =

n1/2+ε∑
r=1

T (n, r) +

n∑
r=1+n1/2+ε

T (n, r).(5.15)

Take logarithms of T (n, r) as expressed in the right-hand side of (5.14) and then
use (5.8) to obtain the following equality, valid for any r, r/n → 0, and any natural
numbers p and q:

ln(T (n, r)) = 2

r−1∑
x=1

ln
(
1− x

n

)
−

r∑
x=1

ln
(
1− x

n2

)

=

(
−2

p∑
k=1

1

knk

r−1∑
x=1

xk +O

(
rp+2

np+1

))
+

(
q∑

k=1

1

kn2k

r∑
x=1

xk +O

(
rq+2

n2q+2

))
.

Setting p = 2 and q = 0 in the above expression, we obtain

ln(T (n, r)) =

(
−r(r − 1)

n
− r(r − 1)(2r − 1)

6n2
+O

(
r4

n3

))
+

(
O

(
r2

n2

))

= −r2

n
+

r

n
− r3

3n2
+O

(
r4

n3

)
.

Thus, exponentiating the above and using the power series expansion of ex,

T (n, r) = exp

(
−r2

n

)
exp

( r
n

)
exp

(
− r3

3n2

)
exp

(
O

(
r4

n3

))

= exp

(
−r2

n

)(
1 +

r

n
+O

(
r2

n2

))(
1− r3

3n2
+O

(
r6

n4

))(
1 +O

(
r4

n3

))

= exp

(
−r2

n

)(
1 +

r

n
− r3

3n2
+O

(
r4

n3

))
.

Substituting the four expressions (5.10)–(5.13) into the sum
∑

r T (n, r) and using
the last derived expression for T (n, r), we obtain

∑
r≥1

T (n, r) =
∑
r≥1

exp

(
−r2

n

)(
1 +

r

n
− r3

3n2
+O

(
r4

n3

))
(5.16)

=
1

2

√
nπ − 1

6
+ o(1).
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For any fixed integer j, small ε > 0, n1/2+ε ≤ r ≤ n, and large enough n, note
that

rje−r
2/n < e−r

2/(2n).

Thus (following [4, page 474]),

∑
r>n1/2+ε

rje−r
2/n <

∑
r>n1/2+ε

e−r
2/(2n)

< exp(−bn1/2+εc2/(2n))(1 + e−1/(2n) + e−2/(2n) + · · ·)
= O(e−

1
2n

2ε

) ·O(n)

= O(n−M ) for any fixed M.

Substituting j = 0, 1, 3, 4 into (5.16), we get

n1/2+ε∑
r=1

T (n, r) =
1

2

√
nπ − 1

6
+ o(1).(5.17)

It remains only to show that the second sum on the right-hand side of (5.15) is
o(1).

Lemma 5.7. For all j ≥ 0 and ε > 0,

lim
n→∞nj

(
1− 1

n

)n1+ε

= 0.

Proof. Rewriting and exploiting continuity, we obtain

exp

(
lim
n→∞ ln

(
nj
(

1− 1

n

)n1+ε))

= exp
(

lim
n→∞(j lnn+ n1+ε(ln(n− 1)− lnn))

)

= exp

(
lim
n→∞

jn−(1+ε) lnn+ ln(n− 1)− lnn

n−(1+ε)

)
.

The limit may now be evaluated by using L’Hopital’s rule.

= exp

(
lim
n→∞

j(n−(2+ε) − (1 + ε)n−(2+ε) lnn) + 1
n−1 − 1

n

−(1 + ε)n−(2+ε)

)

= exp

(
lim
n→∞

(
− j

1 + ε
+ j lnn− n2+ε

n(n− 1)(1 + ε)

))

= exp

(
lim
n→∞

(
O(1) + o(nε) +

nε

(n− 1)(1 + ε)
− nε

1 + ε

))

= exp

(
lim
n→∞

(
o(nε)− nε

1 + ε

))
= 0.
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Lemma 5.8. If r ≥ n1/2+ε where ε > 0, then

T (n, r) = O(n−M ), for any fixed M.

Proof. Note that the quantities T (n, r) are monotonically decreasing in r, and
thus we need only consider T (n, n1/2+ε). First, split the definitional product (5.14)
into two factors and then bound each factor.

T (n, n1/2+ε) =
n2

n2 − n1/2+ε

b 1
2n

1/2+εc∏
x=1

(n− x)2

n2 − x

n1/2+ε∏
x=b 1

2n
1/2+εc+1

(n− x)2

n2 − x
·

T (n, n1/2+ε) ≤ 2

(
(n− 1

2n
1/2+ε)2

n2 − 1
2n

1/2+ε

) 1
2n

1/2+ε

= 2

(
1− n3/2+ε − 1

4n
1+2ε − 1

2n
1/2+ε

n2 − 1
2n

1/2+ε

) 1
2n

1/2+ε

.

This last expression grows like this,

2

(
1− 1

n1/2−ε

) 1
2n

1/2+ε

,

which by Lemma 5.7 is O(n−M ) for any fixed M .
From Lemma 5.8 it follows that

n∑
r=1+n1/2+ε

T (n, r) = O(n−M ), for any fixed M.

This last equation, together with (5.17), proves Theorem 5.6.

6. Application: generating k-paths. A generalization of trees yields the no-
tion of k-trees as the skeletons of acyclic simplicial complexes for dimensions higher
than 2. For a fixed k, the complete graph with k + 1 vertices, Kk+1, is a k-tree, and
every k-tree with more vertices can be constructed from a smaller k-tree by adding a
new node and making it adjacent to all vertices of a Kk subgraph. Thus, every k-tree
has at least two vertices of degree k, k-leaves, and every minimal separator (a set of
vertices disconnecting the graph, minimal with respect to set inclusion) consists of k
mutually adjacent vertices [13]. (We will say that this set induces Kk.) In the simplest
case of a k-tree with exactly two k-leaves, we have a generalization of a path, namely
a k-path. The two k-leaves of a k-path (say, u and v) are connected by k unique
vertex-disjoint paths and every minimal separator contains exactly one vertex of each
path [11]. One can view the construction process of such a graph as starting with one
k-leaf, say u, of Kk+1, and then adding vertices until the other desired k-leaf, say v, is
added, completing the construction. Recording which of the (eventual) vertex disjoint
paths are augmented during the process gives the unique string over an alphabet of
k symbols corresponding to the particular construction process (see Figure 6.1). A
given k-path can be constructed in this manner from either of its ends (from u or
from v) and vertex-disjoint paths can be identified by any of the k! permutations of
symbols 0, 1, . . . , k − 1. Thus the problem of listing all nonisomorphic k-paths can
be dealt with as the problem of listing all equivalence classes of strings of k symbols,
under the group actions of string reversal and/or symbol permutation.
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Fig. 6.1. The 2-path corresponding to the binary string 0011011001.

7. Final remarks. We list below some open problems that are inspired by or
related to the problems considered in this paper.

1. Is there a direct combinatorial proof of the simple expression in Theorem 1
for Ak?

2. Is there a CAT BEST algorithm for generating the elements of Yn,k when
k > 2? The results of section 2 show that Y is a context-free language for k = 2 and
it is an unambiguous grammar for this language that leads us to the CAT algorithm.
Can such a grammar be found for larger values of k?

3. Can these results be extended to generate all non-isomorphic k-trees? Here,
even the counting problem is unsolved. Related enumeration (counting) results are
reported in Harary and Palmer [5] and Hering, Read, and Shephard [6].

4. Does there exist a CAT algorithm to generate all k-ary strings where the
group acting on the string contains rotations as well as permutations of the symbols
and/or reversal of the string? The lexicographically smallest strings in classes of
strings equivalent under rotations are referred to as necklaces. These are useful, for
example, in generating de Bruijn sequences.

Acknowledgments. We wish to thank Andrew Odzlyko, and also Philippe Fla-
jolet and Bruno Salvy, for their help in proving Theorem 5.6. They responded to a
query posted to the internet newsgroup (sci.math.research). We also wish to thank
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Abstract. The even discrete torus Tn(k1, . . . , kn) is the graph on (Z/k1Z)×· · ·×(Z/knZ), where
each ki is even and x = (x1, . . . , xn) is joined to y = (y1, . . . , yn) if for some i we have xi = yi ± 1
and xj = yj for all j 6= i. The main aim of this paper is to describe an ordering on the even discrete
torus whose initial segments give a best possible isoperimetric inequality. This extends the partial
solution of Bollobás and Leader [SIAM J. Discrete Math., 3 (1990), pp. 32–37] to a problem posed
by Wang and Wang [SIAM J. Appl. Math., 33 (1977), pp. 55–59].
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1. Introduction. For n ≥ 1 and 2 ≤ k1 ≤ · · · ≤ kn, the discrete torus Tn =
Tn(k1, . . . , kn) is the graph on the set Zk1 × · · · × Zkn in which x = (x1, . . . , xn) and
y are adjacent if there is some i with xi = yi± 1 and xj = yj for j 6= i. Alternatively,
Tn is the product of n cycles of lengths k1, . . . , kn.

Given a set X of vertices of a graph G, define the neighborhood of X as

N(X) = {x ∈ V (G) : x ∈ X or ∃y ∈ X with xy ∈ E(G)}.

Define the boundary of X to be ∂X = N(X)\X.
An inequality of the form

|N(X)| ≥ g(a) whenever X ⊆ V (G) and |X| = a

is called an isoperimetric inequality on G. For a graph G one would like to determine
the best possible isoperimetric inequality for every a, i.e., the function

f(a) = min{|N(X)| : X ⊆ V (G), |X| = a},

and ideally to describe the extremal sets, i.e., the sets X ⊆ V (G) such that |X| = a
and |N(X)| = f(a) for given a.

An example of such an inequality is Harper’s theorem [3], where the graph is
the discrete cube, {0, 1}n. This has been generalized to Zn by Wang and Wang
[4], and to the product of n paths of length h by Bollobás and Leader [2]. Wang
and Wang also posed exactly this problem in the discrete torus [5], and for the case
k1 = · · · = kn = 2h it has been answered by Bollobás and Leader [1] for some values
of a. The aim of this paper is to extend this by proving the following result.

Theorem 1.1. Let n ≥ 1 and 4 ≤ k1 ≤ · · · ≤ kn, where each ki is even. Then
there is an ordering ≺ on Tn = Tn(k1, . . . , kn) with the property that whenever X ⊆
Tn and C is the initial segment of (Tn,≺) with |C| = |X|, we have |N(X)| ≥ |N(C)|.

∗Received by the editors December 5, 1994; accepted for publication (in revised form) January 6,
1997.
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†Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cambridge CB2
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Such an ordering need not exist in general—the odd torus Z3
3 provides a coun-

terexample, as there are no nested extremal sets of sizes 7 and 8.

In fact Theorem 1.1 will be proved for a specific ordering, defined in section 4,
whose initial segments include the sets {x ∈ Tn : d(x, 0) ≤ r}, so we can deduce that
if X ⊆ Tn satisfies

|X| = |{x ∈ Tn : d(x, 0) ≤ r}|,
then

|N(X)| ≥ |{x ∈ Tn : d(x, 0) ≤ r + 1}|.
Since the neighborhood of an initial segment is again an initial segment (see

section 5), we can apply Theorem 1.1 several times in succession. In particular,
setting N0(X) = X, Nm+1(X) = N(Nm(X)) (m ≥ 0), so

Nm(X) = {x ∈ V (G) : ∃y ∈ X with d(x,y) ≤ m},
we have the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1, |Nm(X)| ≥ |Nm(C)|.
We shall also prove (in section 8) that the complement of an initial segment is

isomorphic to an initial segment. Since the neighborhood of the complement of a set
X is the complement of the interior of X, intX, we have Nm(Xc) = (intm(X))c, and
from Corollary 1.2 we can deduce a corresponding result for interiors.

Corollary 1.3. Under the conditions of Theorem 1.1, |intm(X)| ≤ |intm(C)|.
The ordering used will be a natural adaptation of that given by Wang and Wang

[4] for Zn: Tn is considered as a particular subset of Zn, and their order is applied
to this. It is rather surprising that this works, i.e., that when the wraparound in the
torus is taken into account it is not necessary to move a single point to minimize the
new neighborhood.

2. Outline of proof. Most of the paper is devoted to the proof of Theorem 1.1,
so before we get down to work we describe how the proof is organized.

At various stages we shall consider a close relative of the torus, the grid—the graph
{0, 1, . . . , h−1}n (i.e., the product of n paths of length h, or more generally of lengths
h1, . . . , hn). In [2], Bollobás and Leader prove an isoperimetric inequality on the
grid, and although this will not be used, a related result concerning the isoperimetric
function will be. This is of interest in its own right, and constitutes section 3.

In section 4, we define a total ordering ≺ on the even torus Tn and state the main
result—that initial segments of this ordering have the smallest possible neighborhoods
given their size. In section 5, we start to examine the properties of this ordering,
showing that the neighborhood of an initial segment is always an initial segment. To
do this we use a decomposition of Tn into 2n copies of the grid (with side lengths
half those of the torus) and the fact that on each of these copies ≺ reduces to the
simplicial order of [2], which has a corresponding property.

The main idea of the proof is compression (section 6), i.e., tidying up a set X
without increasing its neighborhood, until it becomes sufficiently tidy to compare
with the initial segment of the same size. For this we use a different decomposition
of the torus. For each i, Tn can be considered as the union of ki copies of an n− 1-
dimensional torus, so we can use induction: within each copy we replace the points
of X by the initial segment of Tn−1 of the same size. Using the result of section 5,
we show that this does not increase the neighborhood.
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Because for every set X there is a compressed set with no larger neighborhood,
we only need to compare the neighborhoods of compressed sets and initial segments
(which are also compressed) of the same size. We start by looking at the neighborhood
of a compressed set (section 7).

Unfortunately, for n = 2 the fact that a set X ⊆ T 2 is compressed does not
give that much information about the structure of X. This case of the proof is
separate from the rest, and consists mainly of tedious case-checking. This is given
in a compressed form as an appendix. For n ≥ 3 it turns out that we only need to
consider the n-slices (i.e., planes xn = constant) 0, 1, and −h+1, h of the compressed
set and the corresponding initial segment. The amount of work is further reduced by
using a symmetry ρ of the torus, introduced in section 8. This is a key stage in the
proof—at this point we will have shown that it is sufficient to prove that for X ⊆ Tn

compressed and C the initial segment with |C| = |X|,
|N(C0)|+ |N(C1)| ≤ |N(X0)|+ |N(X1)|,(2.1)

and

|C0|+ |C1| ≤ |X0|+ |X1|,(2.2)

where Xt is the slice xn = t of X, considered as a subset of Tn−1.
The next step is to examine the possibilities for these slices—they turn out to

be close to those of an initial segment, in that moving a few points (in a sense made
precise in section 9) from one to the other gives the middle slices of an initial segment.
Projecting onto the grid, we show in section 10 that this can be done consistently with
(2.1), using Lemma 3.1 from section 3.

At this point, we have something like (2.1) and (2.2), but with C0, C1 replaced
by D0, D1, the middle two slices of some initial segment which need not be the same
size as X. The final step is to give a method of constructing a set from two slices
which gives an initial segment where possible, and to show that the set D constructed
from D0, D1 is at least as large as X and hence C. This implies that C ⊆ D and
hence Ct ⊆ Dt (t = 0, 1), so we can deduce (2.1) and (2.2), completing the proof.

3. A result in the grid. Let n ≥ 1 and 1 ≤ h1 ≤ · · · ≤ hn, and let x =
(x1, . . . , xn), y = (y1, . . . , yn) be two points of the grid [h1] × · · · × [hn]. Let |x| =
x1 + · · ·+ xn. Then x ≺ y in the simplicial order means

|x| < |y|,
or |x| = |y| and xi > yi for i = min{j : xj 6= yj}.

This ordering can be described in words by: work upwards in layers (sets with
|x| constant), and within each layer first maximize x1, for fixed x1 first maximize x2,
and so on.

In [2], Bollobás and Leader showed that initial segments of the simplicial order
minimize the neighborhood among sets of a given size, but this will not be used here.
Instead we shall give a result about how the sizes of the neighborhoods of these initial
segments relate to each other, which will be needed later.

Let n, h ≥ 1 and let x1, . . . ,xhn be the points of the grid [h]n in simplicial order.
Let C(m) = {x1, . . . ,xm} be the initial segment of size m. We shall say that xm adds
the point y to the neighborhood if

y ∈ N(C(m))\N(C(m− 1)),
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i.e., if xm is the earliest neighbor of y in the simplicial order. Let an(m) be the
number of points added to the neighborhood by xm.

Lemma 3.1. Suppose that 0 ≤ i ≤ j ≤ hn − l and, if l > 0, either
(i) xi+1 is the first point in a layer; or
(ii) xj+l is the last point in a layer.

Then

l∑
k=1

an(i+ k) ≥
l∑

k=1

an(j + k).

Note that although we have taken h1 = · · · = hn for simplicity, the result remains
true and the proof is essentially unmodified for 1 ≤ h1 ≤ · · · ≤ hn.

It turns out to be easier to work with the following definition.
Let A′

n(xm) be the set of points in layer |xm|+ 1 added to the neighborhood by
xm, and let a′n(m) = |A′

n(xm)|.
Only 0 adds a point in its own layer and, being the first point, it can only

appear among xj+1, . . . ,xj+l if j = 0, whence i = 0 also, so Lemma 3.1 follows from
Lemma 3.2 below.

Lemma 3.2. Under the conditions of Lemma 3.1,

l∑
k=1

a′n(i+ k) ≥
l∑

k=1

a′n(j + k).(3.1)

Note that this new definition is as natural as the previous one—when considering
points in one layer, their neighbors in the next are a generalization of the upper
shadow of the Kruskal-Katona theorem. The reason for stating Lemma 3.1 is that it
is this form which will be useful, and the reason for proving Lemma 3.2 is that it is
slightly stronger, and this is needed for the induction to work.

Proof of Lemma 3.2. We use induction on n, and for fixed n induction on l. The

case l = 0 is trivial. If n = 1 then a′n(m) =

{
1 m < h
0 m = h

which is decreasing, so i ≤ j

implies a′n(i+ k) ≥ a′n(j + k) and hence (3.1).
Now if {xi+1, . . . ,xi+l} and {xj+1, . . . ,xj+l} overlap, i.e., if j = i + r for some

r < l, then to prove (3.1) we only need to compare the sums of a′n over the two smaller
sets {xi+1, . . . ,xi+r} and {xj+l−r+1, . . . ,xj+l}. We can do this by induction on l, as
whichever of (i) or (ii) holds is also satisfied by the smaller sets. We may thus assume
that i+ l < j + 1.

If either {xi+1, . . . ,xi+l} or {xj+1, . . . ,xj+l} contains points from more than one
layer, we are again done by induction. This time there are four cases.

Suppose (i) holds and there is a layer break between xi+r and xi+r+1. Then
we can apply the induction hypothesis to the two pairs of sets {xi+1, . . . ,xi+r},
{xj+1, . . . ,xj+r} and {xi+r+1, . . . ,xi+l}, {xj+r+1, . . . ,xj+l}, as we have that xi+1

and xi+r+1 are each the first point in some layer.
If (i) holds and there is a layer break between xj+r and xj+r+1, we can use

the two pairs of sets {xi+1, . . . ,xi+l−r}, {xj+r+1, . . . ,xj+l} and {xi+l−r+1, . . . ,xi+l},
{xj+1, . . . ,xj+r}. The first pair satisfies the conditions for the induction hypothesis
as xi+1 is the first point in a layer, and the second pair as xj+r is the last point in a
layer.

If (ii) holds we have the mirror image of the above two cases. If we have a layer
break in {xi+1, . . . ,xi+l}, say between xi+l−r and xi+l−r+1, we again use the pairs
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{xi+1, . . . ,xi+l−r}, {xj+r+1, . . . ,xj+l} and {xi+l−r+1, . . . ,xi+l}, {xj+1, . . . ,xj+r}.
This time, the induction hypothesis applies as xj+l is the last point in a layer, and
xi+l−r+1 is the first.

Finally, if (ii) holds and there is a layer break between xj+r and xj+r+1, we use the
pairs {xi+1, . . . ,xi+r}, {xj+1, . . . ,xj+r} and {xi+r+1, . . . ,xi+l}, {xj+r+1, . . . ,xj+l},
as xj+r and xj+l are each the last point in a layer.

This leaves {xi+1, . . . ,xi+l} contained in one layer, Lr− , say, and {xj+1, . . . ,xj+l}
in another, Lr+ , with r+ ≥ r−. For this case, we shall use induction on n.

In reducing the dimension by one the following notation will be useful. For
y = (y1, . . . , yn) let y = (y2, . . . , yn) ∈ [h]n−1. Let ei be the vector with a one in
the ith coordinate and zeros elsewhere. Now

y + e1 ∈ A′
n(y) ⇔

{
y1 < h− 1,
yi = 0, i > 1 (else y + e1 − ei ≺ y)

⇔ y is the first point in Ly1 and y1 < h− 1.

Also z ∈ A′
n(y) and z 6= y + e1 imply z = y + ei for some i > 1, and if z = y + ei for

some i > 1, then

z ∈ A′
n(y) ⇔ z’s first neighbor is y

⇔ z’s first neighbor in the slice {w : w1 = y1} is y

(as y = z− ei ≺ z− e1)

⇔ z̄’s first neighbor is ȳ

⇔ z̄ ∈ A′
n−1(ȳ).

Thus the points of A′
n(y) can be divided up as follows:

(a) y + e1 ∈ A′
n(y) iff y is the first point in some layer r < h− 1,

(b) {z : z1 = y1, and z ∈ A′
n−1(y)}.

We distinguish four cases, according to whether r+ = r− or r+ > r−, and whether
(i) or (ii) holds.

(A) r+ = r−, and xi+1 is the first point in this layer,
(B) r+ = r−, and xj+l is the last point in this layer,
(C) r+ > r−, and xi+1 is the first point in layer Lr− ,
(D) r+ > r−, and xj+l is the last point in layer Lr+ .
Consider neighbors of type (a) first: these can only contribute more to the right-

hand side of (3.1) than to the left if xj+1 starts layer Lr+ , r+ < h−1 and xi+1 does not
start Lr− , which could only happen in case D. For it to happen in this case requires
xj+1, . . . ,xj+l to comprise all of Lr+ , implying l = |Lr+ |. But {xi+1, . . . ,xi+l} ⊆ Lr− ,
so l ≤ |Lr− | and |Lr+ | ≤ |Lr− |. Since until the “top boundaries” yi < h of the
grid become relevant successive layers increase in size, this implies that r+ ≥ h,
contradicting r+ < h − 1. (It is here that we use h1 ≤ · · · ≤ hn, as we need r+ ≥
min{hi} to imply r+ ≥ h1.)

For neighbors of type (b), we have a bijection

βr : {x ∈ [h]n : |x| = r} → {x ∈ [h]n−1 : r − (h− 1) ≤ |x| ≤ r}

given by x 7→ x̄, which is order preserving. Thus βr− maps xi+1, . . . ,xi+l to a block
of l consecutive points in [h]n−1, and similarly βr+ xj+1, . . . ,xj+l. Also if xi+1 is the
first point in a layer, then so is βr−(xi+1) (the first point in imβr− , a union of layers),
and if xj+l is the last point in a layer, so is βr+(xj+l).
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Now if r+ = r−, then

xi+1 � xj+1 ⇒ βr−(xi+1) � βr+(xj+1).

If r+ 6= r−, then in case C, xi+1 is the first point of imβr− and xj+1 is some point of
imβr+ , which starts at a later layer, so βr−(xi+1) � βr+(xj+1), and in case D,

βr−(xi+l) � βr+(xj+l), similarly,

⇒ βr−(xi+1) � βr+(xj+1).

(Note that some layers, e.g., L−1, are empty, but this does not matter.)
Finally, by induction on n,

l∑
k=1

|A′
n−1(βr−(xi+k))| ≥

l∑
k=1

|A′
n−1(βr+(xj+k))|,

and as the points of type (b) are in bijection with A′
n−1(βr(y)), this with the result

for points of type (a) above gives (3.1), completing the proof of the induction step,
and hence that of Lemma 3.1.

4. The torus. Regarding m ∈ Zk, k = 2h, as an integer in the range −h+ 1 ≤
m ≤ h, let |m| be the usual absolute value of m, and let σ(m) = 1 if m > 0, −1 if
m ≤ 0. For a vector x ∈ Tn, let |x| = |x1| + · · · + |xn|. To define the ordering we
introduce the following terminology.

The sth layer is Ls = {x ∈ Tn : |x| = s},
the sth Hamming ball is Hs = {x ∈ Tn : |x| ≤ s},
and for β ∈ {+1,−1}n, the orthant Oβ is {x ∈ Tn : σ(xi) = β(i) for i = 1, . . . , n}.

We define an ordering ≺ on the orthants by

Oβ ≺ Oγ ⇔ β(i) = +1, γ(i) = −1 for i = max{j : β(j) 6= γ(j)},
and on the discrete torus itself as follows.

Given x ∈ Oα and y ∈ Oβ , x ≺ y if and only if

|x| < |y|,
or |x| = |y| and Oα ≺ Oβ ,

or |x| = |y|, Oα = Oβ , and |xi| > |yi| for i = min{j : xj 6= yj}.
In other words, within a layer, go through the faces in binary order. For each face,

go through the points in simplicial order and include points on edges, corners, etc.,
iff all the other faces they meet have been included already. Thus an initial segment
is just a set X for which there exist r and α such that

(i) Hr−1 ⊆ X ⊆ Hr,
(ii) in layer r, X is full in orthants Oβ preceding Oα (i.e., Lr ∩ Oβ ⊆ X) and

empty in orthants Oβ following Oα (i.e., Lr ∩Oβ ⊆ Xc).
(iii) X ∩Oα is an initial segment of Oα.
For X 6= ∅, choosing Lr to be the last layer which meets X, and Oα the last

orthant which meets X ∩ Lr, we may also assume that
(iv) X ∩Oα ∩ Lr 6= ∅.
We can now state more precisely the aim of this paper, which is to prove that

this ordering gives a best possible isoperimetric inequality.
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Theorem 4.1. Let n ≥ 1 and 4 ≤ k1 ≤ · · · ≤ kn, where each ki is even. Let
X ⊆ Tn = Tn(k1, . . . , kn), and let C be the initial segment of (Tn,≺) with |C| = |X|.
Then |N(X)| ≥ |N(C)|.

Before proving Theorem 4.1, we prove various results about the ordering ≺ which
will be needed. Once we have done this, the proof itself (given in section 12) will be
reasonably short. As most of the proof is almost unchanged when k1 = · · · = kn = k,
say, this will be assumed for most of what follows (to simplify the notation). When a
substantial modification is needed to the proof to regain the generality stated above
(as in the case n = 2), this will be indicated.

5. Neighborhoods of initial segments. Before introducing compression, we
need to show that the neighborhood of an initial segment is another initial segment.
To do this we use the decomposition of the torus into orthants isomorphic to the grid,
and the corresponding result for the grid. Unfortunately there is some messy detail
concerning the first point in each orthant.

We start by looking at just one orthant.
Lemma 5.1. Let C be an initial segment of (Zn

k ,≺), n ≥ 1, k = 2h, and Oα an
orthant. Then

N(C) ∩Oα = NOα(C ∩Oα)

unless C ∩Oα = ∅, when possibly

N(C) ∩Oα = {1st point of Oα}.
Here NOα(C ∩Oα) is the neighborhood in the graph Oα of C ∩Oα.

Proof. Clearly NOα(C ∩Oα) ⊆ N(C)∩Oα. Suppose x ∈ (N(C)∩Oα)\NOα(C ∩
Oα), i.e., x has a neighbor(s) in C ∩ Oc

α, but none in C ∩ Oα—and in particular
x ∈ Oα, x /∈ C. Let y ∈ C be a neighbor of x in a different orthant. Then

∃i s.t.




(a) xi = 0 yi = 1,
or (b) xi = −h+ 1 yi = h,
or (c) xi = h yi = −h+ 1,
or (d) xi = 1 yi = 0,


 and xj = yj for j 6= i.

If (a) or (b) holds, then |y| > |x|, so x ≺ y and as y ∈ C, we have x ∈ C—a
contradiction.
If (c) holds let z = x − ei. Then |z| = |y|, but z is in an earlier orthant than y
(as σ(zi) = +1, σ(yi) = −1), so z ≺ y, and z ∈ C. Thus x has a neighbor (z) in
C ∩Oα—a contradiction.
If (d) holds and if x is not the first point of Oα, then for some j, z = x−σ(xj)ej ∈ Oα.
Now |z| = |x| − 1 = |y|, and z is in Oα, y in a later orthant, so z ≺ y, and z ∈ C—a
contradiction.

Thus

(N(C) ∩Oα)\NOα(C ∩Oα) = ∅ or {1st point of Oα},
which proves the lemma.

Before proceeding, we make explicit the isomorphism between each orthant and
the grid.

For x ∈ Oα, let φα(x) be the point of [h]n defined by

φα(x)i =

{
xi − 1 α(i) = +1,
−xi α(i) = −1.
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Note that φα is an isomorphism of graphs between Oα and [h]n, and that for x, y in
Oα, φα(x) < φα(y) in the simplicial order iff x ≺ y in Zn

k .
Lemma 5.2. Neighborhoods of initial segments of (Zn

k ,≺) are also initial seg-
ments. More precisely, if X satisfies (i), (ii), (iii), and (iv) of (section 4), then N(X)
satisfies

(i′) Hr ⊆ N(X) ⊆ Hr+1,
(ii′) in layer r+ 1, N(X) is full in orthants preceding Oα, and empty in orthants

following Oα,
(iii′) N(X) ∩Oα = NOα(X ∩Oα).
Note that (iii′) implies that N(X)∩Oα is an initial segment of Oα (using φα and

the corresponding result for the grid, given in [2]), and with (i′) and (ii′) that N(X)
is an initial segment of (Zn

k ,≺), so it suffices to prove the more precise form.
Proof. Assertion (i′) follows from N(Hs) = Hs+1 if s ≥ 0, and (iii′) follows from

(iv) and Lemma 5.1.
Note that the first point xβ in orthant Oβ has

xβi =

{
0 β(i) = −1,
1 β(i) = +1,

so |xβ | = #+(β) = |{i : β(i) = +1}|. Also, a neighbor of xβ is either another point
in Oβ , or the first point of some Oγ , where β and γ differ in only one place.

Now Lemma 5.1 gives that x ∈ Oβ is in N(X) iff it is in NOβ (X ∩ Oβ)—with

the possible exception of the first point in Oβ , i.e., xβ . Without this qualification, we
would have (ii′) following from (ii). The qualification can only affect this when xβ

lies in Lr+1. From the above it is straightforward to check that in this case xβ does
or does not have a neighbor in X as β ≺ α, or β � α. This proves Lemma 5.2.

6. Compression. For X ⊆ Zn
k (n ≥ 2), 1 ≤ i ≤ n, and t ∈ Zk, the tth i-slice of

X is

X
(i)
t = {x ∈ Zn−1

k : (x1, . . . , xi−1, t, xi, . . . , xn−1) ∈ X},
i.e., the set {x ∈ X : xi = t}, considered as a subset of Zn−1

k .
The i-compression C(i)X is defined by

(C(i)X)
(i)
t = initial segment of Zn−1

k of size |X(i)
t |.

Thus |C(i)X| = |X|.
Now

N(X)
(i)
t = X

(i)
t−1 ∪N(X

(i)
t ) ∪X(i)

t+1,

and

N(C(i)X)
(i)
t = (C(i)X)

(i)
t−1 ∪N((C(i)X)

(i)
t ) ∪ (C(i)X)

(i)
t+1.(6.1)

By definition |(C(i)X)
(i)
s | = |X(i)

s |, and since (C(i)X)
(i)
t is an initial segment of Zn−1

k

the assumption that Theorem 4.1 holds in dimension n − 1 gives |N((C(i)X)
(i)
t )| ≤

|N(X
(i)
t )|. Also, the three sets in (6.1) are all initial segments and hence nested, so

|N(C(i)X)
(i)
t | ≤ |N(X)

(i)
t |, and summing over t ∈ Zk, we have |N(C(i)X)| ≤ |N(X)|.

Since the order induced on Zn−1
k , considered as a slice of Zn

k , is just ≺ as defined
on Zn−1

k , the operator C(i), if it does anything, replaces points by points earlier in
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(Zn
k ,≺). Thus the positive integer w(X) =

∑
x∈X (position of x in ≺) decreases.

Hence, repeatedly applying C(1), . . . , C(n) starting with a set X eventually gives a set
CX with

|N(CX)| ≤ |N(X)|,
|CX| = |X|,

and CX compressed in the sense that C(i)(CX) = CX for i = 1, . . . , n, i.e., CX has
all its slices in any direction initial segments of Zn−1

k . This permits an important
reduction of the problem of proving Theorem 4.1, which we state as a lemma.

Lemma 6.1. If Theorem 4.1 is false, then there is a counterexample of minimal
dimension which is compressed.

Proof. Suppose X were a counterexample to Theorem 4.1 of minimal dimension.
Then CX, having the same size as X but smaller neighborhood, would also be a
counterexample.

7. The neighborhood of a compressed set. Let X ⊆ Zn
k , where n ≥ 3, be

compressed, and consider the slices of X in the nth direction, Xt = X
(n)
t .

If 1 ≤ r ≤ n−1, x ∈ X and 2 ≤ xn ≤ h, then y = x−en, x+er−en, x−er−en

all precede x. Also, since n ≥ 3 there is some i, 1 ≤ i ≤ n, i 6= r, n. Now x and y are
in the same i-slice, so as X is compressed, x ∈ X implies y ∈ X. This shows that if
x ∈ Xt, 2 ≤ t ≤ h, then x and all its neighbors are in Xt−1, i.e.,

N(Xt) ⊆ Xt−1 t = 2, . . . , h,
N(Xt) ⊆ Xt+1 t = −1, . . . ,−h+ 1, similarly.

If x ∈ X has xn = 0 but xr 6= 0 for some r, then y = x − σ(xr)er + en ≺ x, as
|y| = |x|, σ(yn) = +1, σ(xn) = −1. Thus x ∈ X0\{0} implies x has a neighbor in
X1, i.e., X0\{0} ⊆ N(X1).

Also, if i < j in (Zk,≺), then Xj ⊆ Xi. We can now describe the n-slices of
N(X). For t = 2, . . . , h,

N(X)t = N(Xt) ∪Xt−1 ∪Xt+1

= Xt−1.

For t = −1, . . . ,−h+ 1,

N(X)t = Xt+1,

similarly. Also,

N(X)0 = N(X0),

as X−1 ⊆ X1 ⊆ X0 ⊆ N(X0), and

N(X)1 = N(X1) ∪X0 ∪X2

= N(X1),

provided X0\{0} 6= ∅, in which case X0\{0} ⊆ N(X1) implies X0 ⊆ N(X1), as N(X1)
is an initial segment.

Lemma 7.1. If n ≥ 3 and X ⊆ Zn
k is compressed, then either |X| ≤ 2, or

|N(X)| = |X| − (|X−h+1|+ |Xh|) + |N(X0)|+ |N(X1)|.(7.1)

Proof. From above either X0 ⊆ {0}, whence |X| ≤ 2, or N(X) consists of the
slices X−h+2, . . . , Xh−1 moved outwards and N(X0), N(X1) added in the middle,
giving (7.1).
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8. A symmetry of the torus. In this brief section we describe a symmetry of
the torus and deduce some results which will be useful in several places in the proof
of Theorem 4.1.

Consider the map ρ = ρn : Zn
k → Zn

k sending each point x to its opposite point,
given by ρ(x)i = xi +h. This is an automorphism of Zn

k as a graph which reverses ≺.
Thus for example,

X is an initial segment

⇔Xc is a final segment

⇔ρ(Xc) is an initial segment.

Similarly, since in n dimensions ρn maps the slice xi = t to the slice xi = t + h by
ρn−1,

X
(i)
t is an initial segment ⇔ ρn−1((X

(i)
t )c) is an initial segment.

C(i)X = X ⇔ C(i)ρ(Xc) = ρ(Xc).

Thus X is compressed if and only if ρ(Xc) is compressed.

9. The middle two slices of compressed sets. Let X ⊆ Zn
k (n ≥ 3) be

compressed. We wish to examine the possibilities for X0 and X1.
As X1 is an initial segment of Zn−1

k we can pick r so that Hr−1 ⊆ X1 ( Hr. Let lr,
lr+1 be the last points in Zn−1

k in layers r, r+1, respectively. Then (lr, 1) ≺ (lr+1, 0).
Also lr and lr+1 have a common coordinate (see below). Thus since X is compressed
and (lr, 1) /∈ X, we have (lr+1, 0) /∈ X, so lr+1 /∈ X0 and as X0 is an initial segment
X0 ( Hr+1. Also, from section 7 X1 ⊆ X0, so Hr−1 ⊆ X0, and either

(a) Hr ⊆ X0 ( Hr+1,

or

(b) Hr−1 ⊆ X0 ( Hr.

If either X0 or X1 is a Hamming ball, then X0, X1 are the middle two slices of an
initial segment. Suppose that this is not the case. If (a) holds set X+ = X0, s = r+1,
X− = X1, and t = r. If (b) holds set X+ = X1, s = r, X− = X0, and t = r. Then
X+, X− are incomplete in layers s, t, respectively, and X+ is “too large” X− “too
small” for X+, X− to form the middle two slices of an initial segment.

Lemma 9.1. (i) X+ misses some point in the first two orthants of layer s.
(ii) X− contains some point in the last two orthants of layer t.
Proof. Let x, y ∈ Zn−1

k with |x| = s, |y| = t. If X+ = Xi, X− = Xj (where
{i, j} = {0, 1}), then set x′ = (x1, . . . , xn−1, i) and y′ = (y1, . . . , yn−1, j). Then in Zn

k

we have y′ ≺ x′. If (a) holds, then |x′| = |y′| = r + 1, σ(y′n) = +1, and σ(x′n) = −1,
and if (b) holds then |y′| < |x′|. Together with the fact that X is compressed in all
directions, this proves the following statement.

(†) Let x, y ∈ Zn−1
k with |x| = s, |y| = t. If x and y have a common coordinate

xm = ym, and if x ∈ X+, then we have y ∈ X−.
We look at 1-coordinates.
What is the 1-coordinate of the last point x in Zn−1

k in layer t? There are three
cases:

(L1) t ≤ (h− 1)(n− 2) : the last point is in the last orthant and has minimum
possible |x1|, so x1 = 0.
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(L2) (h− 1)(n− 2) ≤ t ≤ (h− 1)(n− 1): as above, but minimum possible |x1|
implies x = (x1,−h+ 1, . . . ,−h+ 1), so x1 = −(t− (h− 1)(n− 2)).

(L3) t > (h−1)(n−1): there are no points in orthants Oβ with #+(β) > t−(h−
1)(n−1), so the last point is the last point in the lastOγ with #+(γ) = t−(h−1)(n−1),
i.e., γ = + + · · · + − · · ·−, which has only one point (h, . . . , h,−h + 1, . . . ,−h + 1).
Thus x1 = h.

Considering the first two orthants in layer s, we have the following.
(F1) s < n− 2 : there are no points in the first two orthants. The first point y

in layer s has y1 = 0.
(F2) If 0 ≤ w ≤ (h− 1) and w + (n− 2) ≤ s ≤ w + h(n− 2) there is a point y

in the second orthant with y1 = −w.
Since the cases (L1), (L2), and (L3) are exhaustive, we can deduce the following

statement.
(‡) If s = t or t + 1 and 0 ≤ s, t ≤ h(n − 1), then in Zn−1

k the last point in
layer t matches 1-coordinate with either the first point, or some point in the first two
orthants of layer s.

This proves half of Lemma 9.1, namely (i)—if X+ contains all points of the first
two orthants in layer s, then (as X+ not a Hamming ball) it contains the first point
in layer s. Together with (†) and (‡), this implies that X− contains the last point of
layer t, and hence all of layer t—contradicting X− not a Hamming ball.

Assertion (ii) follows similarly, or by using the symmetry ρ to transform (‡) to a
statement about the first point in layer s and the last point or last two orthants of
layer t.

Now by Lemma 9.1, in layer s X+ misses some point in the first two orthants, so
since X+ is an initial segment it cannot contain any points in later orthants. Similarly,
X− cannot miss any points in layer t except in the last two orthants. In summary,
if X is compressed then moving some number (possibly zero) of points from the first
two orthants of X+ (one of X0, X1) to X− (the other) gives X ′

+, X ′
− which are the

middle two slices of some initial segment.

10. Moving points between slices. We wish to use Lemma 3.1 to give a result
in the torus which can be applied to the middle two slices of compressed sets.

We use the map π from the torus to the grid which maps x to φα(x) (defined in
section 5) when x ∈ Oα. Note that the points added to the neighborhood by x which
lie in Oα are in bijection (via π) with the points added to the neighborhood in the
grid by πx.

Let A, B, C, D be initial segments of Zn−1
k , |s−t| ≤ 1 with |B|−|A| = |D|−|C| ≥

0,

B\A ⊆ first two orthants in layer s,

D\C ⊆ last two orthants in layer t,

and either A = Hs−1 or D = Ht.
Now π maps Lr ∩ Oα to Lr−#+(α) of the grid in an order-preserving way,

and since the first two orthants of Zn−1
k have #+ = n − 1, n − 2, and the last

two #+ = 1, 0,

π : B\A 7→ consecutive points in layers s− n+ 1, s− n+ 2,
π : D\C 7→ consecutive points in layers t− 1, t,

and as n ≥ 3, t ≥ s− 1, we have t− 1 ≥ s− n+ 1.
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Also,

A is a Hamming ball ⇒ π(B\A) starts at start of layer s− n+ 1,

D is a Hamming ball ⇒ π(D\C) ends at end of layer t.

So π maps B\A and D\C to two consecutive blocks of |B| − |A| points in [h]n−1,
π(D\C) starts not earlier than π(B\A) and either π(B\A) starts with the first point in
a layer, or π(D\C) ends with the last point in a layer. These are just the conditions of
Lemma 3.1, so π(B\A) adds at least as many points to the neighborhood as π(D\C),
i.e., the points of B\A add at least as many points in their own orthants to the
neighborhood as do those of D\C.

When can x add a point y in a different orthant to the neighborhood? By
Lemma 5.1 only when y is the first point in some Oβ , which implies that x is the first
point in some Oα. This cannot happen if Oα is the second last orthant—otherwise x =
(1, 0, . . . , 0) so y = (1, 0, . . . , 0, 1, 0, . . . , 0) and y has a neighbor (0, . . . , 0, 1, 0, . . . , 0)
earlier than x. If Oα is the last orthant then x = 0.

Thus we have shown that the points of B\A add at least as many points in their
own orthants to the neighborhood as do those of D\C, and if we impose C 6= ∅, so
that 0 /∈ D\C, then extra points can be added only by B\A, not by D\C. We state
what we have just proved as a lemma.

Lemma 10.1. If A,B,C,D are initial segments of Zn−1
k , |s−t| ≤ 1 with |B|−|A| =

|D| − |C| ≥ 0, C 6= ∅,
B\A ⊆ first two orthants in layer s,

D\C ⊆ last two orthants in layer t,

and either A = Hs−1 or D = Ht, then

|N(B)| − |N(A)| ≥ |N(D)| − |N(C)|.
This implies |N(X ′

0)| + |N(X ′
1)| ≤ |N(X0)| + |N(X1)|—set A = X ′

+, B = X+,
C = X−, D = X ′

−, noting that if X− = ∅, then X− is a Hamming ball, so X ′
0 = X0

and X ′
1 = X1.

11. Constructing a set from two slices. We wish to define a method of
constructing a set from two slices which will bear some relation to the original set if
we start with the middle two slices of a compressed set, or an initial segment.

The relationship

N(Xt) ⊆
{
Xt−1 t = 2, . . . , h,
Xt+1 t = −1, . . . ,−h+ 1,

for X compressed (established in section 7) suggests a way of doing this: given two
slices Y0, Y1 we shall define Yt from the center outwards to be the largest set satisfying
the condition corresponding to the above.

For G a graph and X a subset of V (G) the interior of X, int(X) is {x ∈ V (G) :
x and all its neighbors lie in X}. Given L0, L1 initial segments in Zn−1

k , define Y =
int(L0, L1) by

Y0 = L0, Y1 = L1,

Yt =

{
int(Yt−1) t = 2, . . . , h,
int(Yt+1) t = −1, . . . ,−h+ 1.
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Then for X compressed, X ⊆ int(X0, X1).
This process also works well with initial segments. To prove this we need a

result like Lemma 5.2 for iterated interiors, int0X = X, intm+1X = int(intmX). As
int ρ(Xc) = ρ(N(X)c), this can be obtained from Lemma 5.2 as follows.

Lemma 11.1. Let X 6= Zn−1
k be an initial segment of Zn−1

k , and Oβ some orthant
such that

(i) Hs ⊆ X ⊆ Hs+1,
(ii) in layer s + 1, X is full in orthants preceding Oβ and empty in orthants

following Oβ,
(iv) Xc ∩Oβ ∩ Ls+1 6= ∅.

Then Hs−m ⊆ intm(X) ⊆ Hs−m+1, in layer s −m + 1, intm(X) is full in orthants
preceding Oβ and empty in orthants following Oβ, int

m(X) ∩ Oβ = intmOβ (X ∩ Oβ),

and intm(X) is an initial segment.
Proof. The case m = 0 is trivial. For m = 1, apply Lemma 5.2 to ρ(Xc) with

r = (n− 1)h− (s+ 1), α = −β. (Condition (iii) is automatically satisfied as ρ(Xc) is
an initial segment). For m > 1 use the case m = 1 and induction on m.
(There is a difficulty here: condition (iv) is met for m − 1 = 0, but may not be met
for larger m. However, when it first fails it is because #+(β) is just too great for Oβ

to contain points of the layer being considered. Thus the case m = 1 can be applied
using the next orthant γ with #+(γ) < #+(β), for which (iv) will hold. As the
orthants between Oβ and Oγ contain no points of the relevant layer, the conclusion
as stated above still holds. This trick may have to be repeated.)

Lemma 11.2. If C0, C1 are initial segments of Zn−1
k , and for some r either

(i) C0 = Hr, Hr−1 ⊆ C1 ⊆ Hr,
or (ii) Hr ⊆ C0 ⊆ Hr+1, C1 = Hr,

then, unless C0 = Zn−1
k , C = int(C0, C1) is an initial segment of Zn

k .
(Note that this is precisely the form of the middle two n-slices of an initial segment,

as in layer r all points with xn = 1 precede all those with xn = 0.)
Proof. Note first that Hr−|t| ⊆ Ct ⊆ Hr−|t|+1 for t = −h+ 1, . . . , h (by induction

on |t|). Thus Hr ⊆ C ⊆ Hr+1. (1)
If C0 and C1 are both Hamming balls, then C is Hr+1, Hr or Hr ∪ (Lr+1 ∩ {x :

σ(xn) = 1}), all initial segments. Otherwise let X0 be whichever of C0, C1 is not a
Hamming ball, and let Xi = inti(X0) for i = 1, . . . , h− 1. Let s = r if X0 = C0, and
s = r − 1 if X0 = C1, so

Hs ⊆ X0 ( Hs+1.

Let Oβ be the first orthant of Zn−1
k such that X0 is not full in Oβ in layer s + 1.

Applying Lemma 11.1 to X0 shows that Xi is full in orthants before Oβ , empty in
orthants after Oβ (in layer s− i+ 1), and that Xi ∩Oβ = intiOβ (X0 ∩Oβ). (2)

Going back to C: let Oα be the orthant of Zn
k corresponding to Oβ , with

α(n) =

{
+1 if X0 = C1,
−1 if X0 = C0.

Condition (i) or (ii) of Lemma 11.2 and (2) give that, in layer r + 1, the set C is
full/empty in orthants before/after Oα. (3)

Also from (2), φα(C ∩ Oα) has the property that each slice after the first is the
interior of the preceding one. This implies that φα(C∩Oα) is an initial segment of the
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grid (if the first slice consists of all points before x in the simplicial order on [h]n−1,
then φα(C ∩Oα) consists of all points before (x, 0) in the simplicial order on [h]n), so
C ∩Oα is an initial segment of Oα. (4)

Finally, using (1), (3), and (4) we have that C is an initial segment
of Zn

k .

12. Proof of Theorem 4.1. We are now ready to combine the results of the
previous sections to prove Theorem 4.1 by induction on n.

When n = 1 the initial segments of (Zk,≺) are all intervals and so have minimal
neighborhoods. The case n = 2 can be proved by some straightforward but messy
case-checking, and since this provides no insight for the rest of the proof, it is relegated
to the appendix. From now on we assume n ≥ 3, and that the result holds in dimension
n− 1.

Suppose Theorem 4.1 is false. Then by Lemma 6.1 there is a compressed coun-
terexample X. We may assume that |X| > 2 as the initial segments of sizes 0,1,2
clearly have minimal neighborhoods. Let C be the initial segment with |C| = |X| > 2.
Then C is also compressed, so by Lemma 7.1

|N(X)| = |X| − (|X−h+1|+ |Xh|) + |N(X0)|+ |N(X1)|,

and

|N(C)| = |C| − (|C−h+1|+ |Ch|) + |N(C0)|+ |N(C1)|.

Therefore Theorem 4.1 follows if we prove that among compressed sets X of a given
size, the initial segment C minimizes |N(X0)|+|N(X1)| and maximizes |X−h+1|+|Xh|.

The second assertion is equivalent to the initial segment ρ(Cc) minimizing |Y0|+
|Y1| among compressed sets Y (= ρ(Xc)) of the same size, so it suffices to prove that
X ⊆ Zn

k compressed, C the initial segment with |C| = |X| implies

|C0|+ |C1| ≤ |X0|+ |X1|,
(12.1) |N(C0)|+ |N(C1)| ≤ |N(X0)|+ |N(X1)|.

(Note that these conditions are exactly (2.1) and (2.2).)
We know from section 10 that we can modify X0 and X1 to give X ′

0, X
′
1 which

are the middle two slices of an initial segment, in such a way that

|X ′
0|+ |X ′

1| = |X0|+ |X1|,
(12.2) |N(X ′

0)|+ |N(X ′
1)| ≤ |N(X0)|+ |N(X1)|.

We wish to relate X ′
0, X

′
1 to C0, C1 by using the int(L0, L1) operation to generate

an initial segment from X ′
0 and X ′

1. Unfortunately, we cannot do this if X ′
0 = Zn−1

k .
We deal with this case first.

If X0 6= Zn−1
k then X0 needed modifying, so X0 is not a Hamming ball and

X0 ( Hh(n−1)−1. This contradicts X ′
0 = Zn−1

k as points are only added in one layer.

Thus X0 = Zn−1
k also. Now X1 = Zn−1

k or Hh(n−1)−1. In the first case (12.1) trivially
holds, so suppose X1 = Hh(n−1)−1. Then X−1 ⊆ X1 so taking interiors outwards from
X1 and X−1, we have Xt ⊆ Hh(n−1)−|t|, so X ⊆ D = Hh(n−1), an initial segment.
Thus |C| = |X| ≤ |D|, so C ⊆ D and C0 ⊆ D0 = X0, C1 ⊆ D1 = X1, which implies
(12.1).
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This leaves the case where X ′
0 6= Zn−1

k . Let X ′ = int(X ′
0, X

′
1), an initial segment

by Lemma 11.2. We shall compare this with X two slices at a time, using a result
like Lemma 10.1, but for interiors.

Lemma 12.1. If A, B, C, D are initial segments of Zn−1
k , |s′ − t′| ≤ 1 with

|A| − |B| = |C| − |D| ≥ 0, C 6= Zn−1
k ,

A\B ⊆ last two orthants in layer s′,
C\D ⊆ first two orthants in layer t′,

and either A = Hs′ or D = Ht′−1, then

|int(A)| − |int(B)| ≥ |int(C)| − |int(D)|.
Proof. Apply Lemma 10.1 to ρ(Ac), ρ(Bc), ρ(Cc), ρ(Dc), with s = (n− 1)h− s′,

t = (n− 1)h− t′.
To show |int(X ′

0, X
′
1)| ≥ |int(X0, X1)| it suffices to show

|intm(X ′
−)|+ |intm(X ′

+)| ≥ |intmX−|+ |intmX+|,(12.3)

since summing over m = 0, 1, . . . , h− 1 gives the result. Now (12.3) holds for m = 0,
and can be proved by induction on m: Lemma 11.1 implies that A = intm−1(X ′

−),
B′ = intm−1(X−), C = intm−1(X+), D = intm−1(X ′

+), satisfy all the conditions of
Lemma 12.1 except |A| − |B′| = |D| − |C|. However, the induction hypothesis implies
that |A| − |B′| ≥ |C| − |D|, so adding some points to B′ to form B, we can apply
Lemma 12.1. Since |int(B′)| ≥ |int(B)|, (12.3) follows by induction.

We have now shown that |X ′| ≥ |int(X0, X1)| ≥ |X| = |C|, so C ⊆ X ′. Thus

|C0|+ |C1| ≤ |X ′
0|+ |X ′

1|,
|N(C0)|+ |N(C1)| ≤ |N(X0)

′|+ |N(X1)
′|,

which combined with (12.2) proves (12.1), and hence Theorem 4.1.
Having proved Theorem 4.1 with its restrictions 4 ≤ k1 ≤ · · · ≤ kn and ki even,

it is natural to ask whether these restrictions can be dropped. For the restriction
4 ≤ k1 the answer may well be yes, though the proof would need modifying (section
9 uses 4 ≤ k1). In particular, when k1 = · · · = kn = 2 Theorem 4.1 becomes precisely
Harper’s theorem.

The case when the ki can be odd is rather different—the example Z3
3 shows that in

general there is no ordering which works. In [1], Bollobás and Leader have conjectured
that if k ≥ 3 is odd and X ⊆ Zn

k with

|X| ≥ max(|{x ∈ Zn
k : d(x, 0) ≤ r}|, |{x ∈ Zn

k : d(x, 0) ≥ s}|),
then

|N(X)| ≥ min(|{x ∈ Zn
k : d(x, 0) ≤ r + 1}|, |{x ∈ Zn

k : d(x, 0) ≥ s− 1}|).
Any proof of this is likely to need very different techniques from those used here.

Appendix. The case n = 2. In the main body of the paper we have proved
Theorem 4.1 by induction on n, assuming the case n = 2. Here we prove this case,
using the results of section 5, section 6 (compression), and section 8 (the symmetry
ρ). Unfortunately, there is a lot of case-checking involved, and this is given in a rather
dense form, so this section will be less readable than the rest of the paper.
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In two dimensions there are many compressed sets which are not very close to
initial segments (e.g., the rectangle [−s, s] × [−s, s]), but the boundaries of both
compressed sets and initial segments are sufficiently simple that they can be compared
(using Wang and Wang’s result for Z2 [4]).

Let C ⊆ T = (Zk1 × Zk2) be an initial segment. When is x ∈ ∂(C)?

x ∈ ∂(C) ⇔ x /∈ C and x has a neighbor in C

⇔ x /∈ C and the earliest neighbor of x lies in C.

If x2 6= 0, 1 then, for some choice of sign, y = x± e2 has |y| = |x| − 1, and this is the
earliest neighbor of x. Thus x ∈ ∂C ⇒ x2 = 0 or 1, or x±e2 ∈ C, so ∂C can contain
at most two points in each column, and |∂C| ≤ 2k1.

What happens if |∂C| = 2k1?
In this case ∂C must contain two points in column h1, so (as N(C) is an initial

segment) (h1, 1) ∈ N(C), and its earliest neighbor (h1 − 1, 1) must be in C. The first
initial segment to contain this point is M = Hh1−1 ∪ {(h1 − 1, 1)}, so C ⊇ M . In
particular C has at least k1− 1 points in column 0, so if k1 = k2 then ∂C has at most
one point in column 0, and |∂C| ≤ 2k1 − 1.

Note that for C ⊇M , |∂C| decreases as |C| increases: |∂(C)∩column i| decreases
from 2 to 1 to 0 as |C ∩ column i| increases from ≤ k2 − 2 to k2 − 1 to k2.

Defining ∂T (m), ∂Z2(m) to be the size of the boundary (in T , Z2, respectively) of
the initial segment of T or Z2 of size m, we have that ∂T (m) reaches a maximum of
2k1 (k1 6= k2) or 2k1 − 1 (k1 = k2) at m = |M |, and is then nonincreasing.

On the other hand, ∂Z2(m) is nondecreasing (see [4]), and for m ≤ |M | the
initial segments are the same (the wraparound boundary has not yet been reached),
so ∂Z2(m) ≥ ∂T (m)—each boundary point in T corresponds to at least one in Z2.

Combining these statements we have

∂Z2(m) ≥ ∂T (m) for all m.(A.1)

From now on we suppose that the n = 2 case of Theorem 4.1 is false, and hence
that there is a compressed counterexample X ⊆ T (by Lemma 6.1). C will be the
initial segment of size |X|.

We shall say that a row is full (respectively, almost full) if X contains k1 (respec-
tively, k1 − 1) points of the row; similarly for a column, but with k1 replaced by k2.
We now describe four cases one of which must hold, and deduce a contradiction in
each. This will prove the n = 2 case of Theorem 4.1.

Case 1. X has no row or column full or almost full.
As X is compressed, X ⊆ [−h1 + 2, h1 − 1]× [−h2 + 2, h2 − 1], so considering X

as a subset of Z2, ∂Z2(X) ⊆ [−h1 + 1, h1]× [−h2 + 1, h2], and in the torus no points
of ∂Z2(X) are identified.

Setting m = |X| we have

|∂T (X)| = |∂Z2(X)|
≥ ∂Z2(m) (isoperimetric inequality for Z2—see [4])

≥ ∂T (m) by (A.1) above.

Therefore X is not a counterexample, contradicting our assumption.
Case 2. X has both a full row and a full column.
As X is compressed, {x : x1 = 0 or x2 = 0} ⊆ X. Therefore ρ(Xc) ⊆ [−h1 +

1, h1 − 1]× [−h2 + 1, h2 − 1].
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Let X ′ = ρ(Xc), and let C ′ = ρ(Cc)—the initial segment of size |X ′|. Then by
assumption |N(X)| < |N(C)|, so as int(Xc) = (N(X))c, |intXc| > |intCc|. Hence,
as ρ is an automorphism of the torus, |intX ′| > |intC ′|.

Let Y be the initial segment of size |intX ′|. Then |Y | > |intC ′|, so

Y 6⊆ intC ′ ⇒ N(Y ) 6⊆ C ′ (by definition of int)

⇒ |N(Y )| > |C′|,

as N(Y ) and C ′ are both initial segments, and are hence nested.
Also, by the argument of case 1, as intX ′ ⊆ [−h1 + 2, h1 − 2]× [−h2 + 2, h2 − 2],

intX ′ cannot be a counterexample, so |N(intX ′)| ≥ |N(Y )| and

|C ′| = |X ′| ≥ |N(intX ′)| ≥ |N(Y )| > |C′|,

a contradiction.
Before proceeding we make a remark.
If k1 6= k2, then, as X is a counterexample, |∂X| ≤ 2k1 − 1 ≤ 2k2 − 5. Suppose

X has a column which is full or almost full. Then if no rows are full or almost full,
∂X contains at least one point in row k2 and at least two points in all other rows,
so |∂X| ≥ 2k2 − 1. Thus X must have enough rows full or almost full to “lose” at
least four neighbors, and in particular either row 0 is full, or at least four rows are
almost full. In the second case, rows 0,1 and -1 are almost full (using X compressed),
and we can move a point of X to (h1, 0) without increasing the neighborhood, to give
another compressed counterexample with a full row.

Case 3. X has a full row or column.
Without loss of generality, X has a full row (reflect if k1 = k2, and use the remark

above if k1 6= k2). As X is compressed, row 0 is full.
Now if no columns are full or almost full, |∂X| ≥ 2k1 (at least two points in each

column), and X is not a counterexample. If column 0 is full we are done by case 2.
Thus there are no full columns. How many almost full columns can there be?

If more than two columns are almost full we are done, since as columns 0,1,-1 are
almost full we can move a point to fill column 0, reducing to case 2. Thus the number
of almost full columns is either one or two.

If exactly one column is almost full, then |∂X| ≥ 2k1 − 1 so as X is a counterex-
ample, we have k1 6= k2, |∂X| = 2k1 − 1 and X has exactly two boundary points in
columns other than 0. Working outwards from the center, this means that no column
can contain more than two points fewer than the previous column, so X ⊇ Hh2−1.
Hence, |C| = |X| ≥ |Hh2−1| so C ⊇ Hh2−1 which implies |∂C| ≤ 2k1 − 1 (as C has
column 0 at least almost full), so X is not a counterexample.

If exactly two columns are almost full, then working outwards from the center we
can have at most one step where a column has three fewer points than the previous
column. If we have such a step then |∂X| ≥ 2k1 − 1, but we always have |∂C| ≤ 2k1,
and hence |∂X| ≤ 2k1 − 1 for a counterexample X, so in fact |∂X| = 2k1 − 1. The
smallest possibility for X has the step between columns 1 and 2 (or 0 and -1), but in
this case certainly |X| ≥ |Hh2−1|. C thus contains Hh2−1, so |∂C| ≤ 2k1−1. If we do
not have such a step, then X = Hh2−1∪(Lh2∩{x : x1 > 0}) so C = Hh2−1∪(Lh2∩{x :
x2 > 0}) (the initial segment of the same size) and |∂C| = 2k1 − 2 = |∂X|.

In neither of these cases do we have |∂X| < |∂C|, which contradicts our assump-
tion that X is a counterexample.

Case 4. X has an almost full row or column, but no full row or column.
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We consider first the case k1 6= k2.
By the remark above, we may assume that column 0 is not almost full, and,

hence, that row 0 is almost full. Thus |∂X| ≥ 2k1 − 1, so as X is a counterexample
|∂X| = 2k1 − 1 and X has exactly one neighbor in column h1 and exactly two in
each other column. Working inwards from columns ±(h1 − 1) this time, we have
that X ⊆ Hh1−1. Thus C ⊆ Hh1−1 and |∂C| ≤ |∂Hh1−1| (as until columns become
almost full the boundary of an initial segment increases with size, and as h1 < h2),
so |∂C| ≤ 2k1 − 1 = |∂X|, a contradiction.

We now consider the case k1 = k2 = k.
Without loss of generality row 0 is almost full. We need |∂X| < 2k−1 for X to be

a counterexample, so (counting the number of points of ∂X in each column) column 0
must be almost full as well. If there are no more almost full rows or columns, then we
must have |∂X| = 2k − 2 and working outwards from columns 0 and 1 each column
must have at most two fewer points than the previous. As columns ±(h − 1) can
each contain only one point, each column must have exactly two fewer points than
the previous, so X = Hh−1, an initial segment and certainly not a counterexample.

If X has another almost full row or column, without loss of generality row 1, then
as ∂X has at least two points in column h, X must have another almost full column,
say column 1. Now if column (or row) -1 is also almost full, we can move a point as
before to create a full column (or row), reducing to case 3. Thus |∂X| = 2k − 2, and
∂X has one point in each of columns 0,1 and exactly two points in each other column.
Now for i = 2, . . . , h− 1 column i has at most two fewer points than column i− 1, so
column h − 1 has at least (k − 1 − 2(h − 2)) = 3 points, and ∂X has at least three
points in column h. This contradicts ∂X having exactly two points in columns other
than 0,1.

This completes the proof of the n = 2 case of Theorem 4.1.
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Abstract. K. F. Fraughnaugh et al. proved that a graph G is the competition graph of a
hamiltonian digraph possibly having loops if and only if G has an edge clique cover C = {C1, . . . , Cn}
that has a system of distinct representatives. [SIAM J. Discrete Math., 8 (1995), pp. 179–185]. We
settle a question left open by their work, by showing that the words “possibly having loops” may be
removed.
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1. Introduction. Suppose that D is a digraph. The competition graph or
conflict graph C(D) has the same vertex set as D, and an edge {u, v}, u 6= v, if
there is a vertex w such that (u,w) and (v, w) are arcs in D. Competition graphs
are useful in the study of such diverse systems as food webs and radio networks
and have received substantial attention over the past fifteen years. Characterizations
of competition graphs for a variety of classes of digraphs have been reported over
the years; recently, K. F. Fraughnaugh et al. [2] have given characterizations for
competition graphs of strongly connected digraphs and hamiltonian digraphs. Here
we improve their characterizations of competition graphs of hamiltonian digraphs.
(See the same paper for references to other characterizations.)

2. Hamiltonian digraphs. All digraphs are loopless and contain no multiple
edges unless otherwise indicated. We use circuit to mean a directed cycle in a digraph.
Fraughnaugh [2] contains the following two characterizations.

Theorem 1. A graph G on n vertices is the competition graph of a hamiltonian
digraph if and only if G has an edge clique cover {C1, . . . , Cn}, with a system of
distinct representatives {v1, . . . , vn} such that vi /∈ Ci−1. (Subscript arithmetic “wraps
around,” i.e., C0 = Cn.)

Theorem 2. A graph G on n vertices is the competition graph of a hamiltonian
digraph, possibly with loops, if and only if G has an edge clique cover {C1, . . . , Cn}
with a system of distinct representatives.

We show that these characterizations can be “combined” as follows.

Theorem 3. A graph G on n ≥ 3 vertices is the competition graph of a hamilto-
nian digraph if and only if G has an edge clique cover {C1, . . . , Cn} with a system of
distinct representatives.

Proof. One direction follows immediately from Theorem 1. The other direction
follows if we can show that whenever G has an edge clique cover {C1, . . . , Cn} with
a system of distinct representatives, it has one satisfying the additional property of
Theorem 1, namely, that vi /∈ Ci−1. We show precisely this in Theorem 6. Note that
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K2 has an edge clique cover with a system of distinct representatives but is not the
competition graph of a hamiltonian digraph.

Suppose that G is a graph on n vertices and C = {C1, . . . , Cn} is a clique cover
of G with a system of distinct representatives V = {v1, v2, . . . , vn}. The clique graph
CG(C,V) is the digraph whose vertices are the cliques, with arc (Ci, Cj) if and only if
vj /∈ Ci. To complete the proof of Theorem 3, we want to show that if G has a clique
cover with a system of distinct representatives, then it has one whose clique graph is
hamiltonian. (For if the clique graph is hamiltonian, we may renumber the cliques, if
necessary, so that (C1, C2, . . . , Cn) is a circuit. By definition of the clique graph, this
implies the “extra condition” of Theorem 1.)

Recall the well-known theorem of Ghouila-Houri.

Theorem 4. Suppose G is a strongly connected digraph without loops or multiple
arcs. If d(v) = d

+

(v) + d
−
(v) ≥ n for every vertex v, then G is hamiltonian.

We will use this in two ways: in some special cases, we will be able to invoke
Theorem 4 directly. For the rest, when the hypotheses of the theorem are not quite
met, we give a proof that is much like the proof of Theorem 4, using some properties
of the clique graph to make up for the failed hypotheses.

We will need the following technical lemma (also used in the proof of Theorem
4).

Lemma 5. Consider a circuit with m vertices, each colored either red or blue.
Suppose the circuit contains exactly nr ≥ 1 red vertices and nb ≥ 1 sequences of q
consecutive blue vertices. Then nr + nb ≤ m− q + 1.

This lemma, and the proof of Theorem 4 that we use, are from Berge [1].

DEFINITION. If C is a graph, let |C| denote the number of vertices in C. The
size of a set of cliques C is

∑
C∈C |C|.

Remark. When C is a set, not a graph, we use |C| in the usual sense to mean the
number of elements in the set C.

DEFINITION. If A = (VA, EA) and B = (VB , EB) are subgraphs of G, by A ∪ B
we mean the subgraph with vertex set VA ∪ VB and edge set EA ∪ EB.

Theorem 6. If G is a graph on n ≥ 3 vertices and has an edge clique cover
{C1, . . . , Cn} with a system of distinct representatives, then it has one whose clique
graph is hamiltonian.

Proof. If G is a complete graph, the theorem is easy. For other G, we prove by
induction on the number of vertices that if G has a clique cover with a system of
distinct representatives, then among all such clique covers there is one of minimum
size whose clique graph is hamiltonian. The theorem is easy to prove for n = 3, so
suppose n ≥ 4.

If C is a clique cover with a system of distinct representatives, let k(C) ≥ 0 be the
largest integer strictly less than n such that some collection A of k(C) of the cliques
has |A| = |⋃A|. (Recall that Hall’s marriage principle says that |A| ≤ |⋃A| for all
A ⊆ C. Here and subsequently, we use

⋃A to mean
⋃
C∈A C.)

Let C = {C1, . . . , Cn} be a clique cover of G of minimum size with a system of
distinct representatives V = {v1, v2, . . . , vn}, for which k = k(C) is as large as possible.

We may assume that k = |⋃k
i=1 Ci|.

Unless k = n− 1 and Cn is a singleton, the clique cover has the following “min-
imality property,” henceforth (MP): if v ∈ Ci, i > k, then there is an edge {v, w} in
Ci that is in no other clique, for if not, then v could be removed from Ci to form a
clique cover with a system of distinct representatives of smaller size. (Note that Ci

cannot be a singleton, by definition of k.)
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Remark. If every edge {v, w} in Ci is in some other clique, then it is clear that
removing v from Ci leaves a clique cover. It is perhaps not obvious that this new
cover has a system of distinct representatives. (Actually, it is clear if k = n − 1,
so we may assume that k < n − 1.) For a contradiction, suppose it doesn’t; by
Hall’s marriage principle, Ci must be in some set of cliques A such that |A| = |⋃A|,
and Ci is the only clique in A that contains v. If v ∈ ⋃k

j=1 Cj , then v 6= vi, so
A with Ci replaced by Ci\{v} has a system of distinct representatives (inherited

from V), contradicting the definition of A. Hence, v /∈ ⋃k
j=1 Cj . Now there are two

cases: (1) If A ⊇ {Ck+1, . . . , Cn}, then B = {C1, . . . , Ci−1, Ci+1, . . . , Cn} satisfies
|B| = |⋃B|, contradicting the definition of k. (2) Otherwise, B = A ∪ {C1, . . . , Ck}
satisfies |B| = |⋃B|, contradicting the definition of k. To see that |B| = |⋃B|, pick a
system of distinct representatives for A∪{C1, . . . , Ck}. If there is a v ∈ Cj , j ≤ k that

is not one of the representatives, then k < |⋃k
j=1 Cj |, contradicting the definition of k.

If there is a v ∈ Cj , Cj ∈ A that is not one of the representatives, then |A| < |⋃A|,
contradicting the definition of A.

Here is an outline of the rest of the proof.

I. Establish some properties of C1, . . . , Ck and of arcs between these cliques
and Ck+1, . . . , Cn.

II. Show that d(C) ≥ n for C ∈ {Ck+1, . . . , Cn}.
III. Show that CG(C,V) is strongly connected.
IV. Use Theorem 4 to show that CG(C,V) is hamiltonian in some special cases.
V. Show that CG(C,V) is hamiltonian using methods similar to the proof of

Theorem 4.

I. Some properties of C1, . . . , Ck.

We establish some properties of C1, . . . , Ck, in some cases by replacing C by a
different clique cover.

If k > 0, the cliques C1, . . . , Ck form a clique cover with a system of distinct
representatives for a smaller graph G′, namely, the union of the cliques C1, . . . , Ck.
If G′ is not a complete graph, then, by the induction hypothesis, we may replace
C1, . . . , Ck by a clique cover of G′, with a system of distinct representatives, that has
the same size as C1, . . . , Ck, and whose clique graph is hamiltonian. For convenience,
call the new cliques C1, . . . , Ck as well.

If not all of C1, . . . , Ck are singletons, every clique Cg, g > k must have an arc
(in CG(C,V)) to some Ci, i ≤ k. If not, Cg contains all of v1, . . . , vk, so we could
replace the cliques C1, . . . , Ck by singletons to get a smaller clique cover, which is a
contradiction.

If G′ is a complete graph and k ≥ 2, the cliques C1, . . . , Ck must consist of k − 1
singletons and a copy of Kk, because C was chosen to have minimum possible size.
To see this, suppose that no Ci, i ≤ k is Kk. Then each v in G′ must be in at least
two of the Ci for i ≤ k, and so the size of the cover C1, . . . , Ck is at least 2k, while
the size of k − 1 singletons and of a Kk is 2k − 1. We may assume that C1, . . . , Ck−1

are the singletons. We also may assume that some Cg, g > k does not contain C1, by
the previous paragraph, and by some renumbering of the vertices of G′ if necessary.
To see this, note that if every Cg, g > k contains all of C1, C2, . . . , Ck−1, then no Cg,
g > k contains vk, the representative of Ck. Replacing C1 by {vk} and renumbering,
we get a set of cliques with the desired property. Finally, we may assume that some
Cg, g > k, has an arc to Ck

∼= Kk. For if not, then every Cg, g > k contains all
of v2, . . . , vk and does not contain v1. Then, if k > 2, we may replace C1, . . . , Ck
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by {v1, v2}, {v1, v3}, . . . , {v1, vk}, {v2}. Together with Ck+1, . . . , Cn, these form a
clique cover with a system of distinct representatives of the same size as the original,
so we may use this clique cover instead of the original. For convenience, name this
new clique cover C, and name the new cliques C1, C2, . . . , Cn. If k = 2, then we can
replace C1 = {v1} and C2 = {v1, v2} by C ′

1 = {v2} and C ′
2 = {v1, v2}, and then

A = {C ′
1, C3, . . . , Cn} has the property that |A| = |⋃A|, which is a contradiction, by

the definition of k.

If C1, . . . , Ck are all singletons and every Cg, g > k contains all vertices of G′, let
v be a vertex of G that is not in all of the cliques Cg, g > k. (If every vertex is in every
Cg, g > k, then G is Kn, contrary to assumption.) Let C be the clique represented by
v. Replace the singleton {v1} by {v} in C. This new collection of cliques (still called
C) is still a clique cover with a system of distinct representatives and has minimum
size. Choosing g so that v /∈ Cg, (Cg, C1) is an arc of CG(C,V).

II. d(C) ≥ n for C ∈ {Ck+1, . . . , Cn}.
Actually, we show that either the theorem is true for G or d(C) ≥ n for C ∈

{Ck+1, . . . , Cn}.
Consider a clique C = Ci, i > k. In the clique graph, d

+

(C) = n− |C| and

d
−
(C) = the number of cliques not containing vi

= n− the number of cliques containing vi

≥ n− (1 + n− |C|) = |C| − 1

by (MP). Thus, d(C) ≥ n− 1.

If for some C = Ci, d(C) = n − 1, then the number of cliques containing vi is
exactly 1 + n − |C|. (Note that |C| ≥ 2. If not, then k = n − 1 and i = n, so

d
−
(C) = n − 1.) Let j = n − |C|. Let the cliques other than C that contain vi be

A1, . . . , Aj . By (MP), there are vertices w1, . . . , wj such that Al\C = {wl} for all
l. Now we consider the cliques other than C and A1, . . . , Aj . Note that any clique
contained in C must be a singleton, since C was chosen to have minimum size.

Suppose there is a clique D that contains more than one of {w1, . . . , wj}; without
loss of generality, say {w1, . . . , wt} ⊆ D. Remove vi from A1, . . . , At, and add vi to D.
This new collection of cliques still covers G, has a system of distinct representatives,
and has smaller size than C, which is a contradiction.

Suppose that D is a clique (not one of A1, . . . , Aj) containing one of {w1, . . . , wj},
say, ws, and D is not a singleton. If we replace As by D∪As and D by its representa-
tive, we get a clique cover of G with a system of distinct representatives and the same
size as C. If we do this for each such D, we produce a clique cover, still called C for
convenience, consisting of C,A1, . . . , Aj and |C|−1 ≥ 1 singletons. Moreover, we may
assume that each Am is represented by wm, and all of the singletons {x1, . . . , x|C|−1}
are in C.

Suppose that one of the singletons, without loss of generality, x1, is not in some
A, without loss of generality, Aj . Then C, A1, . . . , Aj , x1,. . . , x|C|−1 is a hamilton
circuit in CG(C,V).

Otherwise, suppose that every singleton is in every clique A. Split Aj into two
cliques. One, still called Aj for convenience, is Aj\{x1}. The other, Aj+1, contains wj

and x1. Remove the singleton {x1} from C. If we let x1 represent Aj+1, then this new
collection of cliques is still a cover, still has a system of distinct representatives, and
has the same size as C. In the clique graph of this new collection, C, A1, . . . , Aj , Aj+1,
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x2, . . . , x|C|−1 is a hamilton circuit. (Note that if |C| = 2, there are no singletons left,
but C, A1, . . . , Aj , Aj+1 is a hamilton circuit, since vi /∈ Aj+1.)

Thus, we may assume that d(Ci) ≥ n, i > k.

III. CG(C,V) is strongly connected.
Consider two distinct cliques, Ci and Cj .
If i ≤ k and j > k, then by definition of k, (Ci, Cj) is an arc.
If i, j > k and (Ci, Cj) is not an arc, then vj ∈ Ci. Let v ∈ Cj be such that

{vj , v} is in no clique other than Cj . Let C be the clique represented by v, so vj /∈ C.
Then (Ci, C) and (C,Cj) are arcs.

Suppose i, j ≤ k. If G′ is not a complete graph, then C1, . . . , Ck form a circuit,
so there is a path from Ci to Cj .

If G′ is the complete graph, the cliques C1, . . . , Ck must consist of k−1 singletons
and a copy of Kk. From (I) we know that C1, . . . , Ck−1 are singletons and that for
some g > k, (Cg, C1) is an arc. Taken in order, C1, . . . , Ck form a path, so if i < j,
there is a path from Ci to Cj . If i > j, we may use the path Ci, Cg, C1, . . . , Cj .

Finally, suppose i > k and j ≤ k. If G′ is not a complete graph and C1, . . . , Ck

are not all singletons, then (Ci, Cl) is an arc for some l ≤ k, and since C1, . . . , Ck

form a circuit, there is a path from Cl to Cj . If all of C1, . . . , Ck are singletons, there
is a g > k and an l ≤ k such that (Cg, Cl) is an arc; since there is a path from Ci to
Cg and from Cl to Cj , there is a path from Ci to Cj . If G′ is a complete graph, we
know there is a g > k such that (Cg, C1) is an arc; since there are paths from Ci to
Cg and C1 to Cj , we are done.

IV. Special cases.

Case 1. k = 0.
CG(C,V) satisfies the hypotheses of Theorem 4, so it is hamiltonian.

Case 2. k = 1.
By definition of k, this means that C1 is a singleton, so d

+

(C1) = n−1. Previously,

we had guaranteed that there is some g > k such that (Cg, C1) is an arc, so d
−
(C1) ≥ 1.

Now CG(C,V) satisfies the hypotheses of Theorem 4, so it is hamiltonian.

Case 3. All of C1, . . . , Ck are singletons, and k > 1.
If i ≤ k, then d

+

(Ci) = n− 1 and d
−
(Ci) ≥ 1 because each of the other singletons

has an arc to Ci. Again, CG(C,V) satisfies the hypotheses of Theorem 4, so it is
hamiltonian.

Case 4. G′ is a complete graph.
Recall that this means that C1, C2, . . . , Ck−1 are all singletons, and Ck

∼= Kk.

For i ≤ k − 1, d
+

(Ci) = n− 1. For 2 ≤ i ≤ k − 1, (Ci−1, Ci) is an arc, so d
−
(Ci) ≥ 1.

By (I), we know that there is some g > k such that (Cg, C1) is an arc, so d
−
(C1) ≥ 1.

Thus, d(Ci) ≥ n for i ≤ k − 1.

d
+

(Ck) = n−k and d
−
(Ck) ≥ (k−1)+1 = k. The “k−1” is due to C1, . . . , Ck−1.

By the discussion in (I), there is some g > k such that (Cg, Ck) is an arc, which
explains the “+1.” Thus, CG(C,V) satisfies the hypotheses of Theorem 4, so it is
hamiltonian.

V. The rest of the story.
Now we may assume that C1, . . . , Ck form a circuit, and that k ≥ 2. Also, we may

assume that not all of C1, . . . , Ck are singletons, so that for all g > k there is some i ≤ k
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such that (Cg, Ci) is an arc. Following Berge [1], we let Γ
+

(v) = {w | (v, w) is an arc}
and Γ

−
(v) = {w | (w, v) is an arc}.

Let X0 be the longest circuit in CG(C,V) that incorporates all of C1, . . . , Ck in
that order (but not necessarily consecutively). Let m be the length of X0; m ≥ 2.
Denote the vertices in X0 by V0, V1, . . . , Vm−1 (in order around the circuit). If m = n,
we are done; for a contradiction, suppose that m < n. Let X1, . . . , Xp be the strongly
connected components of CG(C)−X0.

CLAIM. X1 contains a circuit of length |X1| = q.

Suppose that V ∈ X1. For all l, Vl ∈ Γ
−
(V ) implies Vl+1 /∈ Γ

+

(V ), for otherwise
X0 could be lengthened. (Note: Vm = V0.) Hence,

|Γ−(V ) ∩X0| ≤ |X0| − |Γ+

(V ) ∩X0|.

For W ∈ Xj , j 6= 0, 1, W ∈ Γ
−
(V ) implies W /∈ Γ

+

(V ) because Xj is a strongly
connected component different from X1. Hence, for j 6= 0, 1,

|Γ−(V ) ∩Xj | ≤ |Xj | − |Γ+

(V ) ∩Xj |.
Since d(V ) ≥ n,

d(V ) =

p∑
j=0

(
|Γ−(V ) ∩Xj |+ |Γ+

(V ) ∩Xj |
)
≥

p∑
j=0

|Xj | = n,

and so

|Γ−(V )∩X1|+ |Γ+

(V )∩X1|−|X1| ≥ −
∑
j 6=1

(
|Γ−(V ) ∩Xj |+ |Γ+

(V ) ∩Xj | − |Xj |
)
≥ 0.

By Theorem 4, X1 is hamiltonian. Denote the vertices of X1 by W0, W1, . . . ,Wq−1,
in order around the circuit. This proves the claim.

CLAIM. q < m.
If not, we can form a circuit by inserting C1, . . . , Ck in order into X1. (Pick any

V ∈ X1; then (V,Ci) is an arc for some i ≤ k, and Ci, Ci+1, . . . , Ck, C1, . . . , Ci−1 may
be inserted immediately after V in X1.) This forms a circuit containing C1, . . . , Ck

that is longer than X0, which is a contradiction. This proves the claim.
CLAIM. Suppose that Vi ∈ Γ

−
(Ws). Then Vi+1, . . . , Vi+q are not in Γ

+

(Ws−1).
(All subscript arithmetic wraps around as appropriate.)

For if Vi+j ∈ Γ
+

(Ws−1), the circuit V0, . . . , Vi, Ws, Ws+1, . . . ,Ws−1, Vi+j , . . . ,
Vm−1 is longer than X0. Suppose some of Vi+1, . . . , Vi+j−1 are in {C1, . . . , Ck}; by
definition of X0, these vertices must be Cg, Cg+1, . . . , Cg+h, for some g and h. (Note
that subscript arithmetic here wraps around at k, not n.) These may be inserted in
the new circuit immediately following Cg−1; if {Cg, . . . , Cg+1} = {C1, . . . , Ck}, then
{C1, . . . , Ck} can be inserted anywhere, as in the previous claim. This produces a
circuit longer thanX0 that contains all of C1, . . . , Ck in order, which is a contradiction.
This proves the claim.

Now we show that for each Ws,

|Γ−(Ws) ∩X0|+ |Γ+

(Ws−1) ∩X0| ≤ m− q + 1.

Color the vertices of X0 as follows: if Vj ∈ Γ
+

(Ws−1), color it red; otherwise, blue.

We know that both (Γ
−
(Ws)∩X0) and (Γ

+

(Ws−1)∩X0) are nonempty (by properties
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of {C1, . . . , Ck}), so there is at least one red vertex, and by the preceding paragraph
there is at least one sequence of q blue vertices. Thus, by Lemma 5,

|Γ−(Ws) ∩X0|+ |Γ+

(Ws−1) ∩X0| ≤ nr + nb ≤ m− q + 1.

Finally, for our contradiction, we show that for some s,

|Γ−(Ws) ∩X0|+ |Γ+

(Ws−1) ∩X0| ≥ m− q + 2.

For every W ∈ X1, since d(W ) ≥ n,

|Γ−(W ) ∩X0|+ |Γ+

(W ) ∩X0| ≥ |X0|
−
(
|Γ−(W ) ∩X1|+ |Γ+

(W ) ∩X1| − |X1|
)

−
∑
j 6=0,1

(
|Γ−(W ) ∩Xj |+ |Γ+

(W ) ∩Xj | − |Xj |
)

≥ m− ((q − 1) + (q − 1)− q)− 0 = m− q + 2.

Now counting the arcs between X0 and X1 in two different ways, we have

q−1∑
s=0

(
|Γ−(Ws) ∩X0|+ |Γ+

(Ws−1) ∩X0|
)

=

q−1∑
s=0

(
|Γ−(Ws) ∩X0|+ |Γ+

(Ws) ∩X0|
)

≥ q(m− q + 2).

Thus, for at least one s, the desired inequality holds.
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Abstract. We give a formula for the number of interior intersection points made by the diagonals
of a regular n-gon. The answer is a polynomial on each residue class modulo 2520. We also compute
the number of regions formed by the diagonals, by using Euler’s formula V − E + F = 2.

Key words. regular polygons, diagonals, intersection points, roots of unity, adventitious quad-
rangles
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1. Introduction. We will find a formula for the number I(n) of intersection
points formed inside a regular n-gon by its diagonals. The case n = 30 is depicted in
Figure 1.1. For a generic convex n-gon, the answer would be

(
n
4

)
, because every four

vertices would be the endpoints of a unique pair of intersecting diagonals. But I(n)
can be less, because in a regular n-gon it may happen that three or more diagonals
meet at an interior point, and then some of the

(
n
4

)
intersection points will coincide.

In fact, if n is even and at least 6, I(n) will always be less than
(
n
4

)
because there

will be n/2 ≥ 3 diagonals meeting at the center point. It will result from our analysis
that for n > 4, the maximum number of diagonals of the regular n-gon that meet at
a point other than the center is

2 if n is odd,
3 if n is even but not divisible by 6,
5 if n is divisible by 6 but not 30, and,
7 if n is divisible by 30,

with two exceptions: this number is 2 if n = 6, and 4 if n = 12. In particular, it
is impossible to have eight or more diagonals of a regular n-gon meeting at a point
other than the center. Also, by our earlier remarks, the fact that no three diagonals
meet when n is odd will imply that I(n) =

(
n
4

)
for odd n.

A careful analysis of the possible configurations of three diagonals meeting will
provide enough information to permit us in theory to deduce a formula for I(n). But
because the explicit description of these configurations is so complex, our strategy will
be instead to use this information to deduce only the form of the answer, and then
to compute the answer for enough small n that we can determine the result precisely.
The computations are done in Mathematica, Maple, and C, and annotated source
codes can be obtained at http://math.berkeley.edu/̃ poonen.

∗Received by the editors February 8, 1995; accepted for publication (in revised form) November
22, 1996. Part of this research was completed at MSRI and was supported in part by NSF grant
DMS-9022140.

http://www.siam.org/journals/sidma/11-1/28124.html
†AT&T Bell Laboratories, Murray Hill, NJ 07974. Current address: Department of Mathematics,

University of California, Berkeley, CA 94720 (poonen@math.berkeley.edu). The research of this
author was supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

‡AT&T Bell Laboratories, Murray Hill, NJ 07974. Current address: Department of Mathematics,
Princeton University, Princeton, NJ 08544-1000 (miker@math.princeton.edu).

135



136 BJORN POONEN AND MICHAEL RUBINSTEIN

Fig. 1.1. The 30-gon with its diagonals. There are 16801 interior intersection points: 13800
two line intersections, 2250 three line intersections, 420 four line intersections, 180 five line inter-
sections, 120 six line intersections, 30 seven line intersections, and 1 fifteen line intersection.

In order to write the answer in a reasonable form, we define

δm(n) =

{
1 if n ≡ 0 (mod m),

0 otherwise.

Theorem 1.1. For n ≥ 3,

I(n) =

(
n

4

)
+ (−5n3 + 45n2 − 70n+ 24)/24 · δ2(n)− (3n/2) · δ4(n)

+ (−45n2 + 232n)/6 · δ6(n) + 42n · δ12(n) + 60n · δ18(n)

+ 35n · δ24(n)− 38n · δ30(n)− 82n · δ42(n)− 330n · δ60(n)

− 144n · δ84(n)− 96n · δ90(n)− 144n · δ120(n)− 96n · δ210(n).
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Further analysis, involving Euler’s formula V − E + F = 2, will yield a formula
for the number R(n) of regions that the diagonals cut the n-gon into.

Theorem 1.2. For n ≥ 3,

R(n) = (n4 − 6n3 + 23n2 − 42n+ 24)/24

+ (−5n3 + 42n2 − 40n− 48)/48 · δ2(n)− (3n/4) · δ4(n)

+ (−53n2 + 310n)/12 · δ6(n) + (49n/2) · δ12(n) + 32n · δ18(n)

+ 19n · δ24(n)− 36n · δ30(n)− 50n · δ42(n)− 190n · δ60(n)

− 78n · δ84(n)− 48n · δ90(n)− 78n · δ120(n)− 48n · δ210(n).

These problems have been studied by many authors before, but this is apparently
the first time the correct formulas have been obtained. The Dutch mathematician
Gerrit Bol [1] gave a complete solution in 1936, except that a few of the coefficients in
his formulas are wrong. (A few misprints and omissions in Bol’s paper are mentioned
in [11].)

The approaches used by us and Bol are similar in many ways. One difference
(which is not too substantial) is that we work as much as possible with roots of
unity, whereas Bol tended to use more trigonometry (integer relations between sines
of rational multiples of π). Also, we relegate much of the work to the computer,
whereas Bol had to enumerate the many cases by hand. The task is so formidable
that it is amazing to us that Bol was able to complete it, and at the same time not
so surprising that it would contain a few errors!

Bol’s work was largely forgotten. In fact, even we were not aware of his paper
until after deriving the formulas ourselves. Many other authors in the interim solved
special cases of the problem. Steinhaus [14] posed the problem of showing that no
three diagonals meet internally when n is prime, and this was solved by Croft and
Fowler [3]. (Steinhaus also mentions this in [13], which includes a picture of the
23-gon and its diagonals.) In the 1960s, Heineken [6] gave a delightful argument
which generalized this to all odd n, and later he [7] and Harborth [4] independently
enumerated all three-diagonal intersections for n not divisible by 6.

The classification of three-diagonal intersections also solves Colin Tripp’s prob-
lem [15] of enumerating “adventitious quadrilaterals,” those convex quadrilaterals for
which the angles formed by sides and diagonals are all rational multiples of π. See
Rigby’s paper [11] or the summary [10] for details. Rigby, who was aware of Bol’s
work, mentions that Monsky and Pleasants also each independently classified all three-
diagonal intersections of regular n-gons. Rigby’s papers partially solve Tripp’s further
problem of proving the existence of all adventitious quadrangles using only elementary
geometry; i.e., without resorting to trigonometry.

All the questions so far have been in the Euclidean plane. What happens if
we count the interior intersections made by the diagonals of a hyperbolic regular
n-gon? The answers are exactly the same, as pointed out in [11], because if we
use Beltrami’s representation of points of the hyperbolic plane by points inside a
circle in the Euclidean plane, we can assume that the center of the hyperbolic n-
gon corresponds to the center of the circle, and then the hyperbolic n-gon with its
diagonals looks in the model exactly like a Euclidean regular n-gon with its diagonals.
It is equally easy to see that the answers will be the same in elliptic geometry.

2. When do three diagonals meet.? We now begin our derivations of the
formulas for I(n) andR(n). The first step will be to find a criterion for the concurrency
of three diagonals. Let A,B,C,D,E, F be six distinct points in order on a unit circle
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dividing up the circumference into arc lengths u, x, v, y, w, z and assume that the three
chords AD,BE,CF meet at P (see Figure 2.1).

By similar triangles, AF/CD = PF/PD, BC/EF = PB/PF , DE/AB =
PD/PB. Multiplying these together yields

(AF ·BC ·DE)/(CD · EF ·AB) = 1,

and so

sin(u/2) sin(v/2) sin(w/2) = sin(x/2) sin(y/2) sin(z/2).(2.1)

Conversely, suppose six distinct points A,B,C,D,E, F partition the circumfer-
ence of a unit circle into arc lengths u, x, v, y, w, z and suppose that (2.1) holds. Then
the three diagonals AD,BE,CF meet in a single point which we see as follows. Let
lines AD and BE intersect at P0. Form the line through F and P0 and let C ′ be the
other intersection point of FP0 with the circle. This partitions the circumference into
arc lengths u, x, v′, y′, w, z. As shown above, we have

sin(u/2) sin(v′/2) sin(w/2) = sin(x/2) sin(y′/2) sin(z/2),

and since we are assuming that (2.1) holds for u, x, v, y, w, z we get

sin(v′/2)

sin(y′/2)
=

sin(v/2)

sin(y/2)
.

Let α = v + y = v′ + y′. Substituting v = α− y, v′ = α− y′ above we get

sin(α/2) cos(y′/2)− cos(α/2) sin(y′/2)

sin(y′/2)
=

sin(α/2) cos(y/2)− cos(α/2) sin(y/2)

sin(y/2)
,
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and so

cot(y′/2) = cot(y/2).

Now 0 < α/2 < π, so y = y′ and hence C = C ′. Thus, the three diagonals
AD,BE,CF meet at a single point.

So (2.1) gives a necessary and sufficient condition (in terms of arc lengths) for the
chords AD,BE,CF formed by six distinct points A,B,C,D,E, F on a unit circle to
meet at a single point. In other words, to give an explicit answer to the question in
the section title, we need to characterize the positive rational solutions to

sin(πU) sin(πV ) sin(πW ) = sin(πX) sin(πY ) sin(πZ)(2.2)

U + V +W +X + Y + Z = 1.

(Here U = u/(2π), etc.) This is a trigonometric diophantine equation in the sense
of [2], where it is shown that in theory, there is a finite computation which reduces
the solution of such equations to ordinary diophantine equations. The solutions to
the analogous equation with only two sines on each side are listed in [9].

If in (2.2) we substitute sin(θ) = (eiθ − e−iθ)/(2i), multiply both sides by (2i)3,
and expand, we get a sum of eight terms on the left equaling a similar sum on the
right, but two terms on the left cancel with two terms on the right since U +V +W =
1− (X + Y + Z), leaving

−eiπ(V+W−U) + e−iπ(V+W−U) − eiπ(W+U−V )

+e−iπ(W+U−V ) − eiπ(U+V−W ) + e−iπ(U+V−W )

= −eiπ(Y+Z−X) + e−iπ(Y+Z−X) − eiπ(Z+X−Y )

+e−iπ(Z+X−Y ) − eiπ(X+Y−Z) + e−iπ(X+Y−Z).

If we move all terms to the left-hand side, convert minus signs into e−iπ, multiply by
i = eiπ/2, and let

α1 = V +W − U − 1/2,

α2 = W + U − V − 1/2,

α3 = U + V −W − 1/2,

α4 = Y + Z −X + 1/2,

α5 = Z +X − Y + 1/2,

α6 = X + Y − Z + 1/2,

we obtain

6∑
j=1

eiπαj +
6∑

j=1

e−iπαj = 0,(2.3)

in which
∑6

j=1 αj = U +V +W +X+Y +Z = 1. Conversely, given rational numbers
α1, α2, α3, α4, α5, α6 (not necessarily positive) which sum to 1 and satisfy (2.3), we
can recover U, V,W,X, Y, Z, (for example, U = (α2 +α3)/2+1/2), but we must check
that they turn out positive.
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3. Zero as a sum of 12 roots of unity. In order to enumerate the solutions
to (2.2), we are led, as in the end of the last section, to classify the ways in which 12
roots of unity can sum to zero. More generally, we will study relations of the form

k∑
i=1

aiηi = 0,(3.1)

where the ai are positive integers, and the ηi are distinct roots of unity. (These
have been studied previously by Schoenberg [12], Mann [8], Conway and Jones [2],

and others.) We call w(S) =
∑k

i=1 ai the weight of the relation S. (So we shall be
particularly interested in relations of weight 12.) We shall say the relation (3.1) is
minimal if it has no nontrivial subrelation; i.e., if

k∑
i=1

biηi = 0, ai ≥ bi ≥ 0

implies either bi = ai for all i or bi = 0 for all i. By induction on the weight, any
relation can be represented as a sum of minimal relations (but the representation need
not be unique).

Let us give some examples of minimal relations. For each n ≥ 1, let ζn =
exp(2πi/n) be the standard primitive nth root of unity. For each prime p, let Rp

be the relation

1 + ζp + ζ2
p + · · ·+ ζp−1

p = 0.

Its minimality follows from the irreducibility of the cyclotomic polynomial. Also,
we can “rotate” any relation by multiplying through by an arbitrary root of unity
to obtain a new relation. In fact, Schoenberg [12] proved that every relation (even
those with possibly negative coefficients) can be obtained as a linear combination
with positive and negative integral coefficients of the Rp and their rotations. But we
are only allowing positive combinations, so it is not clear that these are enough to
generate all relations.

In fact it is not even true! In other words, there are other minimal relations. If
we subtract R3 from R5, cancel the 1’s and incorporate the minus signs into the roots
of unity, we obtain a new relation

ζ6 + ζ−1
6 + ζ5 + ζ2

5 + ζ3
5 + ζ4

5 = 0,(3.2)

which we will denote (R5 : R3). In general, if S and T1, T2, . . . , Tj are relations, we will
use the notation (S : T1, T2, . . . , Tj) to denote any relation obtained by rotating the Ti
so that each shares exactly one root of unity with S which is different for each i, sub-
tracting them from S, and incorporating the minus signs into the roots of unity. For
notational convenience, we will write (R5 : 4R3) for (R5 : R3, R3, R3, R3), for example.
Note that although (R5 : R3) denotes unambiguously (up to rotation) the relation
listed in (3.2), in general there will be many relations of type (S : T1, T2, . . . , Tj) up
to rotational equivalence. Let us also remark that including R2’s in the list of T ’s has
no effect.

It turns out that recursive use of the construction above is enough to generate all
minimal relations of weight up to 12. These are listed in Table 3.1. The completeness
and correctness of the table will be proved in Theorem 3.1 below. Although there are
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Table 3.1
The 107 minimal relations of weight up to 12.

Weight Relation type Number of relations of that type

2 R2 1
3 R3 1
5 R5 1
6 (R5 : R3) 1
7 (R5 : 2R3) 2

R7 1
8 (R5 : 3R3) 2

(R7 : R3) 1
9 (R5 : 4R3) 1

(R7 : 2R3) 3
10 (R7 : 3R3) 5

(R7 : R5) 1
11 (R7 : 4R3) 5

(R7 : R5, R3) 6
(R7 : (R5 : R3)) 6

R11 1
12 (R7 : 5R3) 3

(R7 : R5, 2R3) 15
(R7 : (R5 : R3), R3) 36
(R7 : (R5 : 2R3)) 14

(R11 : R3) 1

107 minimal relations up to rotational equivalence, often the minimal relations within
one of our classes are Galois conjugates. For example, the two minimal relations of
type (R5 : 2R3) are conjugate under Gal(Q(ζ15)/Q), as pointed out in [8].

The minimal relations with k ≤ 7 (k defined as in (3.1)) had been previously
catalogued in [8], and those with k ≤ 9 in [2]. In fact, the ai in these never exceed 1,
so these also have weight less than or equal to 9.

Theorem 3.1. Table 3.1 is a complete listing of the minimal relations of weight
up to 12 (up to rotation).

The following three lemmas will be needed in the proof.

Lemma 3.2. If the relation (3.1) is minimal, then there are distinct primes
p1 < p2 < · · · < ps ≤ k so that each ηi is a p1p2 · · · ps-th root of unity, after the
relation has been suitably rotated.

Proof. This is a corollary of Theorem 1 in [8].

Lemma 3.3. The only minimal relations (up to rotation) involving only the 2p-th
roots of unity, for p prime, are R2 and Rp.

Proof. Any 2p-th root of unity is of the form ±ζi. If both +ζi and −ζi occurred
in the same relation, then R2 occurs as a subrelation. So the relation has the form

p−1∑
i=0

ciζ
i
p = 0.

By the irreducibility of the cyclotomic polynomial, {1, ζp, . . . , ζp−1
p } are independent

over Q save for the relation that their sum is zero, so all the ci must be equal. If they
are all positive, then Rp occurs as a subrelation. If they are all negative, then Rp

rotated by -1 (i.e., 180 degrees) occurs as a subrelation.

Lemma 3.4. Suppose S is a minimal relation, and p1 < p2 < · · · < ps are picked
as in Lemma 3.2 with p1 = 2 and ps minimal. If w(S) < 2ps, then S (or a rotation)
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is of the form (Rps : T1, T2, . . . , Tj) where the Ti are minimal relations not equal to
R2 and involving only p1p2 · · · ps−1-th roots of unity, such that j < ps and

j∑
i=1

[w(Ti)− 2] = w(S)− ps.

Proof. Since every p1p2 · · · ps-th root of unity is uniquely expressible as the prod-
uct of a p1p2 · · · ps−1-th root of unity and a ps-th root of unity, the relation can be
rewritten as

ps−1∑
i=0

fiζ
i
ps = 0,(3.3)

where each fi is a sum of p1p2 · · · ps−1-th roots of unity, which we will think of as a
sum (not just its value).

Let Km be the field obtained by adjoining the p1p2 · · · pm-th roots of unity to Q.
Since [Ks : Ks−1] = φ(p1p2 · · · ps)/φ(p1p2 · · · ps−1) = φ(ps) = ps − 1, the only linear
relation satisfied by 1, ζps , . . . , ζ

ps−1
ps over Ks−1 is that their sum is zero. Hence (3.3)

forces the values of the fi to be equal.
The total number of roots of unity in all the fi’s is w(S) < 2ps, so by the

pigeonhole principle, some fi is zero or consists of a single root of unity. In the former
case, each fj sums to zero, but at least two of these sums contain at least one root
of unity, since otherwise s was not minimal, so one of these sums gives a subrelation
of S, contradicting its minimality. So some fi consists of a single root of unity. By
rotation, we may assume f0 = 1. Then each fi sums to 1, and if it is not simply the
single root of unity 1, the negatives of the roots of unity in fi together with 1 form
a relation Ti which is not R2 and involves only p1p2 · · · ps−1-th roots of unity, and it
is clear that S is of type (Rps : Ti1 , Ti2 , . . . , Tij ). If one of the T ’s were not minimal,
then it could be decomposed into two nontrivial subrelations, one of which would not
share a root of unity with the Rps , and this would give a nontrivial subrelation of S,
contradicting the minimality of S. Finally, w(S) must equal the sum of the weights
of Rps and the T ’s, minus 2j to account for the roots of unity that are cancelled in
the construction of (Rps : Ti1 , Ti2 , . . . , Tij ).

Proof of Theorem 3.1. We will content ourselves with proving that every relation
of weight up to 12 can be decomposed into a sum of the ones listed in Table 3.1, it
then being straightforward to check that the entries in the table are distinct and that
none of them can be further decomposed into relations higher up in the table.

Let S be a minimal relation with w(S) ≤ 12. Pick p1 < p2 < · · · < ps as in
Lemma 3.2 with p1 = 2 and ps minimal. In particular, ps ≤ 12, so ps = 2,3,5,7, or 11.

Case 1. ps ≤ 3.
Here the only minimal relations are R2 and R3, by Lemma 3.3.
Case 2. ps = 5.
If w(S) < 10, then we may apply Lemma 3.4 to deduce that S is of type (R5 :

T1, T2, . . . , Tj). Each T must be R3 (since ps−1 ≤ 3), and j = w(S) − 5 by the last
equation in Lemma 3.4. The number of relations of type (R5 : jR3), up to rotation,
is
(
5
j

)
/5. (There are

(
5
j

)
ways to place the R3’s, but one must divide by 5 to avoid

counting rotations of the same relation.)
If 10 ≤ w(S) ≤ 12, then write S as in (3.3). If some fi consists of zero or one

roots of unity, then the argument of Lemma 3.4 applies, and S must be of the form
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(R5 : jR3) with j ≤ 4, which contradicts the last equation in the lemma. Otherwise,
the numbers of (sixth) roots of unity occurring in f0, f1, f2, f3, f4 must be 2,2,2,2,2 or
2,2,2,2,3 or 2,2,2,3,3 or 2,2,2,2,4 in some order. So the common value of the fi is a
sum of two sixth roots of unity. By rotating by a sixth root of unity, we may assume
this value is 0, 1, 1 + ζ6, or 2. If it is 0 or 1, then the arguments in the proof of
Lemma 3.4 apply. Next assume it is 1+ζ6. The only way two sixth roots of unity can
sum to 1 + ζ6 is if they are 1 and ζ6 in some order. The only way three sixth roots of
unity can sum to 1 + ζ6 is if they are 1, 1, ζ2

6 or ζ6, ζ6, ζ
−1
6 . So if the numbers of roots

of unity occurring in f0, f1, f2, f3, f4 are 2,2,2,2,2 or 2,2,2,2,3, then S will contain R5

or its rotation by ζ6, and the same will be true for 2,2,2,3,3 unless the two fi with
three terms are 1 + 1 + ζ2

6 and ζ6 + ζ6 + ζ−1
6 , in which case S contains (R5 : R3). It

is impossible to write 1 + ζ6 as a sum of sixth roots of unity without using 1 or ζ6, so
if the numbers are 2,2,2,2,4, then again S contains R5 or its rotation by ζ6. Thus we
get no new relations where the common value of the fi is 1 + ζ6. Lastly, assume this
common value is 2. Any representation of 2 as a sum of four or fewer sixth roots of
unity contains 1, unless it is ζ6 + ζ6 + ζ−1

6 + ζ−1
6 , so S will contain R5 except possibly

in the case where f0, f1, f2, f3, f4 are 2,2,2,2,4 in some order, and the 4 is as above.
But in this final remaining case, S contains (R5 : R3). Thus there are no minimal
relations S with ps = 5 and 10 ≤ w(S) ≤ 12.

Case 3. ps = 7.
Since w(S) ≤ 12 < 2 · 7, we can apply Lemma 3.4. Now the sum of w(Ti)− 2 is

required to be w(S)− 7 which is at most 5, so the T ’s that may be used are R3, R5,
(R5 : R3), and the two of type (R5 : 2R3), for which weight minus 2 equals 1, 3, 4,
and 5, respectively. So the problem is reduced to listing the partitions of w(S) − 7
into parts of size 1, 3, 4, and 5.

If all parts used are 1, then we get (R7 : jR3) with j = w(S) − 7, and there are(
7
j

)
/7 distinct relations in this class. Otherwise exactly one part of size 3, 4, or 5 is

used, and the possibilities are as follows. If a part of size 3 is used, we get (R7 : R5),
(R7 : R5, R3), or (R7 : R5, 2R3), of weights 10, 11, and 12, respectively. By rotation,
the R5 may be assumed to share the 1 in the R7, and then there are

(
6
i

)
ways to

place the R3’s where i is the number of R3’s. If a part of size 4 is used, we get
(R7 : (R5 : R3)) of weight 11 or (R7 : (R5 : R3), R3) of weight 12. By rotation, the
(R5 : R3) may be assumed to share the 1 in the R7, but any of the six roots of unity
in the (R5 : R3) may be rotated to be 1. The R3 can then overlap any of the other
six seventh roots of unity. Finally, if a part of size 5 is used, we get (R7 : (R5 : 2R3)).
There are two different relations of type (R5 : 2R3) that may be used, and each has
seven roots of unity which may be rotated to be the 1 shared by the R7, so there are
14 of these all together.

Case 4. ps = 11.
Applying Lemma 3.4 shows that the only possibilities are R11 of weight 11 and

(R11 : R3) of weight 12.
Now a general relation of weight 12 is a sum of the minimal ones of weight up to 12,

and we can classify them according to the weights of the minimal relations, which form
a partition of 12 with no parts of size 1 or 4. We will use the notation (R5 : 2R3)+2R3,
for example, to denote a sum of three minimal relations of type (R5 : 2R3), R3, and
R3. Table 3.2 lists the possibilities. The parts may be rotated independently, so any
category involving more than one minimal relation contains infinitely many relations,
even up to rotation (of the entire relation). Also, the categories are not mutually
exclusive because of the nonuniqueness of the decomposition into minimal relations.
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Table 3.2
The types of relations of weight 12.

Partition Relation type

12 (R7 : 5R3)
(R7 : R5, 2R3)

(R7 : (R5 : R3), R3)
(R7 : (R5 : 2R3))

(R11 : R3)
10,2 (R7 : 3R3) +R2

(R7 : R5) +R2

9,3 (R5 : 4R3) +R3

(R7 : 2R3) +R3

8,2,2 (R5 : 3R3) + 2R2

(R7 : R3) + 2R2

Partition Relation type

7,5 (R5 : 2R3) +R5

R7 +R5

7,3,2 (R5 : 2R3) +R3 +R2

R7 +R3 +R2

6,6 2(R5 : R3)
6,3,3 (R5 : R3) + 2R3

6,2,2,2 (R5 : R3) + 3R2

5,5,2 2R5 +R2

5,3,2,2 R5 +R3 + 2R2

3,3,3,3 4R3

3,3,2,2,2 2R3 + 3R2

2,2,2,2,2,2 6R2

4. Solutions to the trigonometric equation. Here we use the classification
of the previous section to give a complete listing of the solutions to the trigonometric
equation (2.2). There are some obvious solutions to (2.2), namely those in which
U, V,W are arbitrary positive rational numbers with sum 1/2, and X,Y, Z are a
permutation of U, V,W . We will call these the trivial solutions, even though the
three-diagonal intersections they give rise to can look surprising. See Figure 4.1 for
an example on the 16-gon.

The twelve roots of unity occurring in (2.3) are not arbitrary; therefore we must
go through Table 3.2 to see which relations are of the correct form, i.e., expressible
as a sum of six roots of unity and their inverses, where the product of the six is −1.
First let us prove a few lemmas that will greatly reduce the number of cases.

Lemma 4.1. Let S be a relation of weight k ≤ 12. Suppose S is stable under
complex conjugation (i.e., under ζ 7→ ζ−1). Then S has a complex conjugation-stable
decomposition into minimal relations; i.e., each minimal relation occurring is itself
stable under complex conjugation or can be paired with another minimal relation which
is its complex conjugate.

Proof. We will use induction on k. If S is minimal, there is nothing to prove.
Otherwise let T be a (minimal) subrelation of S of minimal weight, so T is of weight
at most 6. The complex conjugate T of T is another minimal relation in S. If they do
not intersect, then we take the decomposition of S into T , T , and a decomposition of
S \ (T ∪ T ) given by the inductive hypothesis. If they do overlap and the weight of T
is at most 5, then T = Rp for some prime p, and the fact that T intersects T implies
that T = T , and we get the result by applying the inductive hypothesis to S \ T .

The only remaining case is where S is of type 2(R5 : R3). If the two (R5 : R3)’s
are not conjugate to each other, then for each there is a root of unity ζ such that ζ
and ζ−1 occur in that (rotation of) (R5 : R3). The quotient ζ2 is then a 30th root
of unity, so ζ itself is a 60th root of unity. Thus each (R5 : R3) is a rotation of the
“standard” (R5 : R3) as in (3.2) by a 60th root of unity, and we let Mathematica
check the 602 possibilities.

We do not know if the preceding lemma holds for relations of weight greater than
12.

Lemma 4.2. Let S be a minimal relation of type (Rp : T1, . . . , Tj), p ≥ 5,
where the Ti involve roots of unity of order prime to p, and j < p. If S is stable
under complex conjugation, then the particular rotation of Rp from which the Ti were
“subtracted” is also stable (and hence so is the collection of the relations subtracted).
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Fig. 4.1. A surprising trivial solution for the 16-gon. The intersection point does not lie on
any of the 16 lines of symmetry of the 16-gon.

Proof. Let ` be the product of the orders of the roots of unity in all the Ti. The
elements of S in the original Rp can be characterized as those terms of S that are
unique in their coset of µ` (the `th roots of unity), and this condition is stable under
complex conjugation, so the set of terms of the Rp that were not subtracted is stable.
Since j < p, we can pick one such term ζ. Then the quotient ζ/ζ−1 is a pth root of
unity, so ζ is a 2p-th root of unity, and hence the Rp containing it is stable.

Corollary 4.3. A relation of type (R7 : (R5 : R3), R3) cannot be stable under
complex conjugation.

Even with these restrictions, a very large number of cases remain, so we perform
the calculation using Mathematica. Each entry of Table 3.2 represents a finite number
of linearly parameterized (in the exponents) families of relations of weight 12. For each
parameterized family, we check to see what additional constraints must be put on the
parameters for the relation to be of the form of (2.3). Next, for each parameterized
family of solutions to (2.3), we calculate the corresponding U, V,W,X, Y, Z and throw
away solutions in which some of these are nonpositive. Finally, we sort U, V,W and
X,Y, Z and interchange the two triples if U > X in order to count the solutions only
up to symmetry.

The results of this computation are recorded in the following theorem.

Theorem 4.4. The positive rational solutions to (2.2), up to symmetry, can be
classified as follows:

1. The trivial solutions, which arise from relations of type 6R2.
2. Four one-parameter families of solutions, listed in Table 4.1. The first arises

from relations of type 4R3, and the other three arise from relations of type
2R3 + 3R2.

3. Sixty-five “sporadic” solutions, listed in Table 4.2, which arise from the other
types of weight 12 relations listed in Table 3.2.

The only duplications in this list are that the second family of Table 4.1 gives a trivial
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Table 4.1
The nontrivial infinite families of solutions to (2.2).

U V W X Y Z Range

1/6 t 1/3− 2t 1/3 + t t 1/6− t 0 < t < 1/6
1/6 1/2− 3t t 1/6− t 2t 1/6 + t 0 < t < 1/6
1/6 1/6− 2t 2t 1/6− 2t t 1/2 + t 0 < t < 1/12

1/3− 4t t 1/3 + t 1/6− 2t 3t 1/6 + t 0 < t < 1/12

solution for t = 1/12, the first and fourth families of Table 4.1 give the same solution
when t = 1/18 in both, and the second and fourth families of Table 4.1 give the same
solution when t = 1/24 in both.

Some explanation of the tables is in order. The last column of Table 4.1 gives
the allowable range for the rational parameter t. The entries of Table 4.2 are sorted
according to the least common denominator of U, V,W,X, Y, Z, which is also the least
n for which diagonals of a regular n-gon can create arcs of the corresponding lengths.
The relation type from which each solution derives is also given. The reason 11 does
not appear in the least common denominator for any sporadic solution is that the
relation (R11 : R3) cannot be put in the form of (2.3) with the αj summing to 1, and
hence leads to no solutions of (2.2). (Several other types of relations also give rise to
no solutions.)

Tables 4.1 and 4.2 are the same as Bol’s tables at the bottom of page 40 and on
page 41 of [1], in a slightly different format.

The arcs cut by diagonals of a regular n-gon have lengths which are multiples of
2π/n, so U , V , W , X, Y and Z corresponding to any configuration of three diagonals
meeting must be multiples of 1/n. With this additional restriction, trivial solutions
to (2.2) occur only when n is even (and at least 6). Solutions within the infinite
families of Table 4.1 occur when n is a multiple of 6 (and at least 12), and there
t must be a multiple of 1/n. Sporadic solutions with least common denominator d
occur if and only if n is a multiple of d.

5. Intersections of more than three diagonals. Now that we know the con-
figurations of three diagonals meeting, we can check how they overlap to produce
configurations of more than three diagonals meeting. We will disregard configura-
tions in which the intersection point is the center of the n-gon, since these are easily
described: there are exactly n/2 diagonals (diameters) through the center when n is
even, and none otherwise.

When k diagonals meet, they form 2k arcs, whose lengths we will measure as
a fraction of the whole circumference (so they will be multiples of 1/n) and list in
counterclockwise order. (Warning: this is different from the order used in Tables 4.1
and 4.2.) The least common denominator of the numbers in this list will be called the
denominator of the configuration. It is the least n for which the configuration can be
realized as diagonals of a regular n-gon.

Lemma 5.1. If a configuration of k ≥ 2 diagonals meeting at an interior point
other than the center has denominator dividing d, then any configuration of diagonals
meeting at that point has denominator dividing LCM(2d, 3).

Proof. We may assume k = 2. Any other configuration of diagonals through
the intersection point is contained in the union of configurations obtained by adding
one diagonal to the original two, so we may assume the final configuration consists of
three diagonals, two of which were the original two. Now we need only go through
our list of three-diagonal intersections.
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Table 4.2
The 65 sporadic solutions to (2.2).

Denominator U V W X Y Z Relation type

30 1/10 2/15 3/10 2/15 1/6 1/6 2(R5 : R3)
1/15 1/15 7/15 1/15 1/10 7/30
1/30 7/30 4/15 1/15 1/10 3/10
1/30 1/10 7/15 1/15 1/15 4/15
1/30 1/15 19/30 1/15 1/10 1/10
1/15 1/6 4/15 1/10 1/10 3/10 (R5 : R3) + 2R3

1/15 2/15 11/30 1/10 1/6 1/6
1/30 1/6 13/30 1/10 2/15 2/15
1/30 1/30 7/10 1/30 1/15 2/15
1/30 7/30 3/10 1/15 2/15 7/30 R5 + R3 + 2R2

1/30 1/6 11/30 1/15 1/10 4/15
1/30 1/10 13/30 1/30 2/15 4/15
1/30 1/15 8/15 1/30 1/10 7/30

42 1/14 5/42 5/14 2/21 5/42 5/21 (R7 : 5R3)
1/21 4/21 13/42 1/14 1/6 3/14
1/42 3/14 5/14 1/21 1/6 4/21
1/42 1/6 19/42 1/14 2/21 4/21
1/42 1/6 13/42 1/21 1/14 8/21
1/42 1/21 13/21 1/42 1/14 3/14

60 1/20 1/12 29/60 1/15 1/10 13/60 2(R5 : R3)
1/20 1/12 9/20 1/15 1/12 4/15
1/20 1/12 5/12 1/20 1/10 3/10
1/60 4/15 3/10 1/20 1/12 17/60
1/60 13/60 9/20 1/12 1/10 2/15
1/60 13/60 5/12 1/20 2/15 1/6
1/12 1/6 17/60 2/15 3/20 11/60 (R5 : 3R3) + 2R2

1/12 2/15 19/60 1/10 3/20 13/60
1/15 11/60 13/60 1/12 1/10 7/20
1/20 11/60 3/10 1/12 7/60 4/15
1/20 1/10 23/60 1/15 1/12 19/60
1/30 7/60 19/60 1/20 1/15 5/12
1/30 1/12 7/12 1/15 1/10 2/15
1/30 1/20 11/20 1/30 1/15 4/15
1/60 3/10 7/20 1/12 7/60 2/15
1/60 4/15 23/60 1/12 1/10 3/20
1/60 7/30 5/12 1/15 7/60 3/20
1/60 13/60 11/30 1/20 1/12 4/15
1/60 1/6 31/60 1/15 1/10 2/15
1/60 1/6 5/12 1/20 1/15 17/60
1/60 2/15 9/20 1/30 1/12 17/60
1/60 1/10 31/60 1/30 1/15 4/15

84 1/12 3/14 19/84 11/84 13/84 4/21 (R7 : R3) + 2R2

1/14 11/84 23/84 1/12 2/21 29/84
1/21 13/84 23/84 1/14 1/12 31/84
1/42 1/12 7/12 1/21 1/14 4/21
1/84 25/84 5/14 5/84 1/12 4/21
1/84 5/21 5/12 5/84 1/14 17/84
1/84 3/14 37/84 1/21 1/12 17/84
1/84 1/6 43/84 1/21 1/14 4/21

90 1/18 13/90 7/18 11/90 2/15 7/45 (R5 : R3) + 2R3

1/45 19/90 16/45 1/18 1/10 23/90
1/90 23/90 31/90 2/45 1/15 5/18
1/90 17/90 47/90 1/18 4/45 2/15

120 13/120 3/20 31/120 2/15 19/120 23/120 (R5 : R3) + 3R2

1/12 19/120 29/120 1/10 13/120 37/120
1/20 23/120 29/120 1/15 13/120 41/120
1/60 13/120 73/120 1/20 1/12 2/15
1/120 7/20 43/120 7/120 11/120 2/15
1/120 3/10 49/120 7/120 1/12 17/120
1/120 4/15 53/120 1/20 11/120 17/120
1/120 13/60 61/120 1/20 1/12 2/15

210 1/15 41/210 8/35 1/14 31/210 61/210 (R7 : (R5 : 2R3))
13/210 1/10 83/210 1/14 4/35 9/35
1/35 2/15 97/210 1/14 17/210 47/210
1/210 3/14 121/210 11/210 1/15 3/35
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It can be checked (using Mathematica) that removing any diagonal from a spo-
radic configuration of three intersecting diagonals yields a configuration whose de-
nominator is the same or half as much, except that it is possible that removing a
diagonal from a three-diagonal configuration of denominator 210 or 60 yields one of
denominator 70 or 20, respectively, which proves the desired result for these cases.
The additive group generated by 1/6 and the normalized arc lengths of a configura-
tion obtained by removing a diagonal from a configuration corresponding to one of
the families of Table 4.1, contains 2t where t is the parameter, (as can be verified
using Mathematica again), which means that adding that third diagonal can at most
double the denominator (and throw in a factor of 3, if it isn’t already there). Similarly,
it is easily checked (even by hand), that the subgroup generated by the normalized
arc lengths of a configuration obtained by removing one of the three diagonals of a
configuration corresponding to a trivial solution to (2.2), but with intersection point
not the center, contains twice the arc lengths of the original configuration.

Corollary 5.2. If a configuration of three or more diagonals meeting includes
three forming a sporadic configuration, then its denominator is 30, 42, 60, 84, 90, 120,
168, 180, 210, 240, or 420.

Proof. Combine the lemma with the list of denominators of sporadic configura-
tions listed in Table 4.2.

For k ≥ 4, a list of 2k positive rational numbers summing to 1 arises this way
if and only if the lists of length 2k − 2, which would arise by removing the first or
second diagonal, actually correspond to k − 1 intersecting diagonals. Suppose k = 4.
If we specify the sporadic configuration or parameterized family of configurations that
arise when we remove the first or second diagonal, we get a set of linear conditions
on the eight arc lengths. Corollary 5.2 tells us that we get a configuration with
denominator among 30, 42, 60, 84, 90, 120, 168, 180, 210, 240, and 420, if one of
these two is sporadic. Using Mathematica to perform this computation for the rest
of the possibilities in Theorem 4.4 shows that the other four-diagonal configurations,
up to rotation and reflection, fall into 12 one-parameter families, which are listed in
Table 5.1 by the eight normalized arc lengths and the range for the parameter t, with
a finite number of exceptions of denominators among 12, 18, 24, 30, 36, 42, 48, 60,
84, and 120.

We will use a similar argument when k = 5. Any five-diagonal configuration con-
taining a sporadic three-diagonal configuration will again have denominator among
30, 42, 60, 84, 90, 120, 168, 180, 210, 240, and 420. Any other five-diagonal con-
figuration containing one of the exceptional four-diagonal configurations will have
denominator among 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, 96, 120, 168, and 240, by
Lemma 5.1. Finally, another Mathematica computation shows that the one-parameter
families of four-diagonal configurations overlap to produce the one-parameter families
listed (up to rotation and reflection) in Table 5.2, and a finite number of exceptions
of denominators among 18, 24, and 30.

For k = 6, any six-diagonal configuration containing a sporadic three-diagonal
configuration will again have denominator among 30, 42, 60, 84, 90, 120, 168, 180,
210, 240, and 420. Any six-diagonal configuration containing one of the exceptional
four-diagonal configurations will have denominator among 12, 18, 24, 30, 36, 42, 48,
60, 72, 84, 96, 120, 168, and 240. Any six-diagonal configuration containing one of the
exceptional five-diagonal configurations will have denominator among 18, 24, 30, 36,
48, and 60. Another Mathematica computation shows that the one-parameter families
of five-diagonal configurations cannot combine to give a six-diagonal configuration.
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of five-diagonal configurations cannot combine to give a six-diagonal configuration.
Finally for k ≥ 7, any k-diagonal configuration must contain an exceptional con-

figuration of three, four, or five diagonals, and hence by Lemma 5.1 has denominator
among 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 120, 168, 180, 210, 240, and 420.

We summarize the results of this section in the following.
Proposition 5.3. The configurations of k ≥ 4 diagonals meeting at a point not

the center, up to rotation and reflection, fall into the one-parameter families listed in
Tables 5.1 and 5.2, with finitely many exceptions (for fixed k) of denominators among
12, 18, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 120, 168, 180, 210, 240, and 420.

In fact, many of the numbers listed in the proposition do not actually occur as
denominators of exceptional configurations. For example, it will turn out that the
only denominator greater than 120 that occurs is 210.

6. The formula for intersection points. Let ak(n) denote the number of
points inside the regular n-gon other than the center where exactly k lines meet. Let
bk(n) denote the number of k-tuples of diagonals which meet at a point inside the
n-gon other than the center. Each interior point at which exactly m diagonals meet
gives rise to

(
m
k

)
such k-tuples, so we have the relationship

bk(n) =
∑
m≥k

(
m

k

)
am(n).(6.1)

Since every four distinct vertices of the n-gon determine one pair of diagonals which
intersect inside, the number of such pairs is exactly

(
n
4

)
, but if n is even, then

(
n/2
2

)
of these are pairs which meet at the center, so

b2(n) =

(
n

4

)
−
(
n/2

2

)
δ2(n).(6.2)

(Recall that δm(n) is defined to be 1 if n is a multiple of m, and 0 otherwise.)
We will use the results of the previous two sections to deduce the form of bk(n)

and then the form of ak(n). To avoid having to repeat the following, let us make a
definition.

Definition 6.1. A function on integers n ≥ 3 will be called tame if it is a linear
combination (with rational coefficients) of the functions n3, n2, n, 1, n2δ2(n), nδ2(n),
δ2(n), δ4(n), nδ6(n), δ6(n), δ12(n), δ18(n), δ24(n), δ24(n− 6), δ30(n), δ36(n), δ42(n),
δ48(n), δ60(n), δ72(n), δ84(n), δ90(n), δ96(n), δ120(n), δ168(n), δ180(n), δ210(n), and
δ420(n).

Proposition 6.2. For each k ≥ 2, the function bk(n)/n on integers n ≥ 3 is
tame.

Proof. The case k = 2 is handled by (6.2), so assume k ≥ 3. Each list of
2k normalized arc lengths, as in section 5, corresponding to a configuration of k
diagonals meeting at a point other than the center, considered up to rotation (but
not reflection), contributes n to bk(n). (There are n places to start measuring the arcs
from, and these n configurations are distinct, because the corresponding intersection
points differ by rotations of multiples of 2π/n, and by assumption they are not at the
center.) So bk(n)/n counts such lists.

Suppose k = 3. When n is even, the family of trivial solutions to the trigonometric
equation (2.2) has U = a/n, V = b/n, W = c/n, where a, b, and c are positive integers
with sum n/2, and X, Y , and Z are some permutation of U , V , W . Each permutation
gives rise to a two-parameter family of six-long lists of arc lengths, and the number
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of lists within each family is the number of partitions of n/2 into three positive parts,
which is a quadratic polynomial in n. Similarly each family of solutions in Table 4.1
gives rise to a number of one-parameter families of lists, when n is a multiple of 6,
each containing dn/6e − 1 or dn/12e − 1 lists. These functions of n (extended to be
0 when 6 does not divide n) are expressible as a linear combination of nδ6(n), δ6(n),
and δ12(n). Finally, the sporadic solutions to 2.2 give rise to a finite number of lists,
having denominators among 30, 42, 60, 84, 90, 120, and 210, so their contribution to
b3(n)/n is a linear combination of δ30(n), . . . , δ210(n).

But these families of lists overlap, so we must use the principle of inclusion-
exclusion to count them properly. To show that the result is a tame function, it
suffices to show that the number of lists in any intersection of these families is a tame
function. When two of the trivial families overlap but do not coincide, they overlap
where two of the a, b, and c above are equal, and the corresponding lists lie in one of the
one-parameter families (t, t, t, t, 1/2− 2t, 1/2− 2t) or (t, t, t, 1/2− 2t, t, 1/2− 2t) (with
0 < t < 1/4), each of which contains dn/4e−1 lists (for n even). This function of n is
a combination of nδ2(n), δ2(n), and δ4(n); hence it is tame. Any other intersection of
the infinite families must contain the intersection of two one-parameter families which
are among the two above or arise from Table 4.1, and a Mathematica computation
shows that such an intersection consists of at most a single list of denominator among
6, 12, 18, 24, and 30. And, of course, any intersection involving a single sporadic
list can contain at most that sporadic list. Thus the number of lists within any
intersection is a tame function of n. Finally, we must delete the lists which correspond
to configurations of diagonals meeting at the center. These are the lists within the
trivial two-parameter family (t, u, 1/2− t−u, t, u, 1/2− t−u), so their number is also
a tame function of n, by the principle of inclusion-exclusion again. Thus b3(n)/n is
tame.

Next suppose k = 4. The number of lists within each family listed in Table 5.1,
or the reflection of such a family, is (when n is divisible by 6) the number of multiples
of 1/n strictly between α and β, where the range for the parameter t is α < t < β.
This number is dβne − 1 − bαnc. Since the table shows that α and β are always
multiples of 1/24, this function of n is expressible as a combination of nδ6(n) and a
function on multiples of 6 depending only on n mod 24, and the latter can be written
as a combination of δ6(n), δ12(n), δ24(n), and δ24(n− 6), so it is tame. Mathematica
shows that when two of these families are not the same, they intersect in at most a
single list of denominator among 6, 12, 18, and 24. So these and the exceptions of
Proposition 5.3 can be counted by a tame function. Thus, again by the principle of
inclusion-exclusion, b4(n)/n is tame.

The proof for k = 5 is identical to that of k = 4, using Table 5.2 instead of
Table 5.1, and using another Mathematica computation which shows that the in-
tersections of two one-parameter families of lists consist of at most a single list of
denominator 24.

The proof for k ≥ 6 is even simpler, because then there are only the exceptional
lists. By Proposition 5.3, bk(n)/n is a linear combination of δm(n) where m ranges
over the possible denominators of exceptional lists listed in the proposition, so it is
tame.

Lemma 6.3. A tame function is determined by its values at n = 3, 4, 5, 6, 7, 8,
9, 10, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 84, 90, 96, 120, 168, 180, 210, and
420.

Proof. By linearity, it suffices to show that if a tame function f is zero at those
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values, then f is the zero linear combination of the functions in the definition of a
tame function. The vanishing at n = 3, 5, 7, and 9 forces the coefficients of n3, n2, n,
and 1 to vanish, by Lagrange interpolation. Then comparing the values at n = 4 and
n = 10 shows that the coefficient of δ4(n) is zero. The vanishing at n = 4, 8, and 10
forces the coefficients of n2δ2(n), nδ2(n), and δ2(n) to vanish. Comparing the values
at n = 6 and n = 54 shows that the coefficient of nδ6 is zero. Comparing the values
at n = 6 and n = 66 shows that the coefficient of δ24(n− 6) is zero.

At this point, we know that f(n) is a combination of δm(n), for m = 6, 12, 18,
24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 120, 168, 180, 210, and 420. For each m in turn,
f(m) = 0 now implies that the coefficient of δm(n) is zero.

Proof of Theorem 1.1. Computation (see the appendix) shows that the tame
function b8(n)/n vanishes at all the numbers listed in Lemma 6.3. Hence by that
lemma, b8(n) = 0 for all n. Thus by (6.1), ak(n) and bk(n) are identically zero for all
k ≥ 8 as well.

By reverse induction on k, we can invert (6.1) to express ak(n) as a linear com-
bination of bm(n) with m ≥ k. Hence ak(n)/n is tame as well for each k ≥ 2.
Computation shows that the equations

a2(n)/n = (n3 − 6n2 + 11n− 6)/24 + (−5n2 + 46n− 72)/16 · δ2(n)

− 9/4 · δ4(n) + (−19n+ 110)/2 · δ6(n) + 54 · δ12(n) + 84 · δ18(n)

+ 50 · δ24(n)− 24 · δ30(n)− 100 · δ42(n)− 432 · δ60(n)

− 204 · δ84(n)− 144 · δ90(n)− 204 · δ120(n)− 144 · δ210(n),

a3(n)/n = (5n2 − 48n+ 76)/48 · δ2(n) + 3/4 · δ4(n) + (7n− 38)/6 · δ6(n)

− 8 · δ12(n)− 20 · δ18(n)− 16 · δ24(n)− 19 · δ30(n) + 8 · δ42(n)

+ 68 · δ60(n) + 60 · δ84(n) + 48 · δ90(n) + 60 · δ120(n) + 48 · δ210(n),

a4(n)/n = (7n− 42)/12 · δ6(n)− 5/2 · δ12(n)− 4 · δ18(n) + 3 · δ24(n)

+ 6 · δ42(n) + 34 · δ60(n)− 6 · δ84(n)− 6 · δ120(n),

a5(n)/n = (n− 6)/4 · δ6(n)− 3/2 · δ12(n)− 2 · δ24(n) + 4 · δ42(n)

+ 6 · δ84(n) + 6 · δ120(n),

a6(n)/n = 4 · δ30(n)− 4 · δ60(n),

a7(n)/n = δ30(n) + 4 · δ60(n)

hold for all the n listed in Lemma 6.3, so the lemma implies that they hold for all
n ≥ 3. These formulas imply the remarks in the introduction about the maximum
number of diagonals meeting at an interior point other than the center. Finally,

I(n) = δ2(n) +
∞∑
k=2

ak(n)

= δ2(n) +
7∑

k=2

ak(n),

which gives the desired formula. (The δ2(n) in the expression for I(n) is to account
for the center point when n is even, which is the only point not counted by the
ak.)
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7. The formula for regions. We now use the knowledge obtained in the proof
of Theorem 1.1 about the number of interior points through which exactly k diagonals
pass to calculate the number of regions formed by the diagonals.

Proof of Theorem 1.2. Consider the graph formed from the configuration of a
regular n-gon with its diagonals, in which the vertices are the vertices of the n-gon
together with the interior intersection points, and the edges are the sides of the n-
gon together with the segments that the diagonals cut themselves into. As usual, let
V denote the number of vertices of the graph, E the number of edges, and F the
number of regions formed, including the region outside the n-gon. We will employ
Euler’s formula V − E + F = 2.

Clearly V = n+ I(n). We will count edges by counting their ends, which are 2E
in number. Each vertex has n−1 edge ends, the center (if n is even) has n edge ends,
and any other interior point through which exactly k diagonals pass has 2k edge ends,
so

2E = n(n− 1) + nδ2(n) +

∞∑
k=2

2kak(n).

So the desired number of regions, not counting the region outside the n-gon, is

F − 1 = E − V + 1

=

[
n(n− 1)/2 + nδ2(n)/2 +

∞∑
k=2

kak(n)

]
− [n+ I(n)] + 1.

Substitution of the formulas derived in the proof of Theorem 1.1 for ak(n) and I(n)
yields the desired result.

Appendix. Computations and tables. In Table A.1 we list I(n), R(n),
a2(n), . . . , a7(n) for n = 4, 5, . . . , 30. To determine the polynomials listed in The-
orem 1.1, more data were needed, especially for n ≡ 0 mod 6. The largest n for which
this was required was 420. For speed and memory conservation, we took advantage
of the regular n-gon’s rotational symmetry and focused our attention on only 2π/n
radians of the n-gon. The data from this computation are found in Tables A.2 and
A.3. Although we only needed to know the values at those n listed in Lemma 6.3, we
give a list for n = 6, 12, . . . , 420 so that the nice patterns can be seen.

The numbers in these tables were found by numerically computing (using a C
program and 64-bit precision) all possible

(
n
4

)
intersections and sorting them by x-

coordinate. We then focused on runs of points with close x-coordinates, looking for
points with close y-coordinates.

Several checks were made to eliminate any fears (arising from round-off errors)
of distinct points being mistaken as close. First, the C program sent data to Maple
which checked that the coordinates of close points agreed to at least 40 decimal places.
Second, we verified for each n that close points came in counts of the form (k2 ) (k

diagonals meeting at a point give rise to (k2 ) close points. Hence, any run whose
length is not of this form indicates a computational error).

A second program was then written and run on a second machine to make the
computations completely rigorous. It also found the intersection points numerically,
sorted them and looked for close points, but, to be absolutely sure that a pair of close
points p1 and p2 were actually the same, it checked that for the two pairs of diagonals
(l1, l2) and (l3, l4) determining p1 and p2, respectively, the triples l1, l2, l3 and l1, l2, l4
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Table A.1
A listing of I(n), R(n), and a2(n), . . . , a7(n), n = 3, 4, . . . , 30. Note that, when n is even, I(n)

also counts the point in the center.

n a2(n) a3(n) a4(n) a5(n) a6(n) a7(n) I(n) R(n)

3 0 1
4 1 4
5 5 5 11
6 12 13 24
7 35 35 50
8 40 8 49 80
9 126 126 154
10 140 20 161 220
11 330 330 375
12 228 60 12 301 444
13 715 715 781
14 644 112 757 952
15 1365 1365 1456
16 1168 208 1377 1696
17 2380 2380 2500
18 1512 216 54 54 1837 2466
19 3876 3876 4029
20 3360 480 3841 4500
21 5985 5985 6175
22 5280 660 5941 6820
23 8855 8855 9086
24 6144 864 264 24 7297 9024
25 12650 12650 12926
26 11284 1196 12481 13988
27 17550 17550 17875
28 15680 1568 17249 19180
29 23751 23751 24129
30 13800 2250 420 180 120 30 16801 21480

Table A.2
The number of intersection points for one piece of the pie (i.e., 2π/n radians), n = 6, 12, . . . , 210.

n
a2(n)
n

a3(n)
n

a4(n)
n

a5(n)
n

a6(n)
n

a7(n)
n

I(n)−1
n

6 2 2
12 19 5 1 25
18 84 12 3 3 102
24 256 36 11 1 304
30 460 75 14 6 4 1 560
36 1179 109 11 6 1305
42 1786 194 27 13 2020
48 3168 220 25 7 3420
54 4722 288 24 12 5046
60 6251 422 63 12 5 6753
66 9172 460 35 15 9682
72 12428 504 35 13 12980
78 15920 642 42 18 16622
84 20007 805 43 28 20883
90 25230 863 45 21 4 1 26164
96 31240 948 53 19 32260
102 37786 1096 56 24 38962
108 45447 1201 53 24 46725
114 53768 1368 63 27 55226
120 62652 1601 95 31 5 64384
126 73676 1658 72 34 75440
132 85319 1825 71 30 87245
138 97990 2002 77 33 100102
144 112100 2136 77 31 114344
150 127070 2345 84 36 4 1 129540
156 143635 2549 85 36 146305
162 161520 2736 87 39 164382
168 180504 3008 95 47 183654
174 201448 3178 98 42 204766
180 223251 3470 129 42 5 226897
186 247562 3630 105 45 251342
192 273144 3844 109 43 277140
198 300294 4092 108 48 304542
204 329171 4357 113 48 333689
210 359556 4661 125 55 4 1 364402
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Table A.3
The number of intersection points for one piece of the pie (i.e., 2π/n radians), n = 216, . . . , 420.

n
a2(n)
n

a3(n)
n

a4(n)
n

a5(n)
n

a6(n)
n

a7(n)
n

I(n)−1
n

216 392564 4848 119 49 397580
222 426836 5166 126 54 432182
228 463303 5441 127 54 468925
234 501762 5718 129 57 507666
240 541612 6121 165 61 5 547964
246 584782 6340 140 60 591322
252 629399 6693 137 70 636299
258 676580 6972 147 63 683762
264 725976 7276 151 61 733464
270 777420 7643 150 66 4 1 785284
276 831575 7969 155 66 839765
282 887986 8326 161 69 896542
288 947132 8640 161 67 956000
294 1008358 9056 174 76 1017664
300 1072171 9462 203 72 5 1081913
306 1139436 9780 171 75 1149462
312 1208944 10164 179 73 1219360
318 1281100 10582 182 78 1291942
324 1356315 10957 179 78 1367529
330 1434110 11375 189 81 4 1 1445760
336 1514816 11856 193 89 1526954
342 1598970 12216 192 84 1611462
348 1685843 12661 197 84 1698785
354 1775788 13108 203 87 1789186
360 1868312 13669 231 91 5 1882308
366 1965272 14010 210 90 1979582
372 2064919 14465 211 90 2079685
378 2167754 14930 219 97 2183000
384 2274136 15396 221 91 2289844
390 2383690 15885 224 96 4 1 2399900
396 2496999 16369 221 96 2513685
402 2613536 16896 231 99 2630762
408 2733888 17380 235 97 2751600
414 2857752 17898 234 102 2875986
420 2984383 18598 273 112 5 3003371

each divided the circle into arcs of lengths consistent with Theorem 4.4. Since this
test involves only comparing rational numbers, it could be performed exactly.

A word should also be said concerning limiting the search to 2π/n radians of the
n-gon. Both programs looked at slightly smaller slices of the n-gon to avoid problems
caused by points near the boundary. We further subdivided this region into twenty
smaller pieces to make the task of sorting the intersection points manageable. More
precisely, we limited our search to points whose angle with the origin fell between
[c1 + 2π(m− 1)/(20n) + ε, c1 + 2πm/(20n)− ε), m = 1, 2, . . . 20, and also made sure
not to include the origin in the count. Here ε was chosen to be .00000000001 and c1
was chosen to be .00000123 (c1 = 0 would have led to problems since there are many
intersection points with angle 0 or 2π/n). To make sure that no intersection points
were omitted, the number of points found (counting multiplicity) was compared with((

n
4

)− (n/22

)
δ2

)
/n.
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GEOMETRY AND DIAMETER BOUNDS OF DIRECTED CAYLEY
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Abstract. Many popular interconnection network topologies, such as hypercubes and toroidal
meshes, are based on Cayley graphs of Abelian groups. The symmetry and algebraic structure of these
graphs result in many nice physical properties of the network concerning layout, routing algorithms,
and load balancing. There has been interest in low-diameter Abelian–Cayley graphs because of their
smaller communication delay and reduced congestion. For any fixed number of nodes n, and any
fixed out-degree k, we are interested in how small the diameter of directed Cayley graphs of Abelian

groups can be and what these low-diameter graphs look like. We give an upper bound of n ≤ 3(d+3)3

25
for the size of directed Abelian–Cayley graphs with k = 3 and diameter d, correcting a previously
published result by Hsu and Jia [SIAM J. Discrete Math., 7 (1994), pp. 57–71].

Our method is based on translational tiling techniques and is a generalization of Wong and
Coppersmith’s method for k = 2 [J. Assoc. Comput. Mach., 21 (1974), pp. 392–402]. Moreover, our
method works for all Abelian groups, not just the cyclic case. For k = 3 we give computational
results for the largest Abelian–Cayley graph as a function of diameter. When n = 84m3, for integer

m, there is a network with n = (d+3)3

11.95
whose diameter is approximately three-fourths of that of a

three-dimensional toroidal cube.

Key words. Cayley graphs, Abelian groups, diameter, network topologies, translational tilings,
degree-diameter problems

AMS subject classifications. 05C25, 05C12, 20F05, 68R10, 90B12

PII. S0895480195286456

1. Introduction and problem history. The directed Cayley graph associated
with an Abelian group G and an edge generating set E ⊂ G has the elements of G
as its vertices and directed edges from each g to all vertices g′ = g + h, where h ∈ E.
The out-degree k of the graph, as well as its in-degree, is thus equal to the cardinality
of E.

The process of moving through a Cayley graph can be geometrically represented
by associating each generator of the group with an orthogonal direction (i.e., a unit
vector) in k-dimensional space, starting with the group identity at the origin. Thus
each edge-generator of the Cayley graph corresponds to a direction in the lattice.
Given the Cayley graph of an Abelian group G, with n elements and edge-generating
list E = [g1, g2, . . . , gk], we may define a mapping φ from the k-dimensional lattice
of integers to G. The map φ : Zk → G takes the lattice point with coordinates
(x1, x2, . . . , xk) to the group element g = x1g1 + x2g2 + · · · + xkgk and is a group
homomorphism.

Now we do a breadth-first search in the positive orthant of the lattice Zk, starting
at the origin, until we find all the elements of the group G. We do the search in short-
lex order with respect to the k dimensions. Short-lex ordering for lattice points is
defined as follows: the lattice point ~x = (x1, x2, . . . , xk) precedes the lattice point ~y =

(y1, y2, . . . , yk) if either ~x has smaller Manhattan distance from the origin (
∑k

i=1 xi <

∗ Received by the editors May 24, 1995; accepted for publication (in revised form) December 5,
1996.

http://www.siam.org/journals/sidma/11-1/28645.html
† Center for Computing Science, 17100 Science Drive, Bowie, MD 20715 (fiduccia@super.org,

zito@super.org).
‡ Department of Mathematics, Brigham Young University, Provo, UT 84602 (forcader@math.

byu.edu).

157



158 CHARLES M. FIDUCCIA, RODNEY W. FORCADE, AND JENNIFER S. ZITO

0 2 4

1 3

1 3

0 2 41 3

0 2 4

1 3

0 2 4

1 3

0 2 4

1 3

0 2 4

1 3

0 2 4

1 3

0 2 4 1 3

0 2 4

1 3

0 2 4

1 3

0 2 4

Fig. 1. The relationship between the Cayley graph of the group G = Z5, with edge-generating
list E = [2, 1], the Cayley tile (shaded), and the corresponding tiling of the integer lattice.

∑k
i=1 yi) or ~x and ~y have equal Manhattan distance from the origin and ~x precedes ~y

lexicographically. If g ∈ G, let ShortLex(g) be the first lattice point ~x found during the
short-lex search such that φ(~x) = g. Now let L = {ShortLex(g) : g ∈ G}. The set L
consists of the n lattice locations for the elements of G as they are first traversed in the
short-lex search. Because φ is a one-to-one map of L onto G, the elements of L form
a complete set of coset representatives (a transversal) for the subgroup H = ker(φ)
(the kernel). In other words, each element z of Zk is uniquely represented as a sum
z = x + h, where x ∈ L and h ∈ H, which is another way of saying that L tiles Zk

via the translation group H, that is, Zk = L+H.
Note that the diameter of G corresponds to the greatest Manhattan distance of

any point in L from the origin. We will accordingly call it the diameter of L.
Now we form a solid tile from our set of lattice points L by taking the union (in

Rk)

T = L+ [0, 1)k =
⋃
x∈L

(x+ [0, 1)k)

of the unit k-cubes located at the lattice points of L. This forms a k-dimensional
connected shape which we will call the Cayley tile at the origin. An example is given
in Figure 1.

Note that a tiling of Zk by L, with the translation group H, corresponds to a
tiling of Rk by T , using the same translation group. Note also that, if d is the diameter
of L, as defined above, then d + k is the greatest Manhattan distance of any point
of the closure of T from the origin. We will call D = d + k the diameter of T . (To
avoid confusion, we will consistently use D for the latter (solid) diameter and d for
the former (lattice) diameter.)

The following example is the Cayley tile created by taking the cyclic group Z84,
with edge-generating list E = [2, 9, 35]. This tile was found via computer search by
one of our summer students, Wei-Hwa Huang, in 1993 and independently by Randall
Dougherty and Vance Faber [4]. Readers interested in Cayley graphs as network
topologies may also like to see some of the seminal papers in the area [1, 2, 3, 6, 7, 9].

2. Necessary condition on the three-dimensional tiles. The Cayley tile
T has several useful properties. If x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are
elements of Rk, we will say x � y when xi ≤ yi, for all i. Let (0) denote the origin
in Rk. Let êi denote the ith unit vector in Rk. Then a notch in T is a point x in the
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Fig. 2. The Cayley tile generated by short-lex search of G = Z84 with edge-generating list
E = [2, 9, 35]. Here the x1, x2, and x3 axes are to the left, right, and up, respectively.

Fig. 3. The silhouette of the Cayley tile in Figure 2.

boundary of T so that, for ε > 0, x+ ε êi is also in the boundary of T for each i, but
x+
∑k

i=1 ε êi is not in the boundary of T , for any ε > 0 (for example, the point (2, 5, 1)
in Figure 2). In other words, a notch is a place where it looks like a translation of the
first orthant has been cut out of the tile. By the silhouette of a Cayley tile T , we mean
the set of points y, with at most one nonzero coordinate, such that y � x for some
point x ∈ T (in other words, the projection of T into the coordinate hyperplanes).
See Figure 3 for an example.

Theorem 2.1. Every Cayley tile T has the following properties:

1. If x ∈ T and (0) � y � x, then y ∈ T .
2. T has at most one notch.
3. A Cayley tile T is uniquely determined by its silhouette and, if it has a notch,

the coordinates of its notch.

Proof.

1. First, observe that L = ShortLex(G), as defined above, has this property as
a subset of Zk. For if (0) � y � x, with x ∈ L then, either y = x, or y is closer
(in Manhattan distance) to the origin. In the former case, there is nothing
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to prove. In the latter case, let φ(x) = g and φ(y) = h. Then y /∈ L means
there exists y′, earlier in short-lex order than y, with φ(y′) = h. But then
x′ = y′+(x−y) is earlier in short-lex order than x and φ(x′) = h+(g−h) = g,
contradicting x = ShortLex(g). Second, observe that the k-cube [0, 1)k has
this property, as a subset of Rk (trivially). Putting these two observations
together implies that T = L+ [0, 1)k also has the property.

2. Suppose T has at least two notches. Call them x and y. Clearly they must be
elements of Zk. As already observed, the neighborhood of a notch looks like
a neighborhood of the origin in the complement of the first orthant. Thus,
in the translational tiling by T , the only way to “fill” that point is with a
translation of the origin itself. Thus both notches are images of the identity
of G and so is their difference x − y. Since they are notches, each point is
immediately above a point of Zk which is in the tile (both T and L). Simply
subtract one from the first coordinate of x and y to get x′ and y′, respectively.
Then x′ − y′ = x− y, so x′ and y′ have the same φ-image, contradicting the
definition of L.

3. If x ∈ T , then πi(x) is in the silhouette, for each projection πi. Furthermore,
if there is a notch, y, then y 6� x. Conversely, we show that if a point x
has these two properties, then it is an element of T . Let x be an element
of Rk with every projection πi(x) in the silhouette of T , and x /∈ T . Then,
decreasing the coordinates of x, successively, there is a point y � x with
y /∈ T ; but every point z with z � y is in T . Clearly, y is a notch. Thus, if x
has all its projections in the silhouette and is not preceded by a notch, then
x ∈ T . Thus we have shown that the silhouette and (if it exists) the notch of
T entirely determine which points are in T .

These are necessary, but not sufficient, conditions for a shape to be a Cayley
tile. We note that Wong and Coppersmith [9] proved the one-notch result (2) for the
two-dimensional case with cyclic groups and one generator equal to the identity.

3. Improved diameter bounds. Given a solidified Cayley tile T , with solid
diameter D and volume V , we will show that there exists a shape S with the same
diameter and which, although it is not a superset of T , necessarily has greater volume
than T . The volume of S will be our bound for that of T . To clarify our argument,
however, we do it first with a simplifying assumption—that our tile T has no notch.
This will give a bound on volume which holds only for tiles with no notch and which
is too small to be proved in the general case.

No notch argument. If T has no notch, it is entirely determined by its silhou-
ette. This means that every point outside of T in the first octant is connected to (at
least) one of the coordinate planes by a perpendicular to that coordinate plane. This
perpendicular does not intersect T . We may classify a point p /∈ T , in the first octant,
as being of type x, y, or z, according to whether there is a line through p parallel to
the x-axis, y-axis, or z-axis, respectively, which does not intersect T . Note that p may
be, simultaneously, of more than one type.

Lemma 3.1. If p � p1, then p1 has (at least) the same type(s) as p.

Proof. Suppose (for example) that p has type x. Then the segment pq, joining
p perpendicularly to the nearest point q in the yz plane, does not intersect T (thus
q /∈ T ). But, for every point u on the segment p1q1 joining p1 perpendicularly to
the point q1 in the yz plane, q � u, so u /∈ T . Thus p1 also has type x. Analogous
arguments work for the other two types.

Let P be the plane defined by x+ y+ z = D. Let O denote the origin. Let A1 =
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(D, 0, 0), A2 = (0, D, 0), and A3 = (0, 0, D). Then T is a subset of the tetrahedron
OA1A2A3, enclosed by the three coordinate planes and P . Let Q denote the triangle
A1A2A3 (including its interior area).

Let Γx denote the subset of Q comprising all points of type x. Let Γy denote the
subset of Q comprising all points of Q which are not in Γx and which are of type y.
Let Γz be the set of all points of Q which are not in Γx ∪ Γy and which are of type z.
By our assumption (no notch) Q = Γx ∪ Γy ∪ Γz. We have also arranged that this be
a disjoint union.

From each point p in Γx, one may drop a segment pqp, parallel to the x-axis, to a
point qp in the yz plane, without intersecting T . The union of all such segments pqp,
(p ∈ Γx) forms a solid Gx in the complement of T . Similarly, from each point in Γy
we drop a perpendicular segment to the xz plane and let Gy be the union of those
segments, and from each point in Γz drop a perpendicular segment to the xy plane,
thus forming Gz.

Lemma 3.2. The sets Gx, Gy, and Gz are disjoint.
Proof. Suppose r ∈ Gx ∩ Gy. Then r is on a line segment p1q1 from a point

p1 ∈ Γx to the yz plane and r is also on a segment p2q2 from a point p2 ∈ Γy to
the xz plane. Clearly, r has both types and r � p1 and r � p2. By Lemma 1, p2 is
therefore of type x and should therefore have already been included in Γx. It cannot
be in Γy, by our definition. Analogous arguments preclude any other intersection
among the three sets.

Since T is a subset of the tetrahedron OA1A2A3, and disjoint from the (disjoint)
union Gx ∪Gy ∪Gz, it now follows that

vol(T ) ≤ D3/6− vol(Gx)− vol(Gy)− vol(Gz).

Notice that

vol(Gx) + vol(Gy) + vol(Gz) =

∫ ∫
p∈Q

λ δ(p) da,

where da denotes the differential of area, λ = 1√
3

is a constant introduced because we

are integrating over the slanted plane P instead of over the coordinate planes, and
δ(p) is the distance from p to an appropriate coordinate plane. If p ∈ Γx then δ(p) is
the distance from p to the yz plane; if p ∈ Γy, then δ(p) denotes the distance from p
to the xz plane, etc.

A lower bound for this double integral over the triangle Q will thus provide an
upper bound for the volume of T . The integral will be smallest when the integrand
δ(p) is as small as possible at every point, and that will be true if δ(p) = δ1(p), where
δ1(p) is the distance from p to the nearest coordinate plane. Thus,

vol(T ) ≤ D3

6
−
∫ ∫

p∈Q
λ δ1(p) da.

The right side of this inequality can be explicitly integrated, with some difficulty,
but it is more easily interpreted as the volume of a star-shaped (Figure 4) object
formed by adjoining to the cube C = [0, D3 )3 three pyramids slanting from the faces
of C to the points (D, 0, 0), (0, D, 0), and (0, 0, D), respectively. Its volume is one-
ninth times D3. Thus, in the case that T has no notch, we have shown that

vol(T ) ≤ D3

9
.
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Fig. 4. Bounding shape for Cayley tiles with no notches.

With notch argument. How does the argument change if T has a notch? Then,
not all of the points on Q are of type x, y, or z; but those which aren’t must be able
to “see” the notch. If n is the notch, let ∆ be the set of points p ∈ Q such that n � p.
Following the previous argument, let Γx denote the subset of Q \ ∆ comprising all
points of type x. Let Γy denote the subset of Q \∆ comprising all points which are
not in Γx and which are of type y. Let Γz be the set of all points of Q \∆ which are
not in Γx ∪ Γy and which are of type z (see Figure 5). Then Q is the disjoint union
of Γx, Γy, Γz, and ∆.

Fig. 5. Construction of the Γ regions.

Again, let Gx be the union of all segments from Γx perpendicular to the yz plane;
let Gy be the union of all segments from Γy perpendicular to the xz plane; and let Gz

be the union of all segments from Γz perpendicular to the xy plane. The argument of
Lemma 3.2 still works, proving that Gx, Gy, and Gz are disjoint. Let H denote the
union of all segments from ∆ to the notch point n. Thus,

vol(T ) ≤ D3/6− vol(Gx)− vol(Gy)− vol(Gz)− vol(H).

Now

vol(Gx) + vol(Gy) + vol(Gz) =

∫ ∫
p∈Q\∆

λ δ(p) da,
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where da denotes the differential of area, λ = 1√
3

is a constant introduced because we

are integrating over the slanted plane P instead of over the coordinate planes, and
δ(p) is the distance from p to an appropriate coordinate plane (for elements in Γx,
Γy, or Γz).

In fact, by introducing another constant, λ′,

vol(Gx) + vol(Gy) + vol(Gz) =

∫ ∫
p∈Q\∆

λ′ δ′(p) da,

where δ′(p) is the distance from p to the intersection of Q with one of the three
coordinate planes (depending on which region, Γx, Γy, or Γz p is in).

Clearly, this integral will be made smaller if the Γ regions are adjusted so that
δ′(p) is always the distance from p to the nearest edge of Q when p /∈ ∆ (see the first
diagram in Figure 6).

Fig. 6. Placement of the delta.

Thus, we may assume that the (new) Γ regions are bounded by the three lines
from the vertices of Q to its center. For convenience, let us refer to those lines as the
propeller lines. The only question remaining is where and how big ∆ should be, in
order to minimize the integral

I =

∫ ∫
p∈Q\∆

λ′ δ1(p) da,

where δ1(p) is the distance from p to the nearest side of Q.
Note that Q and ∆ are equilateral triangles with parallel sides. Note also that if

none of the vertices of ∆ is on a propeller line, then at least one edge, E, of ∆ lies
entirely within the region bounded by the propellers and by the edge of Q parallel to
it (for if each edge crosses a propeller, it meets another edge which is closer to the
outside of the triangle, which crosses another propeller and meets...etc.).

Lemma 3.3. If we slide ∆, keeping its shape, size, and orientation constant, in
a direction perpendicular to and away from that edge of Q which is parallel to E, the
double integral I will be decreased. (See the first two diagrams of Figure 6.)

Proof. The differential for I is given by the change in that part which is taken
over Q \∆. Thus,

dI =

(∫
E

δ1(p)|dp| − 1

2

∫
b

δ1(p)|dp| − 1

2

∫
c

δ1(p)|dp|
)
ds,

where ds is the differential of distance in the direction implied by the lemma statement,
and the |dp| differentials mean that the three single integrals are to be taken over the
three sides (E, b, and c) with respect to positive distance along those sides. The
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Fig. 7. Bounding shape for notched tiles.

factors of 1
2 come from the cosine of 60 degrees (since the sides b and c are slanted at

that angle to E).
Since the distance from every point on b (for instance) is at least as far from the

nearest edge of Q as is the entire edge E (at one end of b distances are the same,
but points near that end are farther away), the integral over b above is bigger than
the one over E. Similarly, the integral over c is bigger than the one over E. Thus,
even with the factors of 1

2 , the two negative integrals overpower the positive one, and
dI < 0.

Lemma 3.4. If one of the vertices of ∆ is on a propeller line, and if the opposite
edge is moved closer to the position where its ends lie on the propeller lines (keeping
the one vertex on the propeller line and keeping the size of Q fixed) the double integral
I will decrease. (This is illustrated by the last two diagrams of Figure 6.)

Proof. Letting E be the edge opposite the vertex v on a propeller line, either E is
outside of the other two propeller lines, in which case the previous lemma applies, or
E lies on the same side of the center of ∆ as v (in which case the assertion is rather
trivial), or E crosses both of the other two propeller lines. Write (as before)

dI =

(∫
E

δ1(p)dp− 1

2

∫
b

δ1(p)|dp| − 1

2

∫
c

δ1(p)|dp|
)
ds,

(where b and c are now the two edges emanating from v. Since each of those edges
lies entirely in a region bounded by propeller lines, each of the negative integrals in
our differential is (strictly) greater than the positive one. Thus a complementary
argument (to the proof of the previous lemma) applies. The double integral will be
decreased by moving v closer to the center of Q.

Now, the problem is reduced to a simple calculus problem. Given that the two
triangles have a common center, what size ∆ maximizes D3/6 − I − vol(H), which
describes a specific shape (Figure 7) with volume

u3 + 3u2(D − 3u) + 3
1

2
u(D − 3u)2 + 3

1

3
u2(2u),

where (u, u, u) are the coordinates of the notch n, which defines the size of ∆ on Q
(the smaller u, the larger ∆ is, but centered on Q)? Taking the derivative and setting
it equal to zero gives

(5u−D)(3u−D) = 0.
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The root u = D
3 makes the notch vanish and gives the value D3

9 for the volume

estimate (D
3

6 − I). The root u = D
5 is a local maximum (i.e., it corresponds to a

minimum of our double integral) and gives the value 3D3

25 for our volume estimate.
Thus, we have the following.

Theorem 3.5. If the solid diameter of a three-dimensional Cayley tile T is D,

then the volume of T is at most 3D3

25 .

Corollary 3.6. If the Cayley graph of a finite Abelian group G with three

generators has diameter d, then G has at most 3(d+3)3

25 elements.

Hsu and Jia [6] claimed to show that n ≤ (d+3)3

8.8 , which would have been a better
bound than the one proved in our paper; however, their proof is flawed. Discussion
of the proof of their Theorem 3 is made more difficult by the vagueness of their
assumptions. Although they do not state this clearly, it appears that they understood
that a tile is uniquely determined by its silhouette and the position of its notch, if it
has one. Apparently they believed that in order to maximize the volume of a tile-like
shape, all the extreme points of its silhouette must lie along a triangle. However, as
we can see in our Figure 7, the silhouette can be more elongated along the axes.

Their paper does, however, contain a beautiful constructive proof that the volume
of the largest Cayley tile for a cyclic group with three generators, with a given diameter

d, is at least d3

16 asymptotically.

4. Computational results. The following table contains the largest number of
nodes n such that there exists an Abelian group on three generators with diameter d
for d up to 17. Table 1 includes the value α such that n = α(d + 3)3 = αD3. Notice
that our bound has value α = 3/25 = 0.12 and the best value for actual Cayley graphs
in the table below is when n = 84, which has α = 84/(103) = .084. The table also
compares the solid diameter D to the diameter that a cube of the same volume would
have. This is expressed by the number β given by D = β(3 3

√
n). In the table (for each

diameter d and corresponding largest number of nodes n), we give the generators for
the first Abelian–Cayley graph found by our computer search. For all cyclic cases,
with the exception of d = 7, there was an Abelian–Cayley graph of minimal diameter
that had 1 as a generator.

The case d = 17 shows that the best diameter for n = 672 = 84×23 was obtained
by taking the tile for n = 84 and replacing every unit cube by a 2× 2× 2 cube. One
strategy for possibly improving on the best α and β is to take the n which achieves
these best values and look at the values of α and β obtained from multiples n×m3,
for m = 2, 3, . . .. Since each of these requires a great deal of computer time, only the
first several cases, n = 2268 = 84 × 33 and n = 5376 = 84 × 43, were attempted.
Neither case produced better values of α and β.

5. Infinite families of tiles. We can create infinite families of tiles by scaling
up existing tiles. Each cube of the smaller tile is replaced by an m1 by m2 by m3

block of cubes. The group of the scaled-up tile will not be cyclic in the case when
gcd(m1,m2,m3) 6= 1. The group of the scaled-up tile can be calculated. In fact, it is
possible to find the Cayley group and a set of generators of the tile given a translational
tiling via Smith Normal form [5]. If this block is cubical (m = m1 = m2 = m3) and
the original tile had volume n and diameter D = d+3, then the scaled up version has
volume m3n and diameter mD and hence retains the same values of α and β. The
group of the scaled-up tile will not be cyclic if m > 1. The scaled-up version of the
tripod shaped tile in the table for d = 1 gives a family which is a special case of what
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Table 1

d nmax Group Generators α β
1 4 Z4 1 2 3 0.06250 0.83995
2 9 Z9 1 3 4 0.07200 0.80125
3 16 Z16 1 4 5 0.07407 0.79370
4 27 Z27 1 4 17 0.07872 0.77778
5 40 Z40 1 6 15 0.07813 0.77974
6 57 Z57 1 13 33 0.07819 0.77952
7 84 Z84 2 9 35 0.08400 0.76112
8 111 Z111 1 31 69 0.08340 0.76295
9 138 Z138 1 11 78 0.07986 0.77405

10 176 Z176 1 17 56 0.08011 0.77325
11 217 Z217 1 13 119 0.07908 0.77658
12 279 Z93×Z3 (1,0) (4,1) (59,1) 0.08267 0.76519
13 340 Z340 1 90 191 0.08301 0.76414
14 395 Z395 1 35 271 0.08040 0.77232
15 462 Z462 1 29 97 0.07922 0.77614
16 560 Z560 1 215 326 0.08164 0.76837
17 672 Z168×Z2×Z2 (2,0,1) (9,0,0) (35,1,0) 0.08400 0.76112

Sherman Stein called semicrosses [8]. One of the nice properties of scaling is that the
simplicity of the shape is preserved.

There are also infinite families of Cayley tiles which do not arise from scaling.
For example, a family that we call the double staircases has n = k2 nodes, diameter
k− 1, and edge generating list [1, k, k+1] (see Figure 8 for k = 9, n = 81). The entry
in the table above for d = 3 is a double staircase.

Fig. 8. Double staircase.

In terms of evaluating the Abelian–Cayley graphs as network topologies, some of
these families of tiles have a useful regularity of shape which carries over into physical
layout and routing algorithms. Even though the tile in the table above with n = 84
has the lowest diameter as a function of volume, it lacks such regularity. The double
staircases and the scaled tripods are two families which manage to combine regularity
and low diameter. We have results concerning other families of shapes which will
appear in future paper.

6. Open problems. In two dimensions, Wong and Coppersmith [9] showed that
a necessary and sufficient condition for a shape to be a tile is that it be L-shaped.
In [5], Fiduccia, Zito, and Mann give some conditions on a three-dimensional shape
that are necessarily satisfied if the shape is a Cayley tile. However, no set of neces-
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sary and sufficient conditions are known for the three-dimensional case. Even less is
known about the higher-dimensional cases. What are best diameter tiles in higher
dimensions? Can the methods of this paper be generalized to four dimensions and
higher? Can the diameter bound in three dimensions be improved?
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Abstract. A vertex (edge) coloring φ : V → {1, 2, . . . , t} (φ′ : E → {1, 2, . . . , t}) of a graph
G = (V,E) is a vertex (edge) t-ranking if, for any two vertices (edges) of the same color, every
path between them contains a vertex (edge) of larger color. The vertex ranking number χr(G)
(edge ranking number χ′r(G)) is the smallest value of t such that G has a vertex (edge) t-ranking.
In this paper we study the algorithmic complexity of the Vertex Ranking and Edge Ranking
problems. It is shown that χr(G) can be computed in polynomial time when restricted to graphs
with treewidth at most k for any fixed k. We characterize the graphs where the vertex ranking
number χr and the chromatic number χ coincide on all induced subgraphs, show that χr(G) = χ(G)
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1. Introduction. In this paper we consider vertex rankings and edge rankings
of graphs. The vertex ranking problem, also called the ordered coloring problem [15],
has received much attention lately because of the growing number of applications.
There are applications in scheduling problems of assembly steps in manufacturing
systems [19], e.g., edge ranking of trees can be used to model the parallel assembly of
a product from its components in a quite natural manner [6, 13, 14]. Furthermore, the
problem of finding an optimal vertex ranking is equivalent to the problem of finding
a minimum-height elimination tree of a graph [6, 8]. This measure is of importance
for the parallel Cholesky factorization of matrices [3, 10, 18]. Other applications lie
in the field of VLSI-layout [17, 26].

The Vertex Ranking problem. “Given a graph G and a positive integer t, decide
whether χr(G) ≤ t ” is NP-complete even when restricted to cobipartite graphs since
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Pothen has shown that the equivalent minimum elimination tree height problem re-
mains NP-complete on cobipartite graphs [20]. A short proof of the NP-completeness
of Vertex Ranking is given in section 3. Much work has been done in finding opti-
mal rankings of trees. For trees there is a linear-time algorithm for finding an optimal
vertex ranking [24]. For the closely related edge ranking problem on trees an O(n3)
algorithm was claimed in [9], but in [7] some flaws in this algorithm were pointed out.
Recently, Zhou, Kashem, and Nishizeki obtained an O(n2 log ∆) algorithm for edge
ranking trees optimally where ∆ is the maximum degree of the tree under consider-
ation [28]. Efficient vertex ranking algorithms for permutation, trapezoid, interval,
circular-arc, circular permutation graphs, and cocomparability graphs of bounded di-
mension are presented in [8]. Moreover, the vertex ranking problem is trivial on split
graphs and it is solvable in linear time on cographs [25].

In [15], typical graph theoretic questions, as they are known from the coloring
theory of graphs, are investigated. This also leads to an O(

√
n) bound for the vertex

ranking number of a planar graph and the authors describe a polynomial-time algo-
rithm which finds a vertex ranking of a planar graph using only O(

√
n) colors. For

graphs in general there is an approximation algorithm of performance ratio O(log2 n)
for the vertex ranking number [3, 16]. In [3] it is also shown that one, plus the path-
width of a graph is a lower bound for the vertex ranking number of the graph (hence,
a planar graph has pathwidth O(

√
n), which is also shown in [16] using different

methods).

Our goal is to extend the known results in both the algorithmic and graph theo-
retic directions. The paper is organized as follows. In section 2 the necessary notions
and preliminary results are given. We study the algorithmic complexity of determin-
ing whether a graph G fulfills χr(G) ≤ t and χ′r(G) ≤ t, respectively, in sections 3, 4,
and 5. In section 6 we characterize the graphs for which the vertex ranking number
and the chromatic number coincide on every induced subgraph. These graphs turn
out to be precisely the graphs containing no induced path or cycle on four vertices;
hence, we obtain a characterization of the trivially perfect graphs [12] in terms of rank-
ings. Moreover, we show that χ(G) = χr(G) implies that the chromatic number of G
is equal to its largest clique size. In section 7 we give a recurrence relation allowing
us to compute the edge ranking number of a complete graph.

2. Preliminaries. We consider only finite, undirected and simple graphs G =
(V,E). Throughout the paper, n denotes the cardinality of the vertex set V and
m denotes that of the edge set E of the graph G = (V,E). For graph theoretic
concepts, definitions, and properties of graph classes not given here we refer the
reader to [4, 5, 12].

Let G = (V,E) be a graph. A subset U ⊆ V is independent if each pair of vertices
u, v ∈ U is nonadjacent. A graph G = (V,E) is bipartite if there is a partition of V
into two independent sets A and B. The complement of the graph G = (V,E) is the
graph G having vertex set V and edge set {{v, w} | v 6= w, {v, w} 6∈ E}. For W ⊆ V
we denote by G[W ] the subgraph of G = (V,E) induced by the vertices of W , and for
X ⊆ E we write G[X] for the graph (V,X) with vertex set V and edge set X.

Definition 2.1. Let G = (V,E) be a graph and let t be a positive integer. A
(vertex) t-ranking, called ranking for short if there is no ambiguity, is a coloring
φ : V → {1, . . . , t} such that for every pair of vertices x and y with φ(x) = φ(y) and
for every path between x and y there is a vertex z on this path with φ(z) > φ(x). The
vertex ranking number of G, χr(G), is the smallest value t for which the graph G
admits a t-ranking.
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By definition adjacent vertices have different colors in any t-ranking; thus any
t-ranking is a proper t-coloring. Hence χr(G) is bounded below by the chromatic
number χ(G). A vertex χr(G)-ranking of G is said to be an optimal (vertex) ranking
of G.

The edge ranking problem is closely related to the vertex ranking problem.
Definition 2.2. Let G = (V,E) be a graph and let t be a positive integer. An

edge t-ranking is an edge coloring φ′ : E → {1, . . . , t} such that for every pair of edges
e and f with φ′(e) = φ′(f) and for every path between e and f there is an edge g on
this path with φ′(g) > φ′(e). The edge ranking number χ′r(G) is the smallest value of
t such that G has an edge t-ranking.

Remark 2.3. There is a one-to-one correspondence between the edge t-rankings of
a graph G and the vertex t-rankings of its line graph L(G). Hence χ′r(G) = χr(L(G)).

An edge t-ranking of a graph G is a particular proper edge coloring of G. Hence,
χ′r(G) is bounded below by the chromatic index χ′(G). An edge χ′r(G)-ranking of G
is said to be an optimal edge ranking of G.

As shown in [8], the vertex ranking number of a connected graph is equal to
its minimum elimination tree height plus one. Thus, (vertex) separators and edge
separators are a convenient tool for investigating rankings of graphs. A subset S ⊆ V
of a graph G = (V,E) is said to be a separator if G[V \ S] is disconnected. A subset
R ⊆ E of a graph G = (V,E) is said to be an edge separator (or edge cut) if G[E \R]
is disconnected.

In this paper we use the separator tree for studying vertex rankings. This concept
is closely related to elimination trees (cf. [3, 8, 18]).

Definition 2.4. Given a vertex t-ranking φ : V → {1, 2, . . . , t} of a connected
graph G = (V,E), we assign a rooted tree T (φ) to it by an inductive construction such
that a separator of a certain induced subgraph of G is assigned to each internal node
of T (φ) and the vertices of each set assigned to a leaf of T (φ) have pairwise different
colors.

1. If no color occurs more than once in G, then T (φ) consists of a single vertex
r (called root) and the vertex set of G is assigned to r.

2. Otherwise, let i be the largest color assigned to more than one vertex by φ.
Then {i+1, i+2, . . . , t} has to be a separator S of G. We create a root r of T (φ) and
assign S to r. (The induced subgraph of G corresponding to the subtree of T rooted at
r will be G itself.) Assuming that a separator tree Ti(φ) with root ri has already been
defined for each connected component Gi of the graph G[V \ S], the children of r in
T (φ) will be the vertices ri and the subtree of T (φ) rooted at ri will be Ti(φ).

The rooted tree T (φ) is said to be a separator tree of G.
Notice that all vertices of G assigned to nodes of T (φ) on a path from a leaf to

the root have different colors.

3. Unbounded ranking. It is still unknown whether the Edge Ranking prob-
lem “Given a graph G and a positive integer t, decide whether χ′r(G) ≤ t ” is NP-
complete. Clearly, by Remark 2.3 this problem is equivalent to the Vertex Ranking
problem “given a graph G and a positive integer t, decide whether χr(G) ≤ t ” when
restricted to line graphs.

On the other hand, it is a consequence of the NP-completeness of the mini-
mum elimination tree height problem shown by Pothen in [20] and the equivalence of
this problem with the Vertex Ranking problem [6, 8] that the Vertex Ranking
problem is NP-complete even when restricted to graphs that are the complements of
bipartite graphs, the so-called cobipartite graphs.
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For reasons of self-containedness, we start with a short proof of the NP-
completeness of Vertex Ranking, when restricted to cobipartite graphs. The fol-
lowing problem, called Balanced Complete Bipartite Subgraph (abbreviated
BCBS) is NP-complete. This is Problem GT24 of [11].

Instance: A bipartite graph G = (V,E) and a positive integer k.
Question: Are there two disjoint subsets W1,W2 ⊆ V such that
|W1| = |W2| = k and such that u ∈W1, v ∈W2 implies that {u, v} ∈
E?

Theorem 3.1. Vertex Ranking is NP-complete for cobipartite graphs.
Proof. Clearly the problem is in NP. NP-hardness is shown by reduction from

BCBS.
Let a bipartite graph G = (V1, V2, E) and a positive integer k be given. Let G be

the complement of G; thus G is a cobipartite graph.
We claim that G has a balanced complete bipartite subgraph with 2 · k vertices

if and only if G has an (n− k)-ranking.
Suppose we have sets W1 ⊆ V1, W2 ⊆ V2, such that |W1| = |W2| = k and such

that for all u ∈W1, v ∈W2: {u, v} ∈ E. We now construct an (n− k)-ranking of G.

Write Wi = {v(i)
1 , . . . , v

(i)
k } for i ∈ {1, 2}, and write V \ (W1 ∪W2) = {v′1, . . . , v′n−2·k}.

We define a vertex ranking φ of G as follows:

φ(v
(1)
j ) = φ(v

(2)
j ) = j for all j, 1 ≤ j ≤ k.

φ(v′j) = k + j for all j, 1 ≤ j ≤ n− 2 · k.

One can easily observe that φ is a vertex (n− k)-ranking.
Next, let φ be an (n− k)-ranking for G. Since G is a cobipartite graph, for each

color, there can be at most two vertices with that color, one lying in V1 and the other

in V2. Therefore, we have k pairs v
(1)
j and v

(2)
j with φ(v

(1)
j ) = φ(v

(2)
j ) and we can

assume that W1 = {v(1)
j |1 ≤ j ≤ k} ⊆ V1 and W2 = {v(2)

j |1 ≤ j ≤ k} ⊆ V2.
Now we show that the subgraph induced by the set W1 ∪W2 forms a balanced

complete bipartite subgraph in G. To show this, we prove that each pair of vertices

u ∈ W1, v ∈ W2 is not adjacent in G. Suppose v
(1)
i and v

(2)
j are adjacent in G.

Then, the colors of these vertices must be different. Furthermore, assume w.l.o.g.

that φ(v
(1)
i ) < φ(v

(2)
j ). Then we have a path (v

(1)
j , v

(1)
i , v

(2)
j ) with φ(v

(1)
i ) < φ(v

(1)
j ) =

φ(v
(2)
j ) contradicting the fact that φ is a ranking. Hence, the subgraph induced by

W1∪W2 is indeed a balanced complete bipartite subgraph. This proves the claim and
the NP-completeness of Vertex Ranking.

We show that the analogous result holds for bipartite graphs as well.
Theorem 3.2. Vertex Ranking remains NP-complete for bipartite graphs.
Proof. We transform the Vertex Ranking for arbitrary graphs without isolated

vertices into that for bipartite graphs.
Given the graph G, we construct a graph G′ = (V ′, E′). We define

V ′ = V ∪ {(e, i) | e ∈ E, 1 ≤ i ≤ t+ 1}

and

E′ = {{v, (e, i)} | v ∈ V, e ∈ E, 1 ≤ i ≤ t+ 1 where v ∈ e}.
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Clearly, the constructed graph G′ is a bipartite graph. Now we show that G has a
t-ranking if and only if G′ has a (t+ 1)-ranking.

Suppose G has a t-ranking φ : V → {1, . . . , t}. We construct a coloring φ̂ for

G′ in the following way. For the vertices v ∈ V we set φ̂(v) = φ(v) + 1 and for the

vertices (e, i) ∈ V ′ \ V we set φ̂((e, i)) = 1. Clearly φ̂ is a (t+ 1)-ranking of G′.
On the other hand, let φ̂ : V ′ → {1, . . . , t + 1} be a (t + 1)-ranking of G′. We

show that φ̂(v) > 1 for every vertex v ∈ V . Suppose for a contradiction that v is a

vertex of V with φ̂(v) = 1. Let e = {v, w} be an edge incident to v in G. Hence, v

is adjacent to (e, 1), (e, 2), . . . , (e, t+ 1) in G′. Then φ̂(v) = 1 implies φ̂((e, i)) > 1 for

i = 1, 2, . . . , t + 1. Since φ̂ is a (t + 1)-ranking, there are l, l′ with l 6= l′ such that

φ̂((e, l)) = φ̂((e, l′)), implying a path ((e, l), v, (e, l′)) which contradicts the assumption

that φ̂ is a ranking. This proves that φ̂(v) > 1 holds for every vertex v ∈ V . As
a consequence, for each edge e = {u, v} ∈ E, there is a vertex (e, i) ∈ V ′ with

φ̂((e, i)) < min(φ̂(u), φ̂(v)). Thus, changing φ̂ on V ′ \ V to φ̂((e, i)) = 1 for all

(e, i) ∈ V ′, we obtain another (t+1)-ranking of G′. Now we define φ(v) = φ̂(v)−1 for
every v ∈ V . The coloring φ is a t-ranking of G, since the existence of a path between
two vertices v and w of G such that φ(v) = φ(w) and all inner vertices have smaller

colors implies the existence of a path from v to w in G′ with φ̂(v) = φ̂(w) and all

inner vertices having smaller colors, contradicting the fact that φ̂ is a (t+ 1)-ranking
of G′.

4. Bounded ranking. We show that the “bounded” ranking problems—“Given
a graph G, decide whether χr(G) ≤ t (χ′r(G) ≤ t) ”—are solvable in linear time for
any fixed t. This will be done by verifying that the corresponding graph classes are
closed under certain operations.

Definition 4.1. An edge contraction is an operation of replacing two adjacent
vertices u and v of a graph G by a vertex adjacent to all vertices that were adjacent to
u or v. An edge lift is an operation of replacing two adjacent edges {u,w} and {w, v}
of a graph G by one edge {u, v}.

Definition 4.2. A graph H is a minor of the graph G if H can be obtained from
G by a series of the following operations: vertex deletion, edge deletion, and edge
contraction. A graph class G is minor closed if every minor H of every graph G ∈ G
also belongs to G.

Lemma 4.3. The class of graphs satisfying χr(G) ≤ t is minor closed for any
fixed t.

Proof. Since vertex/edge deletion cannot create new paths between monochro-
matic pairs of vertices, we only have to show that edge contraction does not in-
crease the ranking number. Let G = (V,E) be a graph with χr(G) ≤ t, and assume
H = (V ′, E′) is obtained from G by contracting the edge {u, v} ∈ E into a new vertex

ûv. Suppose φ is a t-ranking of G. We construct a coloring φ̂ : V ′ → {1, 2, . . . , t} of
H as follows:

φ̂(x) =

{
φ(x) if x ∈ V \ {u, v}
max(φ(u), φ(v)) if x = ûv.

Suppose φ̂ is not a t-ranking of H. Then there is a path P = (x0, x1, . . . , xs), s ≥ 1,

of H such that φ̂(x0) = φ̂(xs) > φ̂(xi) for every i ∈ {1, 2, . . . , s − 1}. Since φ is a
t-ranking of G the vertex ûv must occur in the path P . Depending on its neighbors
in P we can “decontract” ûv in the path P into u, v, u—v or v—u getting a path P ′

of G violating the ranking condition, in contradiction to the choice of φ.
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Corollary 4.4. For each fixed t, the class of graphs satisfying χr(G) ≤ t can
be recognized in linear time.

Proof. In [1], using results from Robertson and Seymour [22, 23], it is shown that
every minor closed class of graphs that does not contain all planar graphs has a linear
time recognition algorithm. The result now follows directly from Lemma 4.3.

Regarding edge rankings, a simple argument yields a much stronger assertion as
follows.

Theorem 4.5. For each fixed t, the class of connected graphs satisfying χ′r(G) ≤ t
can be recognized in constant time.

Proof. For any fixed t, there are only a finite number of connected graphs G with
χ′r(G) ≤ t, as necessary conditions are that the maximum degree of G is at most t,
and the diameter of G is bounded by 2t − 1.

Certainly, the above theorem immediately implies that the graphs G satisfying
χ′r(G) ≤ t can be recognized in linear time by inspecting the connected components
separately. This result might have also been obtained via more involved methods
using results of Robertson and Seymour on graph immersions [21]. Similarly, one
can show that for fixed t and d, the class of connected graphs with χr(G) ≤ t and
maximum vertex degree d can be recognized in constant time.

Definition 4.6. A graph H is an immersion of the graph G if H can be obtained
from G by a series of the following operations: vertex deletion, edge deletion, and edge
lift. A graph class G is immersion closed if every immersion H of a graph G ∈ G also
belongs to G.

The proof of the following lemma is similar to that of Lemma 4.3 and is omitted.
Lemma 4.7. The class of graphs satisfying χ′r(G) ≤ t is immersion closed for

any fixed t.
Linear-time recognizability of the class of graphs satisfying χ′r(G) ≤ t now also

follows from Lemma 4.7, the results of Robertson and Seymour, and the fact that
graphs with χ′r(G) ≤ t have treewidth at most 2t+ 2.

5. Computing the vertex ranking number on graphs with bounded
treewidth. In this section, we show that one can compute χr(G) of a graph G with
treewidth at most k in polynomial time, for any fixed k. Such a graph is also called a
partial k-tree. This result implies polynomial-time computability of the vertex ranking
number for any class of graphs with a uniform upper bound on the treewidth, e.g.,
outerplanar graphs, series-parallel graphs, Halin graphs.

The notion of treewidth has been introduced by Robertson and Seymour (see,
e.g., [22]). See [2] for an overview on this notion.

Definition 5.1. A tree-decomposition of a graph G = (V,E) is a pair (X,T )
with X = {Xi | i ∈ I} being a collection of subsets of V , and T = (I, F ) being a tree,
such that

(i)
⋃
i∈I Xi = V ;

(ii) for all edges {v, w} ∈ E there is an i ∈ I with v, w ∈ Xi;
(iii) for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree-decomposition (X,T ) with {Xi | i ∈ I} is maxi∈I |Xi| − 1. The
treewidth of a graph G = (V,E) is the minimum width over all tree-decompositions
of G.

When the treewidth of G = (V,E) is bounded by a constant k, one can find in
O(n) time a tree-decomposition (X,T ) of width at most k, such that I = O(n) and
T is a rooted binary tree [1]. Denote the root of T as r. We say (X,T ) is a rooted
binary tree-decomposition.
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Definition 5.2. A terminal graph is a triple (V,E,Z), with (V,E) being an
undirected graph, and Z ⊆ V being a subset of the vertices, called the terminals.

To each node i of a rooted binary tree-decomposition (X,T ) of graph G = (V,E),
we associate the terminal graph Gi = (Vi, Ei, Xi), where Vi =

⋃{Xj | j = i or j is
a descendant of i}, and Ei = {{v, w} ∈ E | v, w ∈ Vi}. As shorthand notation we
write p(v, w,G, φ, α), if and only if there is a path in G from v to w with all internal
vertices having colors, smaller than α under coloring φ. If p(v, w,G, φ, α), we denote
with P(v, w,G, φ, α) the set of paths in G from v to w with all internal vertices having
colors (using color function φ), smaller than α. In the following, suppose t is given.

Definition 5.3. Let G = (V,E,Z) be a terminal graph, and let φ : V →
{1, . . . , t} be a vertex t-ranking of (V,E). The characteristic of φ, Y (φ), is the quadru-
ple (φ|Z , f1, f2, f3), where

(i) φ|Z is the function φ, restricted to domain Z;
(ii) f1 : Z × {1, . . . , t} → {true,false}, is defined by: f1(v, i) = true if and only

if φ(v) = i or there is a vertex x ∈ V with φ(x) = i and p(v, x,G, φ, i);
(iii) f2 : Z × Z × {1, . . . , t} → {true,false}, is defined by: f2(v, w, i) = true, if

and only if there is a vertex x ∈ V with φ(x) = i, p(v, x,G, φ, i) and p(w, x,G, φ, i);
and

(iv) f3 : Z × Z → {1, . . . , t,∞} is defined by: f3(v, w) is the smallest integer t′

such that p(v, w,G, φ, t′). If {v, w} ∈ E then f3(v, w) = 0, and if there is no path
from v to w in G, then f3(v, w) = ∞.

Definition 5.4. A set of characteristics S of vertex t-rankings of a terminal
graph G is a full set of characteristics of vertex t-rankings for G (in short, a full set
for G), if and only if for every vertex t-ranking φ of G, Y (φ) ∈ S.

A set C of vertex t-rankings of a terminal graph G is an example set of vertex t-
rankings forG (in short, an example set for G), if and only if for every vertex t-ranking

φ of G, there is a φ̂ ∈ C with Y (φ) = Y (φ̂), or, equivalently, the set of characteristics
of the elements of C forms a full set of characteristics of vertex t-rankings for G.

If t = O(logn), then a full set of characteristics of vertex t-rankings of G =
(V,E,Z) (with |Z| ≤ k+1, k constant) has size polynomial in V : there are O(logk+1n)

possible values for φ|Z , 2O((k+1) log n) possible values for f1, 2O((k+1)2 log n) possible

values for f2, and O(log
1
2k(k+1) n) possible values for f3. The following lemma, given

in [3], shows that we can ensure this property for graphs with treewidth at most k for
fixed k.

Lemma 5.5. If the treewidth of G = (V,E) is at most k, then χr(G) = O(k ·
logn).

Let (X,T ) be a rooted binary tree-decomposition of G. Suppose j ∈ I is a
descendant of i ∈ I in T . Suppose φ is a vertex t-ranking of Gi. The restriction of
φ to Gj is the function φ|Gj

: Vj → {1, . . . , t}, defined by ∀v ∈ Vj : φ|Gj
(v) = φ(v).

Clearly, φ|Gj is a vertex t-ranking of Gj . If φ̂ is another vertex t-ranking of Gj , we

define the function R(φ, φ̂) : Vi → {1, . . . , t}, by

R(φ, φ̂)(v) =

{
φ(v) if v ∈ Vi \ Vj ,
φ̂(v) if v ∈ Vj .

Lemma 5.6. Let (X,T ) be a rooted binary tree-decomposition of G = (V,E). Let

j be a descendant of i. Let φ be a vertex t-ranking of Gi and φ̂ a vertex t-ranking of Gj.

If Y (φ|Gj ) = Y (φ̂), then R(φ, φ̂) is a vertex t-ranking of Gi, and Y (φ) = Y (R(φ, φ̂)).
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Proof. For brevity, we write φ̃ = R(φ, φ̂), W1 = (Vi \Vj)∪Xj , W2 = Vj \Xj , and

Y (φ|Gj
) = Y (φ̂) = (φ̂|Xj

, f1, f2, f3).

We start by proving two claims.

Claim 5.6.1. For all v, w ∈ W1 and all t′ ≤ t, p(v, w,Gi, φ, t
′) ⇔

p(v, w,Gi, φ̃, t
′).

Proof. Let v, w ∈ W1, and suppose we have a path P ∈ P(v, w,Gi, φ, t
′).

We consider those parts of the path P that are part of Gj : write P =
(P0, P

′
0, P1, P

′
1, . . . , Pr−1, P

′
r−1, Pr), such that each Pα (0 ≤ α ≤ r) is a path with

all vertices in W1, and each P ′
α (0 ≤ α ≤ r − 1) is a path in Gj . (Each path is a

collection of successive edges, i.e., the last vertex of a path is the first vertex of the
next path.) Write vα for the first vertex on path P ′

α and wα for the last vertex on
path P ′

α (0 ≤ α ≤ r − 1). Note that P ′
α ∈ P(vα, wα, Gj , φ, t

′); hence f3(vα, wα) ≤ t′.
We now have that there also exists a path P ′′

α ∈ P(vα, wα, Gj , φ̂, t
′). (In other words,

there exists a path from vα to wα in Gj such that all colors of internal vertices are

smaller than t′, using coloring φ (or, equivalently, φ|Gj
). As φ|Gj

and φ̂ have the same

characteristics, there also exists such a path using color function φ̂.) Now, the path
formed by the sequence (P0, P

′′
0 , P1, P

′′
1 , . . . , Pr−1, P

′′
r−1, Pr) is a path in Gi between v

and w with all colors of internal vertices smaller than t′; hence p(v, w,Gi, φ̃, t
′). This

shows: p(v, w,Gi, φ, t
′) ⇒ p(v, w,Gi, φ̃, t

′). p(v, w,Gi, φ, t
′) ⇐ p(v, w,Gi, φ̃, t

′) can be
shown in the same way.

Claim 5.6.2. For all v ∈W1 and all t′ ≤ t, there exists a vertex w ∈ Vi (w ∈ Vj)
with p(v, w,Gi, φ, t

′) and φ(w) = t′, if and only if there exists a vertex w′ ∈ Vi
(w′ ∈ Vj) with p(v, w′, Gi, φ̃, t

′), and φ̃(w′) = t′.
Proof. Let w ∈ Vi with p(v, w,Gi, φ, t

′) and φ(w) = t′. If w ∈ W1, then, by
Claim 5.6.1, we have p(v, w,Gi, φ̃, t

′). Otherwise, let x be the last vertex on a path
P ∈ P(v, w,Gi, φ, t

′) that belongs to W1. Write P = (P ′, P ′′), where x is the last
vertex of P ′ and the first vertex of P ′′. P ′ ∈ P(v, x,Gi, φ, t

′); hence there exists a
path Q′ ∈ P(v, x,Gi, φ̃, t

′). P ′′ ∈ P(x,w,Gj , φ|Gj
, t′); hence f1(x, t

′) = true. Using

equality of the characteristics of φ|Gj and φ̂, we have that there exists a vertex w′ ∈ Vj

with φ̂(w′) = t′ = φ̃(w′) and a path Q′′ ∈ P(x,w′, Gj , φ̂, t
′). Furthermore, φ̃(x) < t′:

x ∈ W1 is adjacent to a vertex in W2, thus x ∈ Xj , and φ|Xj
= φ̂|Xj

= φ̃|Xj
,

so φ̃(x) = φ(x) < t′. (The latter inequality holds because x is an internal vertex of
P ∈ P(v, w,Gi, φ, t

′).) Therefore, (Q′, Q′′) is a path from v to w′ inGi with all internal
vertices of color (under color function φ̃) smaller than t′, and hence p(v, w′, Gi, φ̃, t

′).
The reverse implication of the claim can be shown in a similar way.

We now show that φ̃ is a vertex t-ranking, or, equivalently, that for all v, w ∈ Vi,
if φ̃(v) = φ̃(w), then ¬p(v, w,Gi, φ̃, φ̃(v)). Let v, w ∈ Vi with φ̃(v) = φ̃(w) = t′, v 6= w
be given. We consider four cases.

1. v, w ∈ W1. If p(v, w,Gi, φ̃, t
′), then by Claim 5.6.1, p(v, w,Gi, φ, t

′), and
φ(v) = φ̃(v) = t′, φ(w) = φ̃(w) = t′; hence φ is not a vertex ranking, which is a
contradiction.

2. v ∈ W1, w ∈ W2. If p(v, w,Gi, φ̃, t
′), then by Claim 5.6.2, there exists a

w′ ∈ Vi with p(v, w′, Gi, φ, t
′) and φ(w′) = φ(v); hence, again φ is not a vertex

ranking, which is a contradiction.
3. w ∈W1, v ∈W2. This is similar to Case 2.
4. v, w ∈ W2. Let P ∈ P(v, w,Gi, φ̃, t

′). If all vertices on P belong to W2,

then P is a path in Gj , and hence φ̂ was not a vertex ranking of Gj , which is a
contradiction. So, there exist vertices on P that belong to W1.
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Let x be the first vertex on P that belongs to W1. Then φ̃(x) < t′ and P = (P1, P2),
with P1 ∈ P(v, x,Gj , φ̃, t

′) and P2 ∈ P(x,w,Gi, φ̃, t
′). By Claim 5.6.2, there must

exist vertices v′, w′ ∈ Vj with φ(v′) = φ(w′) = t′ and paths Q1, Q2, with Q1 ∈
P(v′, x,Gj , φ, t

′), Q2 ∈ P(x,w′, Gi, φ, t
′). Since x is a vertex in W1 that is adjacent

to a vertex in W2, we have that x ∈ Xj , and φ|Xj = φ̂|Xj
= φ̃|Xj

, φ(x) = φ̃(x) < t′.
Therefore, the path Q = (Q1, Q2) is a path from v′ to w′ with all internal vertices of
color (with color function φ) less than t′. Hence φ is not a vertex ranking, which is a
contradiction.

It remains to show that Y (φ) = Y (φ̃). Clearly, φ|Xi
= φ̃|Xi

. Suppose Y (φ) =
(φ|Xi

, g1, g2, g3) and Y (φ̃) = (φ|Xi
, g′1, g

′
2, g

′
3). It follows directly from Claim 5.6.2 that

g1 = g′1.

Consider v, w ∈ Xi, t
′ ∈ {1, . . . , t}. Suppose g2(v, w, t

′) = true. Let x ∈ Vi
be the vertex with φ(x) = t′ and p(v, x,Gi, φ, t

′) and p(w, x,Gi, φ, t
′). If x ∈ W1,

then by Claim 5.6.1, p(v, x,Gi, φ̃, t
′) and p(w, x,Gi, φ̃, t

′); hence g′2(v, w, t
′) = true.

If x ∈ W2, then let P1 ∈ P(v, x,Gi, φ, t
′) and let P2 ∈ P(w, x,Gi, φ, t

′). We can
write P1 = (P11, P12) with P11 ∈ P(v, y,Gi, φ, t

′), P12 ∈ P(y, x,Gj , φ, t
′), and y ∈ Xj .

(Let y be the last vertex in Xj on P1.) Note that φ(y) = φ̃(y) < t′, as φ|Xj =

φ̃|Xj = φ̂|Xj . Similarly, we can write P2 = (P21, P22) with P21 ∈ P(w, z,Gi, φ, t
′),

P22 ∈ P(z, x,Gj , φ, t
′), and z ∈ Xj . This implies that f2(y, z, t

′) is true. Hence,

there is a vertex x′ with paths P ′
12 ∈ P(y, x′, Gj , φ̃, t

′) and P ′
22 ∈ P(z, x′, Gj , φ̃, t

′),
and with φ̃(x′) = t′. Also, by Claim 5.6.1 we have paths P ′

11 ∈ P(v, y,Gi, φ̃, t
′) and

P ′
21 ∈ P(w, z,Gi, φ̃, t

′). Now, using path (P ′
11, P

′
12) from v to x′ and path (P ′

21, P
′
22)

from w to x′, it follows that g′2(v, w, t
′) is true. So g2(v, w, t

′) ⇒ g′2(v, w, t
′). An

almost identical argument shows g′2(v, w, t
′) ⇒ g2(v, w, t

′); hence g2 = g′2.

Finally, it follows directly from Claim 5.6.1 that g3 = g′3.

We now describe our algorithm. After a rooted binary tree-decomposition (X,T )
of G = (V,E) has been found (in linear time [1]), the algorithm computes a full set
and an example set for every node i ∈ I, in a bottom-up order. Clearly, when we have
a full set for the root node of T , we can determine whether G has a vertex t-ranking,
as we only have to check whether the full set of the root is nonempty. If so, any
element of the example set of the root node gives us a vertex t-ranking of G.

It remains to show that we can compute for any node i ∈ I a full set and an
example set, given a full set and an example set for each of the children of i ∈ I.
This is straightforward for the case that i is a leaf node: enumerate all functions
φ : Xi → {1, . . . , t}; for each such function φ, test whether it is a vertex t-ranking of
Gi, and if so, put φ in the example set, and Y (φ) in the full set of characteristics.

Next, suppose i ∈ I has two children j1 and j2. (If i has one child j1, then we
can add another child j2, which is a leaf in T and has Xj2 = Xi.) Suppose we have
example sets C1, C2 for Gj1 and Gj2 . We compute a full set S and an example set C
for Gi in the following way.

Initially, we take S and C to be empty.

For each triple (φ1, φ2, φ3), where φ1 is an element of C1, φ2 is an element of C2,
and φ3 is an arbitrary function φ3 : Xi \ (Xj1 ∪Xj2) → {1, . . . , t}, do the following:

(i) Check whether for all v ∈ Xj1∩Xj2 , φ1(v) = φ2(v). If not, skip the following
steps and proceed with the next triple.
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(ii) Compute the function φ : Xi → {1, . . . , t}, defined as follows:

φ(v) =




φ1(v) if v ∈ Vj1
φ2(v) if v ∈ Vj2
φ3(v) if v ∈ Xi \ (Xj1 ∪Xj2).

(iii) Check whether φ is a vertex t-ranking of Gi. If not, skip the following steps
and proceed with the next triple.

(iv) Compute Y (φ).
(v) If Y (φ) 6∈ S, then put Y (φ) in S and put φ in C.

We claim that the resulting sets S and C form a full set and an example set for Gi.
Consider an arbitrary vertex t-ranking φ̂ of Gi. Let φ1 ∈ C1 be the vertex t-ranking of
Gj1 that has the same characteristic as φ̂|Gj1

. By definition of example set, φ1 must

exist. Similarly, let φ2 ∈ C2 fulfill Y (φ2) = Y (φ̂|Gj2
). Let φ3 : Xi \ (Xj1 ∪ Xj2) →

{1, . . . , t} be defined by φ3(v) = φ̂(v) for all v ∈ Xi \(Xj1 ∪Xj2). When the algorithm
processes the triple (φ1, φ2, φ3), the first test will hold. Suppose φ is the function,

computed in the second test. Now note that φ = R(R(φ̂, φ1), φ2). Hence, by Lemma

5.6, φ is a vertex t-ranking and has the same characteristic as φ̂. Hence, S will contain
Y (φ), and C will contain a vertex t-ranking of Gi with the same characteristic as φ

and φ̂.
As the size of a full set, and hence of an example set for graphs Gi, i ∈ I, is

polynomial, it follows that the computation of a full set, and an example set from these
sets associated with the children of the node, can be done in polynomial time. (There
are a polynomial number of triples (φ1, φ2, φ3). For each triple, the computation given
above costs polynomial time.) As there are a linear number of nodes of the tree-
decomposition, computing whether there exists a vertex t-ranking costs polynomial
time (assuming t = O(logn)). By testing for each applicable value of t (see Lemma
5.5) for the existence of vertex t-rankings of G, we obtain the following result.

Theorem 5.7. For any fixed k, there exists a polynomial time algorithm that
determines the vertex ranking number of graphs G with treewidth at most k and finds
an optimal vertex ranking of G.

6. The equality χr = χ. In this section we consider questions related to the
equality of the chromatic number and the vertex ranking number of graphs.

Theorem 6.1. If χr(G) = χ(G) holds for a graph G, then G also satisfies
χ(G) = ω(G).

Proof. Suppose that G = (V,E) has a vertex t-ranking φ : V → {1, 2, . . . , t} with
t = χ(G). We are going to consider the separator tree T (φ) of this t-ranking. Recall
that T (φ) is a rooted tree and that to every internal node of T (φ) a subset of the
vertex set of G is assigned such that the subset is a separator of the corresponding
subgraph of G; namely, more than one component arises when all subsets on the
path from the node to the root are deleted from the graph. Furthermore, all vertices
assigned to the nodes of a path from a leaf to the root of T (φ) have pairwise different
colors.

The goal of the following recoloring procedure is to show that either χ(G) = ω(G)
or we can recolor G to obtain a proper coloring with a smaller number of colors.
However, the latter contradicts the choice of the χ(G)-ranking φ.

We label the nodes of the tree T (φ) according to the following marking rules.
1. Mark a node s of T (φ) if the union U(s) of all vertex sets assigned to all

nodes on the path from s to the root is not a clique in G.
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2. Also, mark a leaf l of T (φ) if the union U(l) of all vertex sets assigned to all
nodes on the path from l to the root is a clique in G, but |U(l)| < t.

Case 1. There is an unmarked leaf l.

We have |U(l)| = t and U(l) is a clique. Hence, ω(G) = χ(G).

Case 2. There is no unmarked leaf.

We will show that this would enable us to recolor G saving one color, contradicting
the choice of φ.

Since every leaf of T (φ) is marked, every path from a leaf to the root consists
of marked nodes eventually followed by unmarked nodes. Consequently, there is a
collection of marked branches of T (φ), i.e., subtrees of T (φ) induced by one node and
all its descendants for which all nodes are marked and the father of the highest node
of each branch is unmarked or the highest node is the root of T (φ) itself.

If the root of T (φ) is marked then we have exactly one marked branch, namely
T (φ) itself. Then, by definition, the separator S assigned to the root is not a clique.
However, none of its colors is used by the ranking for vertices in V \ S. Simply, any
coloring of the separator S with fewer than | S | colors will produce a coloring of G
with fewer than χ(G) colors; this is a contradiction.

If the root is unmarked, then we have to work with a collection of b marked
branches, b > 1. Notice that all color-1 vertices of G are assigned to leaves of T (φ)
and that any leaf of T (φ) belongs to some marked branch B. We are going to recolor
the graph G by recoloring the marked branches one by one such that the new coloring
of G does not use color 1. Let us consider a marked branch B. Let h be its highest
node in T (φ) and S(h) the set assigned to h. Since h is marked but the root is
unmarked, there must exist a vertex x of S(h) and a vertex y belonging to U(h)
which are nonadjacent. Then φ(x) 6= φ(y), since all vertices of U(h) have pairwise
different colors.

Assume φ(x) = 1 or φ(y) = 1. Then h is a leaf of T (φ). Hence, x and y,
respectively, are the only color-1 vertices of G assigned to a node of B. We simply
recolor x and y with max(φ(x), φ(y)).

Finally, consider the case φ(x) 6= 1 and φ(y) 6= 1. All color-1 vertices in the
subgraph of G corresponding to B are recolored with φ(x) and x is recolored with
φ(y). By the construction of T (φ), this does not influence other parts of the graph,
since they are separated by vertex sets with higher colors.

Having done this operation in every marked branch, eventually we get a new
color assignment of G which is still a proper coloring (though usually not a ranking).
Since all leaves of T (φ) are marked and no internal node of T (φ) contains color-1
vertices, color 1 is eliminated from G, contradicting the assumption χr(G) = χ(G).
Consequently, Case 2 cannot occur, implying χ(G) = ω(G). This completes the
proof.

Clearly, χr(G) = χ(G) does not imply that G is a perfect graph. (Trivial coun-
terexamples are of the form G = G′ ∪ Kχr(G′) where G′ is an arbitrary imperfect
graph.) On the other hand, if we require the equality on all induced subgraphs, then
we remain with a relatively small class of graphs that is also called “trivially perfect”
in the literature (cf. [12]).

Theorem 6.2. A graph G = (V,E) satisfies χr(G[A]) = χ(G[A]) for every
A ⊆ V if and only if neither path P4 nor cycle C4 is an induced subgraph of G.

Proof. The condition is necessary since χr(P4) = χr(C4) = 3 and χ(P4) =
χ(C4) = 2.

Now let G be a P4-free and C4-free graph. The graphs with no induced P4



RANKINGS OF GRAPHS 179

and C4 are precisely those in which every connected induced subgraph H contains a
dominating vertex w, i.e., w is adjacent to all vertices of H [27]. Hence, the following
efficient algorithm produces an optimal ranking in such graphs: if H = (V ′, E′)
is connected, then we assign the color ω(H) to a dominating vertex w. Clearly,
χ(H[V ′ \ {w}]) = ω(H[V ′ \ {w}]) = ω(H) − 1, and it is easily seen that χr(H[V ′ \
{w}]) = χr(H)−1 also holds; thus, induction can be applied. On the other hand, if H
is disconnected, then an optimal ranking can be generated in each of its components
separately.

7. Edge rankings of complete graphs. While obviously χr(Kn) = n, it is
not easy to give a closed formula for the edge ranking number of the complete graph.
The most convenient way to determine χ′r(Kn) seems to introduce a function g(n) by
the rules

g(1) = −1,
g(2n) = g(n),
g(2n+ 1) = g(n+ 1) + n.

In terms of this g(n), the following statement can be proved.
Theorem 7.1. For every positive integer n,

χ′r(Kn) =
n2 + g(n)

3
.

Proof. The assertion is obviously true for n = 1, 2, 3. For larger values of n we
are going to apply induction.

Similarly to vertex t-rankings, the following property holds for every edge t-
ranking of a graph G = (V,E): if i is the largest color occurring more than once,
then the edges with colors i + 1, i + 2, . . . , t form an edge separator of G. Moreover,
doing an appropriate relabeling of these colors i + 1, i + 2, . . . , t we get a new edge
t-ranking of G with the property that there is a color j > i such that all edges with
colors j, j + 1, . . . , t form an edge separator of G which is minimal under inclusion.

We have to show that the best way to choose this edge separator R with respect to
an edge ranking in a complete graph is by making the two components of G[E \R] as
equal-sized as possible. Let us consider a Kn, n ≥ 4. Let n1 and n2 be the numbers of
vertices in the components; hence, n1 +n2 = n and the corresponding edge separator
has size n1n2. Every edge ranking starting with this separator has at least

n1n2 + max{χ′r(Kn1), χ
′
r(Kn2)} = n1n2 + χ′r(Kmax{n1,n2})

colors, and there is indeed one using exactly that many colors. Defining a1 :=
min(n1, n2) and repeating the same argument for n′ := n− a1, and so on, we eventu-
ally get a sequence of positive integers a1, . . . , as, for some s, such that

∑s
i=1 ai = n

and

ai ≤
∑
i<j≤s

aj for all i, 1 ≤ i < s.(1)

Notice that at least the last two terms of any such sequence are equal to 1. It is
easy to see that the number of colors of any edge ranking represented by a1, . . . , as is
equal to

∑
1≤i<j≤s aiaj , consequently,

χ′r(Kn) = min
∑

1≤i<j≤s
aiaj =

(
n

2

)
−max

s∑
i=1

(
ai
2

)
,
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subject to condition (1). Since a decreasing sort of the sequence maintains (1) we may
assume a1 ≥ a2 ≥ · · · ≥ as. Thus, for each value of n, min

∑
1≤i<j≤s aiaj is attained

precisely by the unique sequence satisfying ai = b 1
2

∑
i≤j≤s ajc for all i, 1 ≤ i < s. In

particular, we obtain

χ′r(Kn) = χ′r(Kdn/2e) + bn/2cdn/2e.

Applying this recursion, it is not difficult to verify that, indeed, χ′r(Kn) can be written
in the form 1

3 (n2 + g(n)), where g(n) is the function defined above.
Observing that g(2n) = −1 for all n ≥ 1, we obtain the following interesting

result.
Corollary 7.2.

χ′r(K2n) =
4n − 1

3
.

8. Conclusions. We studied algorithmic and graph theoretic properties of rank-
ings of graphs. For many special classes of graphs, the algorithmic complexity of
Vertex Ranking is now known. However, the algorithmic complexity of Vertex
Ranking when restricted to chordal graphs or circle graphs is still unknown. Fur-
thermore, it is not even known whether the Edge Ranking problem is NP-complete.

We started a graph theoretic study of vertex ranking and edge ranking as a
particular kind of proper (vertex) coloring and proper edge coloring, respectively.
Much research has to be done in this direction. It is of particular interest which of
the well-known problems in the theory of vertex colorings and edge colorings are also
worth studying for vertex rankings and edge rankings.
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Abstract. An urn contains m balls of value −1 and p balls of value +1. At each turn a ball
is drawn randomly, without replacement, and the player decides before the draw whether or not to
accept the ball, i.e., the bet where the payoff is the value of the ball. The process continues until all
m+ p balls are drawn. Let V (m, p) denote the value of this acceptance (m, p) urn problem under an
optimal acceptance policy. In this paper, we first derive an exact closed form for V (m, p) and then
study its properties and asymptotic behavior. We also compare this acceptance (m, p) urn problem
with the original (m, p) urn problem which was introduced by Shepp [Ann. Math. Statist., 40 (1969),
pp. 993–1010]. Finally, we briefly discuss some applications of this acceptance (m, p) urn problem
and introduce a Bayesian approach to this optimal stopping problem. Some numerical illustrations
are also provided.
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1. Introduction. In [7], Shepp considered the following optimal stopping prob-
lem: An (m, p) urn contains m balls of value −1 and p balls of value +1, and the
player is allowed to draw balls randomly, without replacement, until he wants to stop.
Shepp was interested in finding, for what m and p, if there is an optimal drawing
policy for which V (m, p) is positive, where V (m, p) is the value of this (m, p) urn
problem under an optimal drawing policy. In particular, he showed that for every
positive integer p there is a positive integer β(p) for which V (m, p) > 0 or = 0, with
0 ≤ m ≤ β(p) or m > β(p) accordingly. In [2, 3], Boyce, motivated by applications to
financial and marketing problems, also studied this (m, p) urn problem. In [4], Chen
and Hwang derived some new properties of V (m, p) that give additional insight into
the structure of the optimal drawing policy for this (m, p) urn problem.

In this paper, we study a new (m, p) urn problem that we call an acceptance
(m, p) urn problem and that can be simply described as follows: An urn contains m
balls of value −1 and p balls of value +1. At each turn a ball is drawn randomly,
without replacement, and the player decides before the draw whether or not to accept
the ball, i.e., the bet where the payoff is the value of the ball. The process will
continue until all m + p balls are drawn. We are interested in the value V (m, p)
of this acceptance (m, p) urn problem under an optimal acceptance policy. We
first derive an exact closed form for V (m, p) by a simple probabilistic argument and
obtain inequalities of the form V (m, p) < V (m+ 1, p+ 1), in the spirit of [3] and [4]
for the original urn problem. Then we study the asymptotic behavior of V (m, p). We
also compare this acceptance (m, p) urn problem with the original (m, p) urn problem.
Finally, we briefly indicate an application of this acceptance urn version of the optimal
policy problematics to (in-and-out) bond trading and introduce a Bayesian approach
to this optimal stopping problem. Some numerical illustrations are also provided.

∗Received by the editors February 27, 1995; accepted for publication (in revised form) January
30, 1997.

http://www.siam.org/journals/sidma/11-2/28214.html
†Department of Mathematics and Computer Science, University of Miami, Coral Gables, FL

33124 (chen@cs.miami.edu, zame@cs.miami.edu).
‡AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 (amo@research.att.com,

las@research.att.com).

183



184 ROBERT CHEN, ALAN ZAME, ANDREW ODLYZKO, AND LARRY SHEPP

2. Exact solutions of V (m, p). For each nonnegative integer m and p such
that m + p ≥ 1, let A(m, p) be the expected value of accepting the current drawn
ball from the (m, p) urn, assuming an optimal acceptance policy is followed after the
current draw, and let N(m, p) be the expected value of not accepting the current
drawn ball from the (m, p) urn, assuming an optimal acceptance policy is followed
after the current draw. It is clear that V (m, p) = max{A(m, p), N(m, p)}, A(m, p) =
(p/(m+p))(1+V (m, p−1))+(m/(m+p))(−1+V (m−1, p)), and N(m, p) = (p/(m+
p))V (m, p−1)+(m/(m+p))V (m−1, p). Hence A(m, p) = (p−m)/(m+p)+N(m, p).
Therefore, V (m, p) = A(m, p) if p ≥ m and V (m, p) = N(m, p) if p < m. The optimal
acceptance policy can now be easily stated as follows: Accept the current drawn ball if
the number of +1 balls is greater than or equal to the number of −1 balls, otherwise,
do not accept the current drawn ball.

Based on the optimal acceptance policy, we will accept the drawn balls until
the number of +1 balls is less than the number of −1 balls. Since the probability
that starting from the position (m, p)(m 6= p) and reaching the position (i, i)(i >
0 and i ≤ min{m, p}) the first time is exactly equal to the probability of starting
from the position (p,m) and reaching the position (i, i) the first time, it is easy to see
that the following two theorems hold.

THEOREM 2.1. For any nonnegative integer m and p, |V (m, p) − V (p,m)| =
|m− p|.

THEOREM 2.2. If m > p,

V (m, p) =
p∑
j=1

V (j, j)
{(

m+ p− 2j − 1
m− j − 1

)

−
(
m+ p− 2j − 1

m− j

)}
p · · · (j + 1)m · · · (j + 1)

(p+m)(p+m− 1) · · · (2j + 1)

=
p∑
j=1

D(j, j)
(m− p)

(m+ p− 2j)

(
m+p−2j
m−j

)(
m+p
p

) .

Here, D(i, j) =
(
i+j
j

)
V (i, j).

THEOREM 2.3. For any positive integer m ≥ p,

V (m, p) =
p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

) =
p−1∑
i=0

(
m+p
i

)(
m+p
p

)
= p2m+p

∫ 1
2

0
xm(1− x)p−1dx,

and V (m,m) =
(
22m−1/

(2m
m

))
− 1

2
.

Proof. Let Xi be the value of the ith ball (i = 1, 2, . . . ,m + p), and let Sk =∑m+p
i=k+1Xi be the kth (tail) partial sum (k = 0, 1, 2, ...,m + p − 1). Let N = #{k :

Sk = 0, 0 ≤ k < m + p}. Notice that P (Sk+1 = 1 | Sk = 0) = 1/2 and that
whenever Sj = 1, the player gains one unit (according to the optimal policy) by time
τ , where τ = min{k | k > j and Sk = 0}. Hence, V (m, p) = 1/2E(N). Notice that
each realization of this urn problem is an arrangement of m identical −1 balls and p
identical +1 balls and that each realization occurs with probability 1/

(
m+p
p

)
. Thus,(

m+p
p

)
E(N) =

∑
wN(w), where the sum is taken over all realizations w. Next let Ti
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be the number of realizations in which Sm+p−2i = 0. Since
∑
wN(w) =

∑p
i=1 Ti and

Ti =
(
m+p−2i
p−i

)(2i
i

)
, we have

(
m+p
p

)
E(N) =

∑p
i=1

(
m+p−2i
p−i

)(2i
i

)
. Therefore,

V (m, p) =
1
2
E(N) =

p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

) .

By the combinatorial identity,
∑p
i=1

(
m+p−2i
p−i

)(2i
i

)
= 2

∑p−1
i=0

(
m+p
i

)
; then

V (m, p) =
p−1∑
i=0

(
m+p
i

)(
m+p
p

) .
Since

l−1∑
i=0

(
n

i

)(
1
2

)n
= l

(
n

i

)∫ 1
2

0
xn−l(1− x)l−1dx,

then
p−1∑
i=0

(
m+p
i

)(
m+p
p

) = 2m+pp

∫ 1
2

0
xm(1− x)p−1dx.

By the combinatorial identity,
∑m
i=1

(2m−2i
m−i

)(2i
i

)
= 4m −

(2m
m

)
[5, p. 32]; then

V (m,m) =
22m−1(2m
m

) − 1
2
.

The proof of Theorem 2.3 is now complete.
THEOREM 2.4. For any positive integer m and p, D(m, p) = V (m, p)

(
m+p
p

)
is a

positive integer.
Proof. By Theorem 2.1, it is sufficient to consider the case when m ≥ p. By

Theorem 2.3, D(m, p) = V (m, p)
(
m+p
p

)
=
∑p−1
i=0

(
m+p
i

)
is a positive integer.

THEOREM 2.5. For any nonnegative integer m and p, V (m+1, p+1) > V (m, p).
Proof. Since V (m + 1, 1) > V (m, 0) = 0 for any nonnegative integer m, by

Theorem 2.1 we can and do assume m ≥ p ≥ 1. By Theorem 2.3,

V (m+ 1, p+ 1)− V (m, p)

= 2m+p
∫ 1

2

0
xm(1− x)p−1(4(p+ 1)x(1− x)− p

)
dx

= 2m+p
∫ 1

2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx.

It is sufficient to show that∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx > 0.

Notice that∫ 1
2

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

=
1
2

∫ 1

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx =

2p!(p+ 1)!
(2p+ 1)!

− p!p!
(2p)!

> 0.
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Let x∗ be the number in (0, 1/2) such that 4(p+1)x∗(1−x∗) = p. Then 4(p+1)x(1−
x)− p ≤ 0 if 0 ≤ x ≤ x∗ and 4(p+ 1)x(1− x)− p ≥ 0 if x∗ ≤ x ≤ 1/2. Hence,∫ 1

2

0

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
=
∫ 1

2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

−
∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx > 0;

that is, ∫ 1
2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
>

∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx.

By the Mean Value theorem,∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx
= xm−p+1

2

∫ 1
2

x∗

(
4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx

−xm−p+1
1

∫ x∗

0

(
pxp−1(1− x)p−1 − 4(p+ 1)xp(1− x)p

)
dx,

where 0 ≤ x1 ≤ x∗ ≤ x2 ≤ 1/2. Hence,∫ 1
2

0
xm−p+1(4(p+ 1)xp(1− x)p − pxp−1(1− x)p−1)dx > 0,

since m ≥ p. Therefore, V (m+ 1, p+ 1) > V (m, p) for all nonnegative integers m and
p.

THEOREM 2.6.
1. 1/(m+ p+ 1) ≤ V (m, p+ 1)− V (m, p) ≤ 1.
2. 0 ≤ V (m, p)− V (m+ 1, p) ≤ 1− (1/(m+ p+ 1)).

Proof. By Theorems 2.1 and 2.3, it is easy to check that V (m, p)−V (m+1, p) ≥ 0
and to also check that 1/(m + p + 1) ≤ V (m, p + 1) − V (m, p) is equivalent to that
V (m, p)− V (m+ 1, p) ≤ 1− (1/(m+ p+ 1)) by Theorem 2.1. Theorem 2.6 is clearly
true when n = m + p = 1. Now, by mathematical induction on n, we can prove
Theorem 2.6 easily (details are omitted).

THEOREM 2.7. For any positive integer k, V (km,m) and V (m, km) are strictly
increasing in m.

Proof. By Theorem 2.1, it is sufficient to show that V (km,m) is strictly increasing
in m. By Theorem 2.5, Theorem 2.7 holds when k = 1. Now we will prove Theorem
2.7 when k ≥ 2. By Theorem 2.3,

V (k(m+ 1),m+ 1)− V (km,m)

= 2km+m
∫ 1

2

0
xkm(1− x)m−1(2k+1(m+ 1)xk(1− x)−m

)
dx

= 2km+m
∫ 1

2

0
xm−1(1− x)m−1xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx.
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Since m ≥ 1, xm−1(1 − x)m−1 is strictly increasing and nonnegative on the interval
[0, 1/2], 2k+1(m + 1)xk(1 − x) −m ≤ 0 if 0 ≤ x ≤ x∗, ≥ 0 if x∗ ≤ x ≤ 1/2, where
0 < x∗ < 1/2. By the Mean Value theorem, it is sufficient to show that∫ 1

2

0
xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx > 0.

By a direct computation,∫ 1
2

0
xkm−m+1(2k+1(m+ 1)xk(1− x)−m

)
dx

= (1/2)km−m+2
(

2(m+ 1)
km+ k −m+ 2

− m+ 1
km+ k −m+ 3

− m

km−m+ 2

)
> 0,

since k ≥ 2. Therefore, V (k(m + 1),m + 1) − V (km,m) > 0, and the proof of
Theorem 2.7 now is complete.

3. Asymptotic behavior of V (m, p). By Theorems 2.1, 2.2, and 2.3, we have
an exact closed form solution for V (m, p). However, it is only useful when m or p is
small. In this section, we will derive some asymptotic forms for V (m, p) when m and
p→∞.

THEOREM 3.1. V (m, p)→ p/(m− p) if m/p→ λ > 1.
Proof. By Theorem 2.3,

V (m, p) =
p∑
i=1

(
m+p−2i
p−i

)(2i
i

)
2
(
m+p
p

)
∼ 1

2

∞∑
γ=1

(
2γ
γ

)(
λ

(1 + λ)2

)γ
=

1
λ− 1

=
p

m− p

if m/p→ λ > 1.
THEOREM 3.2.
1. V (m, p)/

√
p/2 → exp(α2/2)

∫∞
α

exp(−t2/2)dt if (m − p)/
√

2p → α ≥ 0 as
m, p→∞;

2. V (m, p)/
√
p/2→ 2α+exp(α2/2)

∫∞
α

exp(−t2/2)dt if (m−p)/
√

2p→ −α ≤ 0
as m, p→∞;

3. For any integer k, V (k + p, p)/
(√
πp/2

)
→ 1 as p→∞.

Proof. By Theorem 2.3, for m ≥ p,

V (m, p) =
p−1∑
k=0

(
m+p
i

)(
m+p
p

) = P (X ≤ p− 1)/P (X = p),

where X is a binomial random variable with parameters m+p and 1/2. By the central
limit theorem [1, p. 42],

P (X ≤ p− 1)/P (X = p)√
p/2

→ exp(α2/2)
∫ ∞
α

exp(−t2/2)dt

if (m− p)/
√

2p→ α ≥ 0 as m, p→∞.
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By Theorem 2.1, for m < p, V (m, p) = V (p,m) + p − m. Then, by the same
argument,

V (m, p)√
p/2

=
(p−m)√

p/2
+
V (p,m)√

p/2

→ 2α+ exp(α2/2)
∫ ∞
α

exp(−t2/2)dt

if (m− p)/
√

2p→ −α ≤ 0 as m, p→∞.
When α = 0,

∫∞
α

exp(−t2/2)dt =
√
π/2. Hence, V (k + p, p)/

(√
πp/2

)
→ 1 as

p→∞. The proof of Theorem 3.2 is now complete.

4. The original (m, p) urn problem. For any nonnegative integer m and p,
let V (m, p) be the value of the original (m, p) urn problem proposed by Shepp as
stated in section 1. We now want to compare V (m, p) and V (m, p).

THEOREM 4.1. V (m, 0) = V (m, 0) for all m = 0, 1, 2, . . . and V (0, p) = V (0, p) =
p and V (1, p) = V (1, p) = p2/(1 + p) for all p = 0, 1, 2, . . ..

Proof. Since, when p = 0 or m = 0 or 1 two problems are the same, they have
the same value.

THEOREM 4.2. For any positive integer m ≥ 2 and p ≥ 1, V (m, p) < V (m, p).
Proof. For any positive integer m and p,

V (m, p) = max
{

0,
p−m
p+m

+
m

p+m
V (m− 1, p) +

p

p+m
V (m, p− 1)

}
and

V (m, p) =
(p−m)+

p+m
+

m

p+m
V (m− 1, p) +

p

p+m
V (m, p− 1).

By Theorem 4.1, V (m, 0) = V (m, 0)for all m = 0, 1, 2, . . . and V (1, p) = V (1, p) =
p2/(p+ 1) for all p = 0, 1, 2, . . ..

Now by mathematical induction we can conclude that V (m, p) > V (m, p) for any
integers m ≥ 2 and p ≥ 1 since V (2, 1) = 1/3 > V (2, 1) = 0.

For the original (m, p) urn problem, if

E(m+ 1, p) =
m+ 1

m+ 1 + p

(
−1 + V (m, p)

)
+

p

m+ 1 + p

(
1 + V (m+ 1, p− 1)

)
≥ 0,

then V (m, p)− V (m+ 1, p) ≥ 1/(m+ 1 + p). However, for the acceptance (m, p) urn
problem, we do not have this inequality. For instance, V (1, 1)−V (2, 1) = 1/2−1/3 =
1/6 < 1/3.

In the original (m, p) urn problem, the last ball drawn, under the optimal drawing
policy, is always a +1 ball. Similarly, we have the following theorem in the acceptance
(m, p) urn problem.

THEOREM 4.3. In the acceptance (m, p) urn problem, the last ball accepted under
the optimal acceptance policy is always a +1 ball.

Proof. Under the optimal acceptance policy, one will accept the current drawn
ball if and only if the number of +1 balls is greater than or equal to the number of
−1 balls. Now if the current drawn one is a −1 ball, then the number of +1 balls
will be still greater than the number of −1 balls. Hence, the player will accept the
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next drawn ball until he gets a +1 ball. Thus, a −1 ball is never the last accepted
ball.

THEOREM 4.4.

lim
p→∞

(V (m, p+ 1)− V (m, p)) = lim
p→∞

(V (m, p)− V (m+ 1, p)) = 1,

lim
p→∞

(V (m, p+ 1)− V (m, p)) = lim
p→∞

(V (m, p)− V (m+ 1, p)) = 1.

Proof. Since limm→∞ V (m, p) = 0 for any fixed p,

lim
p→∞

(
V (m, p+ 1)− V (m, p)

)
= 1 + lim

p→∞

(
V (p+ 1,m)− V (p,m)

)
= 1.

Similarly,

lim
p→∞

(
V (m, p)− V (m+ 1, p)

)
= 1 + lim

p→∞

(
V (p,m)− V (p,m+ 1)

)
= 1.

For any nonnegative integer m and p, define

∆2Vp(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p),
∆2Vm(p) = V (m, p+ 2) + V (m, p)− 2V (m, p+ 1),

∆2V (m, p) = V (m+ 2, p) + V (m, p+ 2)− 2V (m+ 1, p+ 1),

and define ∆2V p(m), ∆2V m(p), and ∆2V (m, p) accordingly.
In [4], Chen and Hwang proved that ∆2Vp(m) ≥ 0, ∆2Vm(p) ≥ 0, and ∆2V (m, p)

≥ 0. The next theorem shows that ∆2V p(m) > 0, ∆2V m(p) > 0, and ∆2V (m, p) > 0,
for all positive integers m and p.

THEOREM 4.5. For any positive integer m and p, ∆2V m(p) > 0, ∆2V p(m) >
0,and ∆2V (m, p) > 0.

Proof. By definition, ∆2V p(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p).
Case 1. Suppose that m ≥ p; then by Theorem 2.3,

∆2V p(m) = 2m+p+2p

∫ 1
2

0
xm+2(1− x)p−1dx+ 2m+pp

∫ 1
2

0
xm(1− x)p−1dx

−2m+p+2p

∫ 1
2

0
xm+1(1− x)p−1dx

= 2m+pp

∫ 1
2

0
xm(1− x)p−1(4x2 − 4x+ 1)dx > 0.

since m ≥ 1 and p ≥ 1.
Case 2. Suppose that p = m+ 1; then by Theorems 2.1 and 2.3,

∆2V p(m) = V (m+ 2,m+ 1) + V (m,m+ 1)− 2V (m+ 1,m+ 1)

= V (m+ 2,m+ 1) + V (m+ 1,m) + 1− 2V (m+ 1,m+ 1)

=
22m+2(2m+3
m+1

) +
22m(2m+1
m

) − 22m+2(2m+2
m+1

)
= 22m+1(m+ 1)!(m+ 1)!/(2m+ 3)! > 0.
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Case 3. Suppose that p ≥ m+ 2; then by Theorems 2.1 and 2.3,

∆2V p(m) = V (m+ 2, p) + V (m, p)− 2V (m+ 1, p)
= V (p,m+ 2) + V (p,m)− 2V (p,m+ 1)

= (m+ 2)2m+p+2
∫ 1

2

0
xp(1− x)m+1dx+m2m+p

∫ 1
2

0
xp(1− x)m−1dx

−(m+ 1)2m+p+2
∫ 1

2

0
xp(1− x)mdx

= 2m+p
∫ 1

2

0
xp(1− x)m−1(4(m+ 2)(1− x)2 − 4(m+ 1)(1− x) +m

)
dx.

Notice that g(m) = 4(m + 2)(1− x)2 − 4(m + 1)(1− x) + m is strictly increasing in
m for all 0 ≤ x ≤ 1/2 and g(0) ≥ 0 if 0 ≤ x ≤ 1/2. Hence,

2m+p
∫ 1

2

0
xp(1− x)m−1(4(m+ 2)(1− x)2 − 4(m+ 1)(1− x) +m

)
dx > 0.

∆2V m(p) > 0 and ∆2V (m, p) > 0 can be proved similarly.
Based on Theorems 2.1, 2.3, and 2.5, we can also prove the following interesting

theorems.
THEOREM 4.6. For any nonnegative integer m and p,

2V (m, p) < V (m, p) + V (m+ 1, p+ 1)
< V (m+ 1, p) + V (m, p+ 1) ≤ 2V (m+ 1, p+ 1).

Proof. By Theorem 2.7, V (m, p) < V (m + 1, p + 1), and 2V (m, p) < V (m, p) +
V (m+ 1, p+ 1).

Case 1. If m = 0, then

V (m+ 1, p) + V (m, p+ 1) = V (1, p) + V (0, p+ 1) = p+ 1 + p2/(p+ 1),

V (m, p) + V (m+ 1, p+ 1) = V (0, p) + V (1, p+ 1) = p+ (p+ 1)2/(p+ 2),

and

2V (m+ 1, p+ 1) = 2V (1, p+ 1) = 2(p+ 1)2/(p+ 2).

It is easy to see that

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

Case 2. If p = 0, then

V (m, p) + V (m+ 1, p+ 1) = V (m, 0) + V (m+ 1, 1) = 1/(m+ 2),

V (m+ 1, p) + V (m, p+ 1) = V (m+ 1, 0) + V (m, 1) = 1/(m+ 1),

and

2V (m+ 1, p+ 1) = 2V (m+ 1, 1) = 2/(m+ 2).
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Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) ≤ V (m+ 1, p+ 1).

Now we assume that m ≥ 1 and p ≥ 1.
Case 3. If m ≥ p+ 1, then by Theorem 2.3

V (m, p)− V (m+ 1, p) = 2m+pp

∫ 1
2

0
xm(1− x)p−1(1− 2x)dx

and

V (m, p+ 1)− V (m+ 1, p+ 1)

= 2m+p+1(p+ 1)
∫ 1

2

0
xm(1− x)p(1− 2x)dx

= 2m+p(p+ 1)
∫ 1

2

0
xm(1− x)p−1(1− 2x)(2− 2x)dx

> 2m+pp

∫ 1
2

0
xm(1− x)p−1(1− 2x)dx.

Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1).

On the other hand,

2V (m+ 1, p+ 1)− V (m+ 1, p)− V (m, p+ 1)
= ((m− p)/(m+ p+ 2))V (m, p+ 1)− ((m− p)/(m+ p+ 2))V (m+ 1, p) > 0.

Hence,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

Case 4. If m = p, then

V (m+ 1, p+ 1) = V (m+ 1,m+ 1) = 1/2 V (m+ 1,m) + 1/2 V (m,m+ 1).

Hence,

V (m,m) + V (m+ 1,m+ 1) < 2V (m+ 1,m+ 1) = V (m,m+ 1) + V (m,m+ 1).

Case 5. If m < p, then

V (m+ 1, p) + V (m, p+ 1) = V (p,m+ 1) + V (p+ 1,m) + 2p− 2m,

V (m, p) + V (m+ 1, p+ 1) = V (p,m) + V (p+ 1,m+ 1) + 2p− 2m,

and

2V (m+ 1, p+ 1) = 2V (p+ 1,m+ 1) + 2p− 2m.

By Case 3,

V (m, p) + V (m+ 1, p+ 1) < V (m+ 1, p) + V (m, p+ 1) < 2V (m+ 1, p+ 1).

The proof of Theorem 4.6 is now complete.
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By Theorem 2.5,

V (m, p) < V (m+ 1, p+ 1) < V (m+ 2, p+ 2)

for all nonnegative integers m and p. The next theorem reveals that for all nonnegative
integers m and p, V (m+ k, p+ k) is a concave function of k.

THEOREM 4.7. For any nonnegative integer m and p, V (m, p)+V (m+2, p+2) <
2V (m+ 1, p+ 1).

Proof. By Theorem 2.1,

V (m, p)+V (m+2, p+2)−2V (m+1, p+1) = V (p,m)+V (p+2,m+2)−2V (p+1,m+1)

if m < p. Since it is easy to see that Theorem 4.7 is true when p = 0, we will assume
m ≥ p ≥ 1 in the following proof. Now for any positive integer m and p, we write
V (m, p) = V (n+ p, p), where n = m− p ≥ 0. By Theorem 2.3,

V (n+ p, p) = 2n+2pp

∫ 1
2

0
xn+p(1− x)p−1dx

= 2n
∫ 1

2

0
xn(1− x)−1p

(
4x(1− x)

)p
dx

=
1
2

∫ 1

0
g(t)ptpdt,

where g(t) =
(
1−
√

1− t
)n(1 +

√
1− t

)−1(1− t)−1/2. Hence,

V (n+ p+ 2, p+ 2)− 2V (n+ p+ 1, p+ 1) + V (n+ p, p) =
1
2

∫ 1

0
g(t)h(t)dt,

where h(t) = (p+2)tp+2−2(p+1)tp+1 +ptp. Notice that h(t) ≥ 0 if 0 ≤ t ≤ p/(p+2)
and h(t) ≤ 0 if p/(p+ 2) ≤ t ≤ 1. Also notice that∫ 1

0
h(t)dt = (p+ 2)/(p+ 3)− 2(p+ 1)/(p+ 2) + p/(p+ 1) < 0.

Hence,

V (n+ p+ 2, p+ 2) + V (n+ p, p)− 2V (n+ p+ 1, p+ 1)

=
1
2

∫ 1

0
g(t)h(t)dt =

1
2

∫ t∗

0
g(t)h(t)dt+

1
2

∫ 1

t∗
g(t)h(t)dt,

where t∗ = p/(p + 2). Hence, by the Mean Value theorem, 1/2
∫ t∗

0 g(t)h(t)dt =

1/2g(t1)
∫ t∗

0 h(t)dt and 1/2
∫ 1
t∗ g(t)h(t)dt = 1/2g(t2)

∫ 1
t∗ h(t)dt, where 0 < t1 < t∗ <

t2 < 1. Since g is strictly increasing in t, 0 ≤ t ≤ 1, 0 < g(t1) < g(t2). Since,
0 <

∫ t∗
0 h(t)dt < −

∫ 1
t∗ h(t)dt, g(t1)

∫ t∗
0 h(t)dt < −g(t2)

∫ 1
h∗ h(t)dt. Therefore,

V (n+ p+ 2, p+ 2) + V (n+ p, p)− 2V (n+ p+ 1, p+ 1)

=
1
2
g(t1)

∫ t∗

0
h(t)dt+

1
2
g(t2)

∫ 1

t∗
h(t)dt < 0,

and the proof of Theorem 4.7 is now complete.
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5. A variation of the acceptance (m, p) urn problem. In the stock market,
investors try to sell if the future price will go down and try to buy if the future price
will go up, so the following variation of the acceptance (m, p) urn problem will be a
suitable model.

An urn contains m balls of value −1 and p balls of value +1. Each turn a ball is
drawn randomly, without replacement, and the player decides before the draw whether
or not to accept and guess the ball. If he accepts and guesses correctly he gets a +1;
if he accepts and guesses incorrectly he gets a −1. The process continues until all
m+ p balls are drawn.

Let W (m, p) denote the value of this new variation. Let A0(m, p) be the expected
value of accepting the current drawn ball from the (m, p) urn and guessing it is a
−1 ball, assuming an optimal accepting and guessing policy is followed after the
current one. Let A1(m, p) be the expected value of accepting the current drawn ball
from the (m, p) urn and guessing it is a +1 ball, assuming an optimal accepting and
guessing policy is followed after this one. Let A(m, p) = max{A0(m, p), A1(m, p)},
and let N(m, p) be the expected value of not accepting the current drawn ball from
the (m, p) urn, assuming an optimal accepting and guessing policy is followed. It is
obvious that W (m, p) = max{A(m, p), N(m, p)}. Since A0(m, p) = (m/(m + p))

(
1 +

W (m − 1, p)
)

+ (p/(m + p))
(
−1 + W (m, p − 1)

)
and A1(m, p) = (m/(m + p))

(
−1 +

W (m − 1, p)
)

+ (p/(m + p))
(
1 + W (m, p − 1)

)
, A0(m, p) < A1(m, p),= A1(m, p), or

> A1(m, p) accordingly as m > p = p, or < p. Hence,

A(m, p) = (1/(m+ p))
(
|m− p|+mW (m− 1, p) + pW (m, p− 1)

)
≥ N(m, p) = (1/(m+ p))

(
mW (m− 1, p) + pW (m, p− 1)

)
,

since |m − p| ≥ 0. Therefore W (m, p) = A(m, p) = (1/(m + p))
(
|m − p| + mW (m −

1, p) + pW (m, p − 1)
)
. The optimal guessing policy is to guess that it is a −1 ball if

m > p, guess that it is a +1 ball if m < p, and guess randomly if m = p. If balls of
value +1 mean that the price will go up and balls of value −1 mean that the price will
go down, then guessing +1 means to buy and guessing −1 means to sell. The optimal
guessing policy is consistent with the optimal practice of investors. The following
theorems can be proved.

THEOREM 5.1. For any nonnegative integer i and j, W (i, j) = W (j, i).
THEOREM 5.2. For any nonnegative integer i and j, W (i, j) = V (i, j) + V (j, i).

6. A Bayesian approach to the acceptance (m, p) urn problem. In a
financial or marketing problem, the total number of balls is usually known but the
number of balls of value−1 is unknown and is a random variable. A Bayesian approach
to this optimal stopping problem would be appropriate.

Now let n = m + p be the total number of balls in the urn, and let θ be the
initial prior distribution of the random variable m (number of balls of value −1). Let
Nn(θ) denote the expected value of not accepting the current drawn ball from the urn,
assuming an optimal Bayesian acceptance policy is followed, and let An(θ) denote the
expected value of accepting the current drawn ball from the urn, assuming an optimal
Bayesian acceptance policy is followed. Let V n(θ) = max{Nn(θ), An(θ)} denote the
value of the urn with n balls and the prior distribution θ.

Let x1 be the value of the first drawn ball. It is easy to see that An(θ) =
∫ (
x1 +

V n−1(θ(x1))
)
θ(dx1) and Nn(θ) =

∫
V n−1(θ(x1))θ(dx1). Here θ(x1) is the posterior

distribution of the number of balls of value −1 after the first draw given that X1 = x1.
Since An(θ) ≥ Nn(θ) if and only if

∫
x1θ(dx1) = θ(X1 = 1) − θ(X1 = −1) ≥ 0,

one would accept the current drawn ball if θ(X1 = 1) ≥ θ(X1 = −1). Therefore, the
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optimal Bayesian acceptance policy can be simply stated as follows: for k = 1, 2, . . . , n,
the player will accept the kth drawn ball if and only if θ(Xk = 1 | x1, x2, . . . , xk−1) ≥
θ(Xk = −1 | x1, x2, . . . , xk−1) where θ(· | x1, . . . , xk−1) is the posterior distribution
of the number of −1 balls given that X1 = x1, X2 = x2, . . . , Xk−1 = xk−1.

Now suppose that the initial prior distribution θ of m (the number of −1 balls)
is uniform over the set {0, 1, 2, . . . , n}. Since

∑k
i=1Xi is a sufficient statistic for the

unknown parameter m, θ(Xk = 1 |
∑k−1
i=1 Xi) ≥ θ(Xk = −1 |

∑k−1
i=1 Xi) if an only if∑k−1

i=1 Xi ≥ 0. The player will accept the kth drawn ball if and only if
∑k−1
i=1 Xi ≥ 0.

It is worth noticing that the character of the optimal Bayesian acceptance policy is
similar to that of the optimal acceptance policy of the non-Bayesian urn problem.
However, when m is known, under the optimal acceptance policy the ball accepted
last is always a +1, but under an optimal Bayesian acceptance policy the ball accepted
last is always a −1 except for the nth ball.

The following are values of V n(θ) when θ is uniform:
n = 1, V n(θ) = 0,
n = 2, V n(θ) = 1/6,
n = 3, V n(θ) = 1/3,
n = 4, V n(θ) = 17/30.

Notice that E(m | n = 2) = 1, but V 2(θ) = 1/6 < V (1, 1) = 1/2; E(m |
n = 4) = 2, but V 4(θ) = 17/30 < V (2, 2) = 5/6. These facts are expected since
we have full information about an acceptance (m, p) urn and we have only partial
information about a random acceptance (m, p) urn, i.e., when m is a random variable.
Furthermore, V n(θ) is nondecreasing in n since the player has more times to decide
whether or not to accept.

7. Application and numerical illustration. The acceptance (m, p) urn model
studied above can be useful in the following financial situation. Suppose that we ex-
pect there will be m downs and p ups in the stock price (or bond price). Suppose
that the up or down will be on an equal scale. We buy the stock and sell it at the
next time unit. If the price goes up one unit we make a profit; otherwise we lose. Our
goal is to maximize the gain. Based on our acceptance (m, p) urn model, we should
buy the stock if and only if the number of the ups is greater than the number of the
downs. Otherwise we should not have any trading.

The variation of the acceptance (m, p) urn model discussed in section 5 can be
used in the following situation. Suppose that we expect that there will be m downs
and p ups in the stock price. If we know the price will be up, certainly we should
buy the stock and sell later. If we know the price will be down, we should sell the
stock and buy back later. Our goal is to maximize the gain between “in and out.”
The optimal strategy will be that “buy now sell later” if the number of the ups is
greater than the number of the downs; conversely, “sell now and buy back later” if
the number of the ups is less than the number of the downs.

Certainly, the numbers of the ups and downs are not known, and they are random.
Therefore, the Bayesian approach to the acceptance (m, p) urn model would be much
more suitable to the financial application. The details will be presented in another
article.

The following three tables of values of V (m, p), V (m, p), and W (m, p) are given
for the sake of comparison.

Acknowledgment. We would like to thank the referee for his invaluable com-
ments which led to a simpler and more intuitive proof of Theorem 2.3, and also for
correcting a mistake in Theorem 3.2.
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TABLE 1
V (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.10 7.20 6.31 5.43 4.58 3.75 2.95 2.21 1.53
8 8 7.11 6.22 5.35 4.49 3.66 2.86 2.11 1.43 0.84
7 7 6.13 5.25 4.39 3.56 2.76 2.01 1.34 0.66 0.23
6 6 5.14 4.29 3.45 2.66 1.91 1.23 0.66 0.23 0
5 5 4.17 3.33 2.54 1.79 1.12 0.55 0.15 0 0
4 4 3.20 2.40 1.66 1.00 0.44 0.07 0 0 0
3 3 2.25 1.50 0.85 0.34 0 0 0 0 0
2 2 1.33 0.67 0.20 0 0 0 0 0 0
1 1 0.50 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

TABLE 2
V (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.10 7.22 6.36 5.53 4.73 3.99 3.30 2.70 2.20
8 8 7.11 6.24 5.41 4.60 3.85 3.16 2.55 2.05 1.70
7 7 6.13 5.28 4.47 3.70 3.00 2.39 1.89 1.55 1.30
6 6 5.14 4.32 3.55 2.83 2.22 1.72 1.39 1.16 0.99
5 5 4.17 3.38 2.66 2.03 1.53 1.22 1.00 0.85 0.73
4 4 3.20 2.47 1.83 1.33 1.03 0.83 0.70 0.60 0.53
3 3 2.25 1.60 1.10 0.83 0.66 0.55 0.47 0.41 0.36
2 2 1.33 0.83 0.60 0.47 0.38 0.32 0.28 0.24 0.22
1 1 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10
0 0 0 0 0 0 0 0 0 0 0

TABLE 3
W (m, p).

p(plus) m(minus)
0 1 2 3 4 5 6 7 8 9

9 9 8.20 7.44 6.72 6.06 5.46 4.98 4.60 4.40 4.40
8 8 7.22 6.48 5.82 5.20 4.70 .4.32 4.10 4.10 4.40
7 7 6.26 5.56 4.94 4.40 4.00 3.78 3.78 4.10 4.60
6 6 5.28 4.64 4.10 3.66 3.44 3.44 3.78 4.32 4.98
5 5 4.34 3.76 3.32 3.06 3.06 3.44 4.00 4.70 5.46
4 4 3.40 2.94 2.66 2.66 3.06 3.66 4.40 5.20 6.06
3 3 2.50 2.20 2.20 2.66 3.32 4.10 4.94 5.82 6.72
2 2 1.66 1.66 2.20 2.94 3.76 4.64 5.56 6.48 7.44
1 1 1.00 1.66 2.50 3.40 4.34 5.28 6.26 7.22 8.20
0 0 1 2 3 4 5 6 7 8 9
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Abstract. Let vc(G) denote the minimum size of a vertex cover of a graph G = (V,E). It is
well known that one can approximate vc(G) to within a factor of 2 in polynomial time; and despite
considerable investigation, no (2−ε)-approximation algorithm has been found for any ε > 0. Because
of the many connections between the independence number α(G) and the Lovász theta function ϑ(G),
and because vc(G) = |V | − α(G), it is natural to ask how well |V | − ϑ(G) approximates vc(G). It is
not difficult to show that these quantities are within a factor of 2 of each other (|V | − ϑ(G) is never
less than the value of the canonical linear programming relaxation of vc(G)); our main result is that
vc(G) can be more than (2− ε) times |V | − ϑ(G) for any ε > 0. We also investigate a stronger lower
bound than |V | − ϑ(G) for vc(G).

Key words. vertex cover, independent sets, approximation algorithms, semidefinite program-
ming.
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1. Introduction. Let G = (V,E) be an undirected graph. By a vertex cover of
G we mean a set S ⊂ V such that for each e ∈ E at least one endpoint of e lies in S.
Thus, a vertex cover is the complement of an independent set in G. For a graph in
which each vertex i is given a nonnegative weight wi, the problem of finding a vertex
cover of minimum total weight is a classical NP-complete problem. We are interested
here in the question of finding approximate solutions to this problem in polynomial
time.

We can formulate the problem of finding a minimum-weight vertex cover via the
following integer program. Assign a variable xi to each vertex i ∈ V ; then we have

(VC) Min
∑
i wixi

s.t. xi + xj ≥ 1, (i, j) ∈ E,
xi ∈ {0, 1}, i ∈ V.

Let us denote the optimum value of this integer program, i.e., the weight of the optimal
vertex cover, by vc(G).

It is well known that vc(G) can be approximated to within a factor of 2 in poly-
nomial time; one way to see this is as follows. We can relax the constraint that the
xi be 0-1 variables, obtaining the following linear program:

(LP) Min
∑
i wixi

s.t. xi + xj ≥ 1, (i, j) ∈ E,
0 ≤ xi ≤ 1, i ∈ V.
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Let us denote the optimum value of (LP) by lp(G). Then clearly vc(G) ≥ lp(G), but
we also have that lp(G) ≥ vc(G)/2, as the set

{i : xi ≥ 1/2},

in any feasible solution x to (LP) is easily seen to be a vertex cover for G (Hochbaum
[7]). Thus, this linear program leads to a 2-approximation algorithm for the vertex
cover problem.

There has been considerable work on the problem of finding a polynomial-time
approximation algorithm with an improved performance guarantee; the best bound
currently known is 2− log log n

2 log n [2, 13]. What is quite striking is that no polynomial-time
(2− ε)-approximation algorithm is known, for any constant ε > 0.

1.1. The present work. In this note, we consider a number of natural semidef-
inite programming relaxations of the vertex cover problem and investigate whether
any of these might provide a (2− ε)-approximation algorithm. Semidefinite program-
ming relaxations have recently proved useful in obtaining improved approximation
algorithms for a number of well-studied optimization problems, including maximum
cut and satisfiability problems [6], vertex coloring [9], and the maximum independent
set problem [1]. Probably the most well-known semidefinite programming relaxation
is the theta function ϑ(G) of Lovász [11]. This was introduced as a relaxation of
the maximum independent set problem and used in [11] to show the polynomial-time
solvability of the maximum independent set and minimum vertex coloring problems
in perfect graphs. It has been used recently in the approximation algorithms of [9]
and [1].

Let α(G) denote the maximum weight of an independent set of G, and let W =∑
i∈V wi denote the sum of all vertex weights in G. Since vc(G) = W − α(G), it is

natural to ask how well W −ϑ(G) approximates vc(G). It is not difficult to show (see
section 2) that W −ϑ(G) is always at least lp(G), and hence not more than a factor of
2 smaller than vc(G). Our main result is a corresponding lower bound; we construct
a family of unweighted graphs for which the ratio of vc(G) to n− ϑ(G) converges to
2, where n = |V |.

The techniques involved in our construction of the lower bound have also been
developed in independent work of Alon and Kahale [1] and Karger, Motwani, and
Sudan [9]. In particular, the gap between vc(G) and n − ϑ(G) can also be obtained
from a construction due independently to Alon and Kahale [1]. Their concern was
with the complement of our problem: graphs G with small independence number for
which ϑ(G) converges to 1

2n. We also note that the recent construction of Feige [4],
showing that the ratio ϑ(G)/α(G) can be as large as n1−o(1), is of no use for our
purposes; for the graphs he deals with, the ratio of vc(G) to n− ϑ(G) converges to 1,
not 2.

In the final section, we present a natural strengthening of the formulation; this
turns out to be equal to W − ϑ′(G), where ϑ′ denotes the variant of the Lovász theta
function introduced by Schrijver [14]. We currently do not know of families of graphs
for which the ratio of W − ϑ′(G) to vc(G) converges to 2, and we indicate how the
question of the existence of such examples is closely related to some open problems
in combinatorial geometry.

2. The semidefinite programming relaxation. Perhaps the most natural
way to obtain our semidefinite programming relaxation is by considering the following
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quadratic integer programming formulation of vc(G).

(VC) Min
∑
i∈V wi(1 + y0yi)/2

s.t. (y0 − yi)(y0 − yj) = 0, (i, j) ∈ E,
yi ∈ {−1,+1}, i ∈ V,
y0 ∈ {−1,+1},

where the vertex cover corresponds to the set of vertices i for which yi = y0. One
could of course get rid of y0 and/or restrict yi to be in {0, 1}, but this form simplifies
the derivation of the relaxation. We now relax this integer program to one in which
y0 and yi (i ∈ V ) are vectors in Rn+1 (where n denotes |V |).

(SD) Min
∑
i∈V wi(1 + y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
y2
i = 1, i ∈ V,
y2

0 = 1.

The constraints (y0 − yi) · (y0 − yj) = 0 for (i, j) ∈ E can also be expressed more
geometrically by saying that the midpoint 1

2 (yi+yj) must be on the sphere centered at
y0/2 and of radius 1

2 , i.e., that (yi+yj−y0
2 )2 = 1

4 . The relaxation can be reformulated as
a semidefinite program and therefore, using the ellipsoid algorithm, one can determine
its optimum to within additive errors in polynomial time. Let us denote the optimum
value of this semidefinite program by sd(G). Observe that sd(G) ≤ vc(G), since
for any vertex cover S of G, we obtain a feasible solution to the above semidefinite
program as follows. Set y0 equal to any unit vector u, and for each i ∈ V , set yi = y0
if i ∈ S and yi = −y0 if i 6∈ S.

First let us establish that we are indeed dealing with the theta function.
THEOREM 2.1. W − sd(G) = ϑ(G).
Proof. We can write W − sd(G) as

(SDc) Max
∑
i∈V wi(1− y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
y2
i = 1, i ∈ V,
y2

0 = 1.

We use the following formulation of the theta function [11]; there is a unit vector
ui ∈ Rn+1 for each vertex of G and an additional unit vector d ∈ Rn+1.

(ϑ) Max
∑
i∈V wi(d · ui)2

s.t. ui · uj = 0, (i, j) ∈ E,
u2
i = 1, i ∈ V,
d2 = 1.

We claim first that W − sd(G) ≤ ϑ(G). Given a feasible solution to (SDc), set
d = y0; for each i ∈ V , we set

ui =
y0 − yi
‖y0 − yi‖
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if y0 6= yi; otherwise we choose ui to be any unit vector orthogonal to d and to all
other unit vectors uj . For this set of unit vectors, we have ui · uj = 0 for (i, j) ∈ E.
We compute the value of the objective function as follows. If y0 6= yi, then

(d · ui)2 =
[y0 · (y0 − yi)]2

(y0 − yi)2

=
(1− y0 · yi)2

2(1− y0 · yi)

=
1
2

(1− y0 · yi).

If y0 = yi, then

(d · ui)2 = 0 =
1
2

(1− y0 · yi).

As a result, we have constructed a feasible solution to (ϑ) of value W − sd(G).
Conversely, we show that ϑ(G) ≤ W − sd(G). Given a feasible solution to (ϑ),

write y0 = d and yi = d− 2(d · ui)ui. Then y2
i = 1, and if (i, j) ∈ E, we have

(y0 − yi) · (y0 − yj) = 4(d · ui)(d · uj)(ui · uj) = 0.

Finally,

1
2

(1− y0 · yi) =
1
2

(2(d · ui)2) = (d · ui)2.

The next two results determine the exact approximation ratio achieved by sd(G),
specifically vc(G) ≤ 2sd(G), but, for any ε > 0, there exist instances for which
vc(G) > (2 − ε)sd(G). It is worth noting, however, that on many natural examples,
sd(G) is a much tighter relaxation than lp(G). For instance onKn, the complete graph
on n vertices with unit weights, one has lp(G) = 1

2n, while sd(G) = vc(G) = n− 1.
PROPOSITION 2.2. sd(G) ≥ lp(G).
Proof. Suppose we have a feasible solution to (SD), and we write xi = (1+y0·yi)/2.

Then we claim that {xi : i ∈ V } is a feasible solution to (LP). For clearly 0 ≤ xi ≤ 1,
and if (i, j) ∈ E, then (y0− yi) · (y0− yj) = 0, whence y0 · yi + y0 · yj = 1 + yi · yj and

xi + xj =
3
2

+
1
2
yi · yj ≥ 1,

as required.
THEOREM 2.3. For each ε > 0 there is a graph Gε on n = n(ε) vertices, with all

vertex weights equal to 1, for which vc(Gε)/sd(Gε) ≥ 2− ε.
Proof. For a point x ∈ Rd, let x(i) denote the ith coordinate of x. Also, let

e1, . . . , ed denote the coordinate unit vectors in Rd.
The idea is to construct a graph Gε as follows. The vertices of Gε will be the set

of all n = 2m many m-bit strings of zeroes and ones, for some sufficiently large value
of m, and two vertices will be joined by an edge if their Hamming distance is equal
to (1− γ)m, for some small γ > 0 depending on ε. Thus, two vertices will be joined
if they are nearly antipodal under the Hamming metric. We then obtain a solution
to (SD), in which all yi (i ∈ V ) are nearly orthogonal to y0, by mapping the yi to the
vertices of an “inscribed” hypercube in a copy of the m-dimensional unit ball. Thus
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sd(Gε) is close to n/2. Using a theorem of Frankl and Rödl [5], we can show that Gε
does not have large independent sets and thus show that vc(Gε) is close to n.

The details are as follows. Let ε′ be a rational number such that ε′ ≤ ε. Let

α =
ε′

4
,

β =
√

1− α2,

γ =
1
2
− (1− α)2

2β2 .

Note that γ > 0. The vertex set of Gε consists of all m-bit strings of zeroes and ones,
where the value of m will be determined below; for now, we only require that (1−γ)m
be an even integer. If i and j are vertices of Gε, then (i, j) ∈ E iff the Hamming
distance between i and j is equal to (1− γ)m.

First we compute an upper bound on sd(Gε). To do this, we construct the
following unit vectors in Rm+1. Set y0 = em+1. For i ∈ V , define yi so that y(p)

i =
β/
√
m if the pth bit of i is 1 and y(p)

i = −β/
√
m if it is 0. Finally, y(m+1)

i = α for all
i ∈ V ; thus all yi are unit vectors.

Now, if (i, j) ∈ E, then i and j have Hamming distance (1− γ)m, and hence

(y0 − yi) · (y0 − yj) = (1− α)2 + γm(β2/m)− (1− γ)m(β2/m)

= (1− α)2 − β2(1− 2γ)

= 0

by the definition of γ. Thus the given vectors constitute a feasible solution for (SD).
Moreover, the value of the objective function with these vectors is equal to 1

2 (1+α)n,
so

sd(Gε) ≤
1
2

(1 + α)n.

Now we show a lower bound on vc(Gε); for this we need the following theorem of
Frankl and Rödl [5].

Let C be a collection of m-bit strings, ξ a constant satisfying 0 <
ξ < 1

2 , and d an even integer satisfying ξm < d < (1 − ξ)m. Then
for some constant δ depending only on ξ, if |C| > (2 − δ)m, then C
contains two strings with Hamming distance exactly d.

For our purposes, choose ξ < γ and let δ denote the constant obtained by applying
this theorem. Now, let d = (1− γ)m, where m is chosen large enough so that d is an
even integer and

(2− δ)m ≤ α · 2m.

Thus, in Gε any set of more than α ·2m = αn vertices contains the two endpoints
of some edge, so the largest independent set in Gε has size at most αn. Since the
complement of any vertex cover is an independent set, this implies

vc(Gε) ≥ (1− α)n.
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The theorem now follows, since

vc(Gε)
sd(Gε)

≥ (1− α)n
1
2 (1 + α)n

≥ 2− ε.

3. Strengthening the relaxation. It turns out that we can add a set of very
natural valid inequalities to (SD) that rules out the bad example of the previous sec-
tion. As we remarked in the introduction, this new formulation (SD′) is in fact equal
to W − ϑ′(G), where ϑ′ denotes the variant of the Lovász theta function introduced
by Schrijver [14].

The new formulation is obtained by observing the following. We saw that for
any vertex cover S, we can obtain a feasible solution to (SD) by setting yi = y0
for i ∈ S and yi = −y0 for i 6∈ S. But such a solution satisfies the conditions
(y0 − yi) · (y0 − yj) ≥ 0 for all pairs of vertices i, j ∈ V , regardless of whether
(i, j) ∈ E. Thus we can write

(SD′) Min
∑
i∈V wi(1 + y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
(y0 − yi) · (y0 − yj) ≥ 0, ∀ i, j ∈ V,
y2
i = 1, i ∈ V,
y2

0 = 1.

Let us denote the optimum value of (SD′) by sd′(G).
The function ϑ′(G) was introduced by Schrijver [14]. As in the definition of ϑ,

we have a unit vector ui ∈ Rn+1 for each vertex of G and an additional unit vector
d ∈ Rn+1. We can now formulate ϑ′(G) as follows.

(ϑ′) Max
∑
i∈V wi(d · ui)2

s.t. ui · uj = 0, (i, j) ∈ E,
ui · uj ≥ 0, ∀ i, j ∈ V,
d · ui ≥ 0, i ∈ V,
u2
i = 1, i ∈ V,
d2 = 1.

By a straightforward modification of the proof of Theorem 2.1, we have the fol-
lowing.

THEOREM 3.1. sd′(G) = W − ϑ′(G).
Now it is easy to verify that the set of vectors we constructed in the proof of

Theorem 2.3 is no longer feasible for (SD′). But in fact we can say more. Let
U = {u1, . . . , un} denote a set of points in Rd, and define dU by

dU = max
ui,uj∈U

‖ui − uj‖.

We now associate a graph KU with U as follows. KU contains a vertex i for each
ui ∈ U ; we join i and j by an edge iff ‖ui − uj‖ = dU .

Graphs of the form KU are of considerable interest in combinatorial geometry
because of their role in the well-known Borsuk conjecture [3], which asked (in its
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finite form) whether χ(KU ) ≤ d + 1 for all point sets U in Rd. (This is the bound
achieved, for example, by the unit d-simplex.) This was recently answered negatively
by Kahn and Kalai [8], who constructed, for infinitely many values of d, a set U in
Rd for which χ(KU ) ≥ (1.2)

√
d.

Here we ask a related question. Let Sd−1 denote the unit sphere centered at the
origin in Rd.

QUESTION 1. Do there exist absolute constants ε > 0 and δ > 0 so that, for all
sets U of n points on Sd−1, dU ≥ 2− ε implies α(KU ) ≥ δn?

That is, does every point set of sufficiently large diameter on Sd−1 have a linear-
sized independent set in its graph KU? It is important to note that the constants ε
and δ do not depend on n or d.

The relation of this to our formulation (SD′) is contained in the following fact.
PROPOSITION 3.2. If for some c < 2 we have vc(G)/sd′(G) < c for all graphs G,

then Question 1 has an affirmative answer.
Proof. Given c < 2, let ε = 1 − c

2 > 0 and δ = ε2/4 > 0. Consider a set
U = {u1, . . . , un} on Sd−1 for which dU ≥ 2− ε.

We first claim that sd′(KU ) ≤ 2
(2−ε)2n. Select any unit vector y0 orthogonal to all

ui’s (adding one dimension if necessary). Let yi = βy0+
√

1− β2ui, where β = 4
d2
U
−1.

Observe that yi is a unit vector and that

(y0 − yi) · (y0 − yj) = ((1− β)y0 −
√

1− β2ui) · ((1− β)y0 −
√

1− β2uj)

= (1− β)2 + (1− β2)(ui · uj)
= (1− β) (1− β + (1 + β)ui · uj) .

(1)

Since the ui are unit vectors, ||ui − uj ||2 = 2− 2ui · uj . Substituting this into (1) we
derive that

(y0 − yi) · (y0 − yj) = (1− β)
(

2− 1 + β

2
||ui − uj ||2

)
≥ (1− β)

(
2− 1 + β

2
d2
U

)
= 0,

with equality if ||ui − uj || = dU . We have therefore constructed a feasible solution to
(SD′) of value 1+β

2 n = 2
d2
U
n ≤ 2

(2−ε)2n,

vc(KU ) < c
2

(2− ε)2n =
4− 4ε

4− 4ε+ ε2n <

(
1− ε2

4

)
n = (1− δ)n,

implying that α(KU ) > δn.
We do not know the answer to Question 1, but it is worth remarking on its relation

to a number of other questions.

3.1. The counterexample to Borsuk’s conjecture. In their counterexample
to Borsuk’s conjecture, Kahn and Kalai construct a family of sets {Un} such that Un
is a set of n points on a unit sphere, and α(KU ) = o(n). However, their sets Un also
have dUn =

√
2+o(1). Thus, following the proof of Proposition 3.2, their construction

is not sufficient to exhibit a family of graphs {Gn} for which vc(Gn)/sd′(Gn) ≥ c′,
for any constant c′ > 1.
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3.2. Strongly self-dual polytopes. In [12], Lovász introduces the notion of a
strongly self-dual polytope, which is defined as a polytope P in Rd with the following
properties:

(i) The vertices of P all lie on Sd−1.
(ii) For some 0 < r < 1, P is circumscribed around the sphere of radius r centered

at the origin.
(iii) There is a bijection between the vertices and facets of P so that the vector

from the origin to any vertex of P is orthogonal to the corresponding facet.
Note that in R2, an odd regular polygon satisfies these conditions. Let U(P )

denote the vertices of P . Lovász proves the following two facts:
• For each dimension d, and all ε > 0, there is a strongly self-dual polytope P

in Rd with dU(P ) ≥ 2− ε.
• For any strongly self-dual polytope P in Rd, χ(KU(P )) ≥ d+ 1.

Taken together, these two facts provide a negative answer to the following—a
slight modification of a question due to Erdős and Graham.

QUESTION 2. Do there exist absolute constants ε > 0 and C > 0 so that, for all
sets U of n points on Sd−1, dU ≥ 2− ε implies χ(KU ) ≤ C?

Clearly, an affirmative answer to Question 2 would have implied an affirmative
answer to Question 1. On the other hand, an affirmative answer to Question 1 im-
plies that if dU ≥ 2 − ε, then χ(KU ) ≤ 1 + log(1/(1−δ)) n = O(log n). This simply
corresponds to repeatedly coloring a fraction δ of the vertex set with a new color. For
this argument, we also need to observe that we could apply the affirmative answer to
Question 1 to an induced subgraph of KU (unless it is itself an independent set).

However, looking at Lovász’s construction, one finds that for the strongly self-dual
polytopes P he constructs, one always has α(KU(P )) ≥ n−1

2 (with equality achieved,
for example, on all regular odd polygons in R2). Thus, his construction is not able
to provide a negative answer to Question 1; as with [8], it does not provide a family
of graphs {Gn} for which vc(Gn)/sd′(Gn) ≥ c′, for any constant c′ > 1.

Naturally, it would be interesting to investigate other constructions of strongly
self-dual polytopes.

3.3. A graph-coloring formulation. Consider the following special case of
Question 1, to which we also do not know the answer.

QUESTION 3. Can one take some ε > 2−
√

3 in Question 1?
Then we have the following proposition.
PROPOSITION 3.3. If Question 3 has an affirmative answer, then for some C > 0

one can prove in polynomial time that a graph of chromatic number at least C log n
is not 3-colorable.

Proof. Given a graph G = (V,E), consider the problem of finding unit vectors ui
such that E is a subset of the edge set of KU and such that dU is maximized. Let
dmax be the maximum achievable. Since ||ui − uj ||2 = 2− 2ui · uj , this problem can
be formulated in terms of a semidefinite program

Min z
s.t. ui · uj = z, (i, j) ∈ E,

ui · uj ≥ z, (i, j) /∈ E,
u2
i = 1, i ∈ V.

Now suppose that Question 1 has an affirmative answer for some constants ε > 0 and
δ > 0. By the remark following Question 2, we know that if the chromatic number of
G is at least C log n (for some C depending on δ), then there are no vectors ui with the
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desired properties for which dU ≥ 2 − ε. But, in polynomial time, we can determine
dmax to within any additive error by solving the above semidefinite program. In
particular, if ε > 2 −

√
3, we can prove in polynomial time that dmax <

√
3. This

constitutes a proof that the graph is not 3-colorable, since a 3-coloring would imply
dmax ≥

√
3 (as in [9]).

Note added in proof. Jens Lagergren and Alexander Russell have recently
announced that, by weighting Lovász’s construction of strongly self-dual polytopes,
one can obtain weighted graphs for which vc(G)/sd′(G) is arbitrarily close to 2 [10].
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Abstract. Although nontrivial perfect binary codes exist only for length n = 2m−1 with m ≥ 3
and for length n = 23, many problems concerning these codes remain unsolved. Herein, we present
solutions to some of these problems. In particular, we show that the smallest nonempty intersection
of two perfect codes of length 2m − 1 consists of two codewords, for all m ≥ 3. We also provide a
complete solution to the intersection number problem for Hamming codes. Furthermore, we prove
that a perfect code of length 2m−1 − 1 is embedded in a perfect code C of length 2m − 1 if and only
if C is not of full rank. This result implies the existence of distinct generalized Hamming weights for
perfect codes, and we determine completely the generalized Hamming weights of all perfect codes
that do not contain embedded full-rank perfect codes. We further explore the close ties between
perfect codes and tilings: we prove that full-rank tilings of Fn2 exist for all n ≥ 14 and show that the
existence of full-rank tilings for other n is closely related to the existence of full-rank perfect codes
with kernels of high dimension. We briefly survey the present state of knowledge on perfect binary
codes and list several interesting and important open problems concerning perfect codes and tilings.
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1. Introduction. Let Fn2 be a vector space of dimension n over GF(2). A subset
of Fn2 is a binary code of length n. Two codes C1,C2 ⊂ Fn2 are isomorphic if there
exists a permutation π such that C2 = π(C1) = {π(c) : c∈C1}. They are equivalent
if there exists a vector a and a permutation π such that C2 = a+π(C1) = {a+π(c) :
c∈C1}. The Hamming distance between vectors x, y ∈Fn2 , denoted d(x, y), is the
number of coordinates in which x and y differ. The Hamming weight of x is given
by wt(x) = d(x,0), where 0 is the all-zero vector. Without loss of generality, we
shall assume (unless stated otherwise) that 0∈C, throughout this paper. We let 〈C〉
denote the linear span of a code C ⊂ Fn2 . The rank of C, denoted rank(C), is the
dimension of 〈C〉. We say that C is of full-rank if rank(C) = n, or equivalently, if
〈C〉 = Fn2 .

A binary code C of length n is perfect if, for some integer r ≥ 0, every x∈Fn2
is within distance r from exactly one codeword of C. The study of perfect codes
has always been one of the most fascinating subjects in coding theory. It is shown
in [32, 33, 38] that such codes exist only for r = 0, r = n, r = (n− 1)/2 with n odd,
r = 1 with n = 2m− 1, and r = 3 with n = 23. The first three cases are trivial, while
the last case corresponds to the well-known binary Golay code [20], which is known
to be unique up to equivalence [7, 28, 29]. Thus the only parameters for which there
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exist inequivalent perfect binary codes are r = 1 and n = 2m−1, with m ≥ 4, and
we shall henceforth use the word "perfect" to refer specifically to codes of this type.
The linear perfect codes are, again, unique up to equivalence — these are the well-
known Hamming codes [20]. Nonlinear perfect codes were constructed and studied
in [1, 5, 9, 12, 21, 23, 24, 26, 30, 35], among other works. Some of these constructions
are outlined in the next section.

Although perfect binary codes have been the subject of much research, many in-
teresting questions regarding these codes remain open. Herein, we provide answers to
some of these questions. In section 3, we answer the question raised in [9] and show
that, for each m ≥ 3, there exist two perfect codes C1,C2 of length n = 2m − 1 such
that |C1 ∩ C2| = 2. We also consider the more general problem of the intersection
numbers of perfect codes and provide a complete solution to this problem for the
linear (Hamming) perfect codes. In section 4, we consider the problem of embedding
a perfect code C1 of length n1 within a perfect code C2 of length n2 > n1. We prove
that a perfect code of length 2m−1 − 1 is embedded within a perfect code C of length
2m − 1 if and only if C is not of full rank. This result implies that perfect codes of
the same length can have distinct generalized Hamming weights (cf. [36]) and distinct
cardinality-length profiles (cf. [17]). We prove that the generalized Hamming weights
of a perfect code C coincide with those of the Hamming code of the same length, pro-
vided there is no full-rank perfect code embedded in C. In section 5, we investigate
the connections between perfect codes and tilings, answering some of the questions
that were left open in [5]. It was shown in [5] that full-rank tilings of Fn2 exist for all
n ≥ 112, and we prove in section 5 that, in fact, such tilings exist for all n ≥ 14.
Since full-rank tilings do not exist for n ≤ 7 (cf. [5]), this leaves only six values of n
unresolved. We show that the existence of full-rank tilings for these n is closely
related to the existence of full-rank perfect codes with high-dimensional kernels. Fi-
nally, we conclude in section 6 with a list of open problems concerning perfect codes
and tilings.

2. Constructions and properties of perfect codes. In this section, we
briefly outline two constructions of perfect codes, termed Construction A and Con-
struction B. These constructions will be used later in this paper. We also review some
of the properties of these constructions, as well as certain properties of perfect codes
in general, that are of relevance to our work.

We say that a code is even if all of its codewords have even weight. Given a code
C ⊂ Fn2 which is not even, we can extend it by an even parity coordinate to obtain
an even code, called the extended code of C. An even code C∗ of length n + 1 = 2m

is said to be extended perfect if it can be obtained by means of extending a perfect
code of length n by an even parity coordinate. Notice that deleting any coordinate of
an extended perfect code produces a perfect code. Also observe that Constructions
A and B, described in what follows in the context of perfect codes, can be straight-
forwardly modified to produce extended perfect codes.

Let En2 denote the set of all the even-weight vectors in Fn2 . For a code C ⊂ Fn2
and a vector a∈Fn2 , the code a + C = {a + c : c∈C} is called a translate of C. If C
is linear, then a translate of C is also called a coset. Let ei denote a vector of weight
one with the nonzero entry in the ith position. It is easy to see that, for a perfect
code C ⊂ Fn2 , the translates C, e1 + C, . . . , en + C form a partition of Fn2 . Similarly,
the set En+1

2 can always be partitioned into even translates of an extended perfect
code C∗ ⊂ En+1

2 . The following construction of perfect codes of length 2n + 1 from
perfect codes of length n is due to Phelps [23] and Solov’eva [30].
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CONSTRUCTION A. Let C0,C1, . . . ,Cn and C∗0,C∗1, . . . ,C∗n be partitions of Fn2 and
En+1

2 , into a perfect code and its translates, respectively, into an extended perfect code
and its translates. Let π be a permutation on the set {0, 1, . . . , n}. Then the code

CA = { (x| y) : x∈Ci, y ∈C∗π(i) for some i = 0, 1, . . . , n },

where (·|·) denotes concatenation, is a perfect code of length 2m+1 − 1.
We say that a vector a∈Fn2 covers a subset Sa ⊂ Fn2 if Sa = {x : d(x, a) ≤ 1}.

Similarly, we say that a code C ⊂ Fn2 covers a subset S if

S = { x : ∃ c∈C such that d(x, c) ≤ 1 } = ∪c∈C Sc.

We say that C perfectly covers S if C covers S and d(C) def= minx,y∈C d(x, y) = 3. The
following construction of perfect codes may be found in [9]; it can be viewed as a
certain special case of the construction of Vasil’ev [35]. This construction leads to
perfect codes with various useful properties, such as full-rank perfect codes or perfect
codes with large intersections. First, we define the following codes:

A = { ( x | p(x) | x ) : x∈Fn2 },
B = { ( x | p(x)+1 | x ) : x∈Fn2 },

(2.1)

where p(x) = wt(x) mod 2 is the parity of x. The following lemma was established in
Etzion and Vardy [9].

LEMMA 2.1. The codes A and B perfectly cover the same subset of F2n+1
2 .

Lemma 2.1 will be used in the next section to construct perfect codes with small
intersection.

CONSTRUCTION B. Assume that C1 is a perfect code of the form C1 = C′∪(x+A),
where x = 0 or x /∈ A. Then the code C2 = C′ ∪ (x+ B) is also a perfect code.

Construction B follows immediately from Lemma 2.1. It is shown in [9] that the
set A is a linear subcode of the Hamming code (in an appropriate permutation). Thus
one can use Construction B to produce nonlinear perfect codes from the Hamming
code. In [9], we have applied this construction m times to produce a full-rank perfect
code of length 2m − 1 from the Hamming code of the same length, for all m ≥ 4. A
similar approach was subsequently used by Phelps and LeVan [26] to construct perfect
codes with kernels of various dimensions, while generalizations to nonbinary perfect
codes were developed in [8].

Another application of Construction B enables one to construct a large set of
inequivalent perfect codes. Let Hm denote the Hamming code of length n = 2m − 1,
and let c1, c2, . . . , ct be the coset representatives for A in Hm, where t = 20.5(n+1)−m.
By Lemma 2.1, the sets ci +A and ci + B perfectly cover the same subset of Fn2 for
all i. Thus, we have the following.

THEOREM 2.2. To each binary vector x = (x1, x2, . . . , xt), there corresponds a
perfect code

C〈x〉 =
t⋃
i=1

(
ci + xiA+ x̄iB

)
,

where the notation xiA+ x̄iB stands for either A if xi = 1 or B if xi = 0.
Theorem 2.2 produces a set of 2t = 220.5(n+1)−log(n+1)

distinct perfect codes. It was
shown in [9] that the number of inequivalent perfect codes in this set is close to 220.5n

for large n.
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The weight distribution of a perfect code is uniquely determined [20, p. 129] by
its length n. An explicit closed-form expression for the weight distribution of perfect
codes may be found in [9]. In particular, it is known that any perfect code C of length
n that contains 0 also contains 1 — the unique binary vector of weight n. It follows
that 1 belongs to c + C for all c∈C. This, in turn, implies that if c∈C, then also
c̄∈C, where c̄ = 1 + c is the binary complement of c. Codes with this property are
called self-complementary , and the foregoing observation shows that all perfect codes
are self-complementary.

3. Intersections of perfect codes. Given two binary codes C1,C2 of the same
length, the intersection number of C1 and C2 is defined as η(C1,C2) def= |C1 ∩ C2|.
In this section, we consider the following problem: what are the possible intersection
numbers of perfect codes of a given length? The largest possible intersection number
of perfect codes was determined in [9]. Specifically, it was shown in [9] that if C1,C2
are two distinct perfect codes of length n = 2m − 1, then

η(C1,C2) ≤ 22m−m−1 − 22m−1−1

and this bound is tight; namely, for all m ≥ 3 there exist perfect codes C1,C2 of
length 2m − 1 such that η(C1,C2) = 22m−m−1 − 22m−1−1.

A natural counterpart to this question is: what is the smallest possible (nonzero)
intersection number of two perfect codes? It was shown [9] that for all m ≥ 3 there
exist two perfect codes C1,C2 of length 2m − 1 such that

η(C1,C2) = 22m−2
.

However, the question of whether this intersection number is the smallest possible
was left open in [9]. In fact, as will be shown in this section, it is not. Since all
perfect codes are self-complementary, their intersection must have even cardinality.
This implies that if C1,C2 are perfect codes and η(C1,C2) 6= 0, then η(C1,C2) ≥ 2.
In what follows, we prove that, for each m ≥ 3, there exist two perfect codes C1,C2
of length 2m − 1 such that η(C1,C2) = 2.

First, it is obvious that the intersection problem, in general, has the same answer
for perfect codes and for extended perfect codes. We will use this simple fact later in
the paper; we therefore state it formally as the following lemma.

LEMMA 3.1. Perfect codes of length 2m−1 with intersection number q exist if and
only if there exist extended perfect codes of length 2m with intersection number q.

We now use a combination of Constructions A and B of the foregoing section
to construct two extended perfect codes with intersection number 2. Let H0 be an
extended Hamming code of length 2m, and let H1,H2, . . . ,H2m−1 be the even cosets
of H0 in E2m

2 . Thus H0,H1,H2, . . . ,H2m−1 is a partition of E2m
2 into extended perfect

codes. Hence, the code

C = { (x| y) : x, y ∈Hi for some i = 0, 1, . . . , 2m−1 }(3.1)

is an extended perfect code of length 2m+1 obtained through Construction A, with π
being the identity permutation. Furthermore, it can be easily verified that C is a linear
code, and hence it must be an extended Hamming code of length 2m+1. Without loss
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of generality, we can assume that the parity-check matrix of C is given by

Hm+1 =


0 0 0 0 · · · 1 1
...

...
...

... · · ·
...

...
0 0 1 1 · · · 1 1
0 1 0 1 · · · 0 1
1 1 1 1 · · · 1 1

 .(3.2)

That is, the columns of Hm+1 are all of the (m+1)-tuples that end with a 1, ordered
lexicographically. Indeed, it is easy to see that

Hm+1 =

[
0 · · · 0 1 · · · 1

Hm Hm

]
,

where Hm is a parity-check matrix for an extended Hamming code of length 2m,
which we take as H0. Thus the code defined by the parity-check matrix Hm+1 is
a Construction A perfect code consistent with (3.1). Notice that all the vectors in
a given coset of H0 have the same syndrome with respect to Hm. That is, for all
i = 0, 1, . . . , 2m−1, we have si = Hmx

t for all x∈Hi, and we say that si is the
syndrome of Hi.

We now use Construction B to modify the Hamming code C in (3.1) in an appro-
priate manner. Let

A∗ = { (x|x) : x∈Hi for some i = 0, 1, . . . , 2m−1 }.(3.3)

Comparing (3.1) and (3.3), we see that A∗ is a subcode of C. Furthermore, since the
codes H0,H1,H2, . . . ,H2m−1 form a partition of E2m

2 , we can write

A∗ = { (x|x) : x∈E2m
2 },

which implies that A∗ is just the extended code of A in (2.1). Pick a fixed integer j
in the range 1 ≤ j ≤ 2m, and let B∗ = (ej |ej) +A∗. Then B∗ is the extended code of
B in (2.1). This implies that the code

C′ =
(
C \ A∗

)
∪ B∗

is an extended perfect code, obtained by Construction B. We note that C′ does not
contain the all-zero vector; however, the translate C1 = (ej |ej) + C′ does. This
translate is an extended perfect code, which can be written as C1 = A∗ ∪ D, where

D = { (x+ ej | y + ej) : x, y ∈Hi and x 6= y, for some i = 0, 1, . . . , 2m−1 }.

Now, let π be the permutation that fixes the last 2m coordinates of C1 and effects
the cyclic shift by one position on the first 2m coordinates. Define C2 = π(C1). Then
obviously C2 is a perfect code, and we have the following.

THEOREM 3.2. The intersection number of C1 and C2 is η(C1,C2) = 2.
Proof. Suppose (x| y)∈C1, for some x, y ∈F2m

2 . Then clearly wt(x)≡wt(y)≡ 0
modulo 2 if and only if x = y and (x| y)∈A∗, while wt(x)≡wt(y)≡ 1 mod 2 if and
only if (x| y)∈D. Since the permutation π preserves the weight of x and y, we have

C1 ∩ C2 =
(
A∗ ∩ π(A∗)

)
∪
(
D ∩ π(D)

)
.(3.4)
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A vector x∈F2m
2 is equal to its own cyclic shift by one position if and only if x∈{0,1}.

Hence A∗ ∩ π(A∗) = {0,1}. We now show that D ∩ π(D) = ∅. First, notice that for
each (x| y)∈D, we have

Hmx
t = Hmy

t = si +Hm(ej)t(3.5)

for some i = 0, 1, . . . , 2m−1. On the other hand, it can be shown that if (x| y)∈π(D),
then Hmx

t 6= Hmy
t. Indeed, let (x′| y′)∈D be the preimage of (x| y) under π. That is,

y = y′ and x is the cyclic shift of x′ by one position. Then Hmy
t = Hm(y′)t = Hm(x′)t

by (3.5). Now, both x′ and its cyclic shift x have odd weight, and therefore

(0101 · · · 01)(x′)t 6= (0101 · · · 01)xt.

Since (0101 · · · 01) is a row of Hm, it follows that Hmx
t 6= Hm(x′)t = Hm(y)t. Com-

paring this with (3.5), we conclude that D ∩ π(D) = ∅. In conjunction with (3.4),
this implies that C1 ∩C2 = A∗ ∩ π(A∗) = {0,1}, and therefore η(C1,C2) = 2.

It follows from Theorem 3.2 and the results of [9] that the intersection number of
any two distinct perfect codes C1,C2 of length n = 2m − 1 is in the range

2 ≤ η(C1,C2) ≤ 22m−m−1 − 22m−1−1,(3.6)

and both bounds are achievable for allm ≥ 3. Since perfect codes are self-complement-
ary, their intersection numbers must be even. Thus a natural question is: which even
integers in the range of (3.6) are intersection numbers of perfect codes of length 2m−1?
Using Theorem 2.2 of the previous section, we obtain intersection numbers of the form

k 22m−1−1 for all k = 1, 2, . . . , 22m−1−m − 1.

These correspond to the intersection of C〈0〉 with C〈x〉, where x is a binary vector of
length t = 22m−1−m and weight t−k. Further, using modifications of Constructions A
and B, along with the techniques developed in this section, we can obtain many more
intersection numbers. In general, however, the problem of enumerating all possible
intersection numbers of perfect codes remains open. By and large, this appears to
be a difficult problem. For perfect codes of length 15, we have generated a large set
of intersection numbers through a combination of known constructions and computer
search. Even for this case, however, complete enumeration does not seem to be within
easy reach.

A variant of the problem discussed in the previous paragraph asks for all possible
intersection numbers of linear perfect codes, namely, the Hamming codes of length
2m − 1. In what follows, we provide a complete solution to this problem.

Let H1,H2 be two Hamming codes of length n = 2m − 1. Since Hamming codes
are unique, H1 and H2 are necessarily isomorphic. Since both codes are linear, their
intersection number is necessarily a power of 2. For m = 3 and n = 7, it is easy to
find specific permutations such that η(H1,H2) = 2, 4, or 8. For example, let H1 be a
code defined by the parity-check matrix whose columns are ordered lexicographically,
and let H2 be a code defined by the parity-check matrix[

0 0 1 1 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 1

]
or

[
0 0 1 1 0 1 1
0 1 1 0 1 0 1
1 0 0 0 1 1 1

]
or

[
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 1 0 0 1 0 1

]
,(3.7)

respectively. We will show that a similar situation occurs for all m ≥ 3, namely, all the
powers of 2 in the range 2n−2m, 2n−2m+1, . . . , 2n−m−1 are attainable as intersection
numbers of distinct Hamming codes of length n = 2m − 1.
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Let H1, H2 be parity-check matrices of the Hamming codes H1 and H2 of length
n = 2m − 1. Then C = H1 ∩ H2 is a linear code, whose parity-check matrix is given
by

H =
[
H1

H2

]
.(3.8)

For the sake of brevity, we shall henceforth write H = H1‖H2 to denote the structure
of (3.8). It is obvious that rank(H) ≤ 2m, since H1 and H2 each have m rows, and
therefore,

η(H1,H2) = |C| = 2n−rank(H) ≥ 2n−2m.

It is also obvious that η(H1,H2) ≤ 2n−m−1 if the codes H1 and H2 are distinct.
LEMMA 3.3. For each m ≥ 3, there exist two Hamming codes H1,H2 of length

n = 2m − 1 such that η(H1,H2) = 2n−2m.
Proof. As η(H1,H2) = 2n−rank(H), we need to construct parity-check matrices H1

and H2 for the codes H1 and H2 such that rank(H1‖H2) = 2m. We first show that
there exists a 2m × 2m binary matrix Am = A1‖A2, where A1, A2 are two m × 2m
binary matrices whose columns are distinct and nonzero, such that rank(Am) = 2m.
For m = 3, such a matrix is given by

A3 =


1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

 .
For m ≥ 4, we can construct Am recursively as follows. Suppose that Am−1 = A′1‖A′2,
and take

Am =
[
A1

A2

]
=


1 0 · · · 0 0

0 A′1 x

1 A′2 0

1 0 · · · 0 1

 ,(3.9)

where x is any nonzero (m−1)-tuple that does not appear as a column of A′1. It is
easy to see from (3.9) that if Am−1 is a nonsingular matrix of rank 2(m−1), then Am
is a nonsingular matrix of rank 2m. Now, since the columns of A1 and A2 are nonzero
and distinct, these matrices can be extended, in an arbitrary manner, to parity-check
matrices H1 and H2 of two Hamming codes of length 2m − 1. By construction, we
have rank(H1‖H2) = rank(A1‖A2) = 2m.

THEOREM 3.4. For each m ≥ 3, there exist two Hamming codes H1,H2 of length
n = 2m − 1, such that

η(H1,H2) = 2n−r for r = m+1,m+2, . . . , 2m.

Proof. The proof is by induction on m. The induction basis for m = 3 is es-
tablished in (3.7). Now assume that, for each r = m,m+1, . . . , 2(m−1), there exist
parity-check matrices H ′1 and H ′2 of two Hamming codes of length 2m−1 − 1, such
that rank(H ′1‖H ′2) = r. Take

H1 =

[
0 · · · 0 1 1 · · · 1
H ′1 0 H ′1

]
, H2 =

[
0 · · · 0 1 1 · · · 1
H ′2 0 H ′2

]
.
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It is easy to see that H1, H2 are parity-check matrices of isomorphic Hamming codes
of length 2m − 1, and that

rank(H1‖H2) = rank(H ′1‖H ′2) + 1 = r + 1.

Thus, all ranks in the range r + 1 = m+ 1,m+ 2, . . . , 2m−1 are attainable. Fi-
nally, the rank of 2m is also attainable by Lemma 3.3, which completes the induction
step.

4. Embeddings and generalized Hamming weights. Let C1 be a code of
length n1, and let C2 be a code of length n2 ≥ n1. We say that C1 is embedded in
C2, in the first n1 positions, if the code C2 punctured in the last n2 − n1 positions
contains C1 as a subcode, and furthermore all the codewords of C2 that correspond
to this subcode agree in the last n2 − n1 positions. This definition extends in the
obvious way to any set of n1 positions. Thus we say that C1 is embedded in C2 if it is
embedded in some n1 positions of C2. We note that our definition of embedding is a
natural generalization of the concept of shortening (cf. [20, p. 29]) to nonlinear codes.

It is well known that any Hamming code of length n = 2m−1 contains a Hamming
code of length ν = 2m−1−1 as a shortened subcode. Under which conditions is a similar
assertion true for nonlinear perfect codes? Namely, when does a perfect code C of
length n = 2m − 1 contain a perfect code of length ν = 2m−1 − 1 embedded in it? In
what follows, we will prove that this happens if and only if C is not of full rank.

For a code C ⊂ Fn2 , we denote by C⊥ the subspace of Fn2 consisting of those vectors
that are orthogonal to all the codewords of C. It is obvious that dimC⊥+dim 〈C〉 = n,
and therefore C is full rank if and only if C⊥ = {0}. The following observation,
established in [9], will be key to our results in this section: for a perfect code C of
length n = 2m − 1, all the nonzero codewords in C⊥ have weight 2m−1.

PROPOSITION 4.1. If C is a perfect code of length n = 2m − 1 and rank(C) < n,
then there exists a perfect code of length ν = 2m−1−1 embedded in C.

Proof. Let v be a codeword of C⊥ of weight 2m−1. Without loss of generality,
we can assume that v = (1|0) so that every codeword of C has even weight in the
first 2m−1 positions. For x∈Eν+1

2 , define Cx = {y : (x| y)∈C}. Then either Cx = ∅
or Cx is a code of length ν = 2m−1 − 1 embedded in C. We will show that, in fact,
Cx is a perfect code for all x. Indeed, if Cx 6= ∅, then d(Cx) ≥ 3 and therefore
|Cx| ≤ 22m−1−m. Hence,

22m−m−1 = |C| =
∑
x

|Cx| ≤ 22m−1−m
∣∣∣E2m−1

2

∣∣∣ = 22m−m−1.(4.1)

Since (4.1) must hold with equality, for all x∈E2m−1

2 we have |Cx| = 22m−1−m, and
Cx is a perfect code of length ν embedded in C.

PROPOSITION 4.2. If C is a perfect code of length n = 2m − 1 and rank(C) = n,
there is no perfect code of length ν = 2m−1−1 embedded in C.

Proof. Assume to the contrary that C1 is a perfect code of length ν embedded
in the last ν positions of C. Then C contains |C1| = 2ν−(m−1) codewords of the
form (a|c), where a = (a1, a2, . . . , aν+1) is a fixed (ν+1)-tuple. Now let M be a
|C| × (ν+1) matrix whose rows are the codewords of C truncated to the first ν + 1
positions. For x∈Fν2 , let ω0(x), respectively, ω1(x), denote the number of times
(x|0), respectively, (x|1), appears as a row of M . Since C is an orthogonal array of
strength ν (cf. [20, p. 139]), it is obvious that ω0(x) + ω1(x) = |C|/2ν = 2ν−(m−1) for
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all x. Furthermore, it is shown in Proposition 4.2 of [9] that

ω0(x) =

{
ω0(0) if wt(x) ≡ 0 mod 2,

ω1(0) if wt(x) ≡ 1 mod 2.
(4.2)

Observe that since C contains the all-zero codeword 0, we have ω0(0) 6= 0. Now
consider x = (a1, a2, . . . , aν); it is clear that either ω0(x) = 2ν−(m−1) if aν+1 = 0, or
ω1(x) = 2ν−(m−1) if aν+1 = 1. In either case, this implies that ω0(0) = 2ν−(m−1)

in view of (4.2) and the fact that ω0(0) 6= 0. We can now count the number of
even-weight rows of M , given by∑

x∈Fν2
wt(x)≡0

ω0(x) +
∑
x∈Fν2

wt(x)≡1

ω1(x) = 2ν−1ω0(0) + 2ν−1ω0(0) = 2ν ·2ν−(m−1) = |C|.

Thus all the codewords of C have even weight in the first ν+1 positions, which implies
that the vector (1|0) of weight ν + 1 is orthogonal to C. Hence C⊥ 6= {0}, which
contradicts the fact that C is of full rank.

Propositions 4.1 and 4.2 show that those sets of positions, where a perfect code
of length ν = 2m−1−1 is embedded in a perfect code C of length n = 2m − 1, are in
one-to-one correspondence with nonzero codewords of C⊥. In particular, we have the
following corollary.

COROLLARY 4.3. Let C be a perfect code of length 2m−1. A perfect code of length
2m−1−1 is embedded in C if and only if C is not of full rank.

The embedding problem considered above leads to another interesting question
about perfect codes and generalized Hamming weights. The generalized Hamming
weights were introduced by Wei [36] for linear codes and were studied by several au-
thors; see [4, 10, 11, 13, 37], among others. We now review the definition of generalized
Hamming weights in [36] and extend it to nonlinear codes.

The support of a code C of length n, denoted χ(C), is the set of positions i, such
that there exist codewords (c1, c2, . . . , cn), (c′1, c

′
2, . . . , c

′
n)∈C with ci 6= c′i. Notice

that this definition of χ(·), introduced in [17], applies to both linear and nonlinear
codes; it coincides with the usual notion of support as the set of nonzero positions for
linear codes. Now let C be a linear code of length n and dimension k. Then the ith
generalized Hamming weight of C is defined [36] as

di(C) def= min
D
|χ(D)| for i = 1, 2, . . . , k,(4.3)

where the minimum is taken over all linear subcodes D ⊂ C such that dimD = i. The
sequence d1(C), d2(C), . . . , dk(C) is called the generalized Hamming weight hierar-
chy (GHW) of C. This sequence plays an important role in many applications, ranging
from the wire-tap channel [22] to trellis decoding [11]. For some of these applications,
an equivalent sequence κ1(C), κ2(C), . . . , κn(C), called the dimension-length profile
(DLP) of C, is more convenient to deal with. This sequence, introduced in [34] and
later studied in [11, 16, 17] and other works, is defined as follows:

κi(C) def= max
D

dimD for i = 1, 2, . . . , n,(4.4)

where the maximum is taken over all linear subcodes D ⊂ C such that |χ(D)| = i.
The DLP and GHW are equivalent sequences, in the sense that either sequence can



214 TUVI ETZION AND ALEXANDER VARDY

be obtained from the other, as follows:

di(C)=min { j : κj(C) ≥ i } for i = 1, 2, . . . , k,(4.5)
κi(C)=max{ j : dj(C) ≤ i } for i = 1, 2, . . . , n.(4.6)

A natural generalization of DLP and GHW to nonlinear codes is through the notion
of cardinality-length profile (CLP), defined as follows. For any code C ⊂ Fn2 , we let

κi(C) def= max
D

log2 |D| for i = 1, 2, . . . , n,(4.7)

where the maximum is taken over all subcodes D ⊂ C such that |χ(D)| = i. Thus
κi(C) is the log cardinality of the largest code of length i embedded in C. The GHW
of a nonlinear code C may be now defined1 by (4.5), with blog2 |C|c replacing k.

The generalized Hamming weights of the Hamming codes were determined by Wei
in [36]. Wei [36] showed that if Hm is a Hamming code of length n = 2m − 1, then
its GHW is given by {d1(C), d2(C), . . . , dk(C)} = {1, 2, . . . , n} \ {1, 2, 22, . . . , 2m−1}.
From this, it is easy to deduce that

κi(Hm) = i− blog2 ic − 1 for i = 1, 2, . . . , n.

In what follows, we show that certain nonlinear perfect codes, in particular the full-
rank perfect codes, have a different cardinality-length profile. We also prove that the
cardinality-length profile κi(C) of any perfect code C of length 2m − 1 coincides with
that of Hm for i ≥ 2m−1, and provide bounds on κi(C) for other values of i. These
bounds will enable us to conclude that the GHW of “most” perfect codes coincides
with the GHW of the Hamming codes.

THEOREM 4.4. Let C be a perfect code of length n = 2m − 1. Then

κi(C) = i−m for i = 2m−1, 2m−1+1, . . . , 2m−1.

Proof. For these values of i, we have n − i ≤ 2m−1 − 1. Since C is an orthog-
onal array of strength 2m−1 − 1 (cf. [20, p. 139]), it follows that every set of n− i
positions of C contain each binary (n−i)-tuple exactly |C|/2n−i = 2i−m times.

For i = 2m−1−1, however, the CLP is not the same for all perfect codes. Specif-
ically, if C is not of full rank, then κ2m−1−1(C) = 2m−1 −m by Proposition 4.1. If
C is a full-rank perfect code, then κ2m−1−1(C) < 2m−1 −m by Proposition 4.2, since
if a code D of length 2m−1 − 1 and cardinality 2m−1 −m is embedded in C, it must
be a perfect code.

PROPOSITION 4.5. If C is a full-rank perfect code of length n = 2m − 1, then

2m−1 −m− 1 < κ2m−1−1(C) < 2m−1 −m.

Proof. The upper bound is Proposition 4.2. The lower bound may be proved
as follows. For a vector v ∈Fn2 , let ξ(v) be the number of codewords of C whose
support is disjoint with the support of v. Further, let χv(C) =

∑
c∈C(−1)<v,c> be the

corresponding character of C (cf. [20, p. 134]). Now suppose that wt(v) = 2m−1. Then
it follows from (4.2) that χv(C) = 22m−1

ξ(v)− 2n−m. Since all perfect codes have the
same weight distribution, the MacWilliams identities for nonlinear codes [6, 20] imply

1
2n−m

∑
wt(v)=2m−1

χv(C) =
∑

wt(v)=2m−1

(
ξ(v)

22m−1−m−1 − 1
)

= 2m − 1.

1The CLP was first introduced in [17]. For an alternative way to extend the definition of gener-
alized Hamming weight hierarchy to nonlinear codes, see [4].
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Hence, there exists at least one v of weight 2m−1 such that ξ(v) > 22m−1−m−1.
Now, it is obvious that κ2m−1−1(C) ≥ maxwt(v)=2m−1 log2 ξ(v), and the lower bound
follows.

Establishing nontrivial bounds on the cardinality-length profile κi(C) of full-rank
perfect codes for i ≤ 2m−1 − 1 appears to be a difficult problem. On the other hand,
we have the following.

THEOREM 4.6. If a perfect code C of length n = 2m − 1 has no full-rank perfect
codes (of any length ≤ n) embedded in it, then

κi(C) ≥ i− blog2 ic − 1 for i = 1, 2, . . . , 2m−1−5,
κi(C) = i− blog2 ic − 1 for i = 2m−1−4, 2m−1−3, . . . , 2m−1.

Proof. Without loss of generality, assume that the dual code C⊥ contains the
vector (1|0) of weight 2m−1, and let 0i denote the all-zero i-tuple. It follows from
the proof of Proposition 4.1 that C1 = {x : (02m−1 |x)∈C} is a perfect code of length
2m−1−1. As such, it is an orthogonal array of strength 2m−2−1. Therefore, for each
i = 1, 2, . . . , 2m−2−1, the set

D =
{
x :

(
02m−1 |0i|x

)
∈C

}
is a code of cardinality |D| = |C1|/2i = 22m−1−m−i embedded in C. Furthermore, the
code C1 is not of full rank, by assumption. Hence, we can assume w.l.o.g. that C⊥1
contains the vector (1|0) of weight 2m−2. It follows, again by Proposition 4.1, that

C2 =
{
x :

(
02m−1 |02m−2 |x

)
∈C

}
is a perfect code of length 2m−2−1 embedded in both C1 and C. This code is again
an orthogonal array and is not of full rank by assumption. Therefore, its dual code
contains a vector of weight 2m−3, and so on. Continuing in this manner until the
length of C is exhausted, we obtain

κi(C) ≥ i− blog2 ic − 1 for i = 1, 2, . . . , n.(4.8)

The equality in (4.8) for i ≥ 2m−1−1 follows from Theorem 4.4 and Proposition 4.1.
The equality for i = 2m−1−4, 2m−1−3, 2m−1−2 follows from the fact, established in
[2], that triply shortened perfect codes are optimal.

We conjecture that, in fact, equality always holds in (4.8). That is, the CLP of a
perfect code C coincides with that of a Hamming code, provided there are no full-rank
perfect codes embedded in C. This is certainly true for perfect codes of length 15.

COROLLARY 4.7. Let C be a perfect code of length 15. Then

κi(C) = i− blog2 ic − 1 for i = 1, 2, . . . , 15

if and only if C is not of full rank.
Proof. This follows from Proposition 4.5 and Theorem 4.6, along with the follow-

ing observations: a perfect code of length 7 is necessarily a (7, 4, 3) Hamming code;
shortening the (7, 4, 3) code any number of times produces optimal codes.

Returning from the cardinality-length profiles to the generalized Hamming weights,
Theorem 4.6 implies the following strong result.

THEOREM 4.8. Let C be a perfect code of length n = 2m − 1. Then

{d1(C), d2(C), . . . , dn−m(C)} = {1, 2, . . . , n} \ {1, 2, 22, . . . , 2m−1},(4.9)

provided there are no full-rank perfect codes embedded in C.
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Proof. Recall that the GHW of C is defined by (4.5). Thus, the theorem follows
immediately from Theorem 4.6, along with the observation that κi(C) < i − blog2 ic
for all i. The latter statement follows from the fact that an (n,M, 3) code with
M ≥ 2n−blog2 nc does not exist by the sphere-packing bound [20, p. 19].

Finally, we observe that the generalized Hamming weight hierarchy of a full-rank
perfect code is not given by (4.9), in view of Proposition 4.5.

5. Full-rank tilings and kernels of perfect codes. A tiling of Fn2 is a pair
(V,A) of subsets of Fn2 such that every x∈Fn2 has a unique representation of the form
x = v + a, with v ∈V and a∈A. Thus (V,A) is a tiling if and only if

V +A = Fn2 and (V + V ) ∩ (A+A) = {0}.

Without loss of generality, we can always assume that 0∈ (V ∩ A). A tiling (V,A)
of Fn2 is trivial if one of the sets V,A is {0} and the other is Fn2 . It is of full rank
if 〈V 〉 = 〈A〉 or, equivalently, rank(V ) = rank(A) = n. The study of [5] shows that
any tiling of Fn2 can be uniquely decomposed into, or constructed from, smaller tilings
that are either trivial or have full rank. Hence, the following question is of interest:
for which values of n does Fn2 admit a full-rank tiling?

It is shown in [9, 5] that full-rank tilings of Fn2 exist for all n ≥ 112. In this section
we show that, in fact, full-rank tilings of Fn2 exist for all n ≥ 14. Two alternative
constructions of such tilings are presented: an iterative “lifting” from a full-rank
tiling of F14

2 exhibited in [5] and a direct reduction from a full-rank perfect code of
length 1023. Since full-rank tilings of Fn2 do not exist for n ≤ 7, as established in [5],
these constructions leave only the six values n = 8, 9, . . . , 13 unresolved. We will
show that the existence of full-rank tilings for these values of n is closely related to
the existence of full-rank perfect codes with kernels of high dimension. We start with
the following iterative construction of tilings.

CONSTRUCTION C. Let (V,A) be a tiling of Fn2 and let a∗ be a nonzero element
of A. Consider the sets

V ′ = { (v|0) : v ∈V } ∪ { (v|1) : v ∈V },(5.1)

A′ = { (a|0) : a∈A∗ } ∪ { (a∗|1) },(5.2)

where A∗= A\{a∗}. Then (V ′, A′) is a tiling of Fn+1
2 .

Indeed, suppose that x∈ (V ′ + V ′) ∩ (A′ + A′). Since (V + V ) ∩ (A+ A) = {0},
it follows that x = (0|0) or x = (0|1). But (0|1) 6∈ A′ + A′, which implies that
x = 0. Furthermore, since |V ′| = 2|V | and |A′| = |A|, we have |V ′||A′| = 2n+1. Hence
(V ′, A′) is a tiling, as claimed.

PROPOSITION 5.1. If (V,A) is a full-rank tiling of Fn2 and rank(A∗) = n, then
the tiling (V ′, A′) obtained by Construction C is a full-rank tiling of Fn+1

2 .
Proof. It is obvious from (5.1) that 〈V 〉 = Fn2 implies 〈V ′〉 = Fn+1

2 . Since
rank(A∗) = n, it follows that any vector of the form (x|0), including (a∗|0), belongs
to 〈A′〉. Hence (0|1) = (a∗|0) + (a∗|1) also belongs to 〈A′〉, and therefore 〈A′〉 =
Fn+1

2 .
A full-rank tiling (V,A) of F14

2 with |V | = 210 and |A| = 24 was constructed in [5].
We will call this the seed tiling. Starting with the seed tiling, and iteratively applying
Construction C, establishes the following.

THEOREM 5.2. For all n ≥ 14, there exists a full-rank tiling of Fn2 .
Since we are interested here in the connections between tilings and perfect codes,

we will now present an alternative proof of Theorem 5.2 which employs such connec-
tions. As a by-product, we will obtain certain bounds relating the rank of a perfect
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code and the dimension of its kernel. The following theorem, established in [3, 5], is
based on the matrix construction of covering of Blokhuis and Lam [3].

THEOREM 5.3. Let (V,A) be a tiling of Fn2 and let ν = |V |−1. Further, let H(V )
be an n× ν matrix having the nonzero elements of V as its columns. Define

C = {x∈Fν2 : H(V )xt ∈A }.

Then C is a perfect code of length ν.
We shall say that C is the perfect code associated with the tiling (V,A). The

following relation between the ranks of V,A, and C was established in [5].
PROPOSITION 5.4. If C is the perfect code of length ν associated with a tiling

(V,A), then

rank(C) = ν − rank(V ) + rank(A〈V 〉),

where A〈V 〉 = A ∩ 〈V 〉. In particular, if 〈V 〉 = Fn2 , then

rank(C) = ν − n+ rank(A).

It follows from Proposition 5.4 that if 〈V 〉 = 〈A〉 = Fn2 , then rank(C) = ν. Thus
if (V,A) is a full-rank tiling, then the associated perfect code C is also of full rank.

Given a code C ⊂ Fn2 , the kernel of C is the set of all x∈Fn2 that leave C invariant
under translation. Assuming that 0∈C, the kernel of C can be defined (cf. [1, 26]) as
follows:

kerC def= {x∈C : x+ C = C }.

It is easy to see that kerC is a linear subcode of C, and kerC = C if and only if C
itself is linear. The kernel of C is sometimes called the set of stabilizers of C (cf. [14])
or the set of periodic points of C (cf. [5]).

Now let C be the perfect code associated with a tiling (V,A). Then it is easy to
see that

kerC = {x∈C : H(V )xt ∈ kerA }.

Along with Proposition 5.4, this immediately implies the following.
PROPOSITION 5.5. If C is the perfect code of length ν associated with a tiling

(V,A), then

dim(kerC) = ν − rank(V ) + dim(kerA〈V 〉),

where A〈V 〉 = A ∩ 〈V 〉. In particular, if 〈V 〉 = Fn2 , then

dim(kerC) = ν − n+ dim(kerA).

Kernels play an important role in the construction of tilings introduced in [5]. We
now briefly describe this construction.

Let A0 be a subspace of Fn2 of dimension k. For any V ⊂ Fn2 , we define V/A0 as
follows. Fix a basis a1, a2, . . . , ak for A0 and complete this to a basis a1, a2, . . . , ak,
b1, b2, . . . , bn−k for Fn2 . Then each vector v =

∑k
i=1 αiai +

∑n−k
i=1 βibi in V is mapped

onto the vector v′ =
∑n−k
i=1 βibi in V/A0. Thus V/A0 is just the projection of V onto

Fn2 /A0. Note that Fn2 /A0 may be regarded as Fn−k2 under an appropriate change of
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basis (cf. [5]), namely, under the linear transformation that takes b1, b2, . . . , bn−k into
unit vectors. Thus we will identify Fn2 /A0 with Fn−k2 and think of V/A0 as a subset
of Fn−k2 .

CONSTRUCTION D. Let (V,A) be a tiling of Fn2 . Further, let A0 be a k-dimensional
subspace of kerA. Then (V/A0, A/A0) is a tiling of Fn−k2 .

It is shown in [5] that if (V,A) is a full-rank tiling, then so is (V/A0, A/A0). This
implies the following.

PROPOSITION 5.6. If there exists a full-rank tiling (V,A) of Fn2 with dim(kerA) =
r, then there exist full-rank tilings of Fn−k2 for all k = 1, 2, . . . , r.

Propositions 5.4–5.6 and Theorem 5.3 provide an alternative proof for Theorem
5.2 as follows. Consider again the seed full-rank tiling (V,A) of F14

2 exhibited in [5].
Recall that for this tiling |V | = 210, |A| = 24, and kerV = kerA = {0}. By Theorem
5.3 and Proposition 5.4, the associated perfect code C is a full-rank code of length
210 − 1 = 1023. By Proposition 5.5, we have

dim(kerC) = 1023− rank(V ) + dim(kerA) = 1023− 14 = 1009.

Now let Vn denote the Hamming sphere of radius 1 in Fn2 . Then (V1023,C) is obviously
a full-rank tiling of F1023

2 . Applying to this tiling Construction D and Proposition 5.6,
we obtain full-rank tiling of Fn2 for all n = 14, 15, . . . , 1022. On the other hand, it was
already shown in [5] that full-rank tilings of Fn2 exist for all n ≥ 112.

Kernels of perfect binary codes were studied by Phelps and LeVan in [26]. It is
shown in [26] that given m ≥ 4 and n = 2m − 1, there exists a nonlinear perfect
code C of length n with kernel of dimension k, if and only if k = 1, 2, . . . , n−m−2.
However, if we also impose constraints on the rank of C, for example require that
C is of full rank, much less is known about the possible dimensions of its kernel.
Propositions 5.4–5.6 shed some light on this problem. For example, starting with the
full-rank tiling (V1023,C) of F1023

2 discussed in the foregoing paragraph, and applying
Construction D, yields associated full-rank perfect codes of length n = 2m − 1 with
kernels of dimension ≥ n −m − 10 for m = 4, 5, . . . , 1022. Furthermore, the code C
itself, associated with the seed tiling, has kernel of dimension n−m− 4 for m = 10.
The following theorem shows that this is the highest possible kernel dimension for a
full-rank perfect code.

THEOREM 5.7. If C is a full-rank perfect code length n = 2m − 1, then

dim(kerC) ≤ n−m− 4.(5.3)

Furthermore, this bound is tight for m = 10 and m = 11.
Proof. Let A0 = kerC, and assume to the contrary that dimA0 ≥ n − m − 3.

Obviously (Vn,C) is a full-rank tiling. Applying to this tiling Construction D, we
obtain another full-rank tiling (V,A) = (C/A0,Vn/A0) with

|V | = |C/A0| =
|C|
|A0|

≤ 2n−m

2n−m−3 = 8.

By Theorem 5.3 and Proposition 5.4, the perfect code associated with (V,A) must be
a full-rank perfect code of length |V | − 1 ≤ 7. But such a code obviously does not
exist. The tightness of (5.3) for m = 11 follows by considering the perfect code
associated with the tiling (C,V15), where C is a full-rank perfect code of length
15.
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More generally, one could ask: What is the largest possible dimension α(m) of
the kernel of a full-rank perfect code of length n = 2m − 1? The following theorem
provides a complete answer to this question for all m ≥ 10.

THEOREM 5.8. Let δ be the unique integer such that 2δ−1 − (δ−1) ≤ m < 2δ − δ.
Then

α(m) = 2m −m− δ − 1 for m = 10, 11, . . . .(5.4)

Proof. We first show that α(m) ≤ 2m−m−δ−1 = n−(m+δ), where n = 2m−1.
Assume to the contrary that there exists a full-rank perfect code C of length n such
that dim(kerC) = 2m −m − δ. Observe that C is the union of |C|/|kerC| cosets of
kerC. Hence, the total number of linearly independent vectors in C is at most

dim(kerC) +
(
|C|
|kerC| − 1

)
≥ n,(5.5)

where the inequality follows from the assumption that C is of full rank. Substituting
dim(kerC) = 2m −m− δ and |C| = 2n−m into (5.5), we obtain m ≤ 2δ−1 − δ, which
contradicts the definition of δ. In conjunction with the result of Theorem 5.7, this
proves (5.4) for m = 10 and m = 11.

Next, we show how to construct a full-rank perfect code C12 of length n = 212−1,
such that dim(kerC) = n−17 = (2m−1)−m−δ, for m = 12. Start with the full-rank
tiling (V,A) = (V15,C) of F15

2 , where C is a full-rank perfect code of length 15. Then
apply Construction C to obtain a full-rank tiling (V ′, A′) of F16

2 with |V ′| = 25 and
|A′| = 211. Now, apply Construction C again, with the roles of V ′ and A′ interchanged.
This produces a full-rank tiling (V12, A12) of F17

2 with |V12| = 212 and |A12| = 25. The
full-rank perfect code C12 associated with this tiling has length n = |V12|−1 = 212−1.
Furthermore, by Proposition 5.5 we have

dim(kerC12) ≥ n− rank(V12) = n− 17.

In view of the upper bound on α(m) that we have already proved, the above expression
holds with equality. Thus, we have established (5.4) for m = 12. Now, iteratively
applying Construction C to (V12, A12), we obtain full-rank tilings (Vm, Am) of Fm+5

2
with associated full-rank perfect codes of length n = 2m − 1 and kernel of dimension
n − (m+5). Since in all of these tilings |Am| = |A12| = 25, we can keep iterating
Construction C in this way as long as m+ 5 ≤ 25 − 1 or, equivalently, m < 25−5 = 27.
This proves (5.4) for all m = 12, 13, . . . , 26. For m = 27, 28, . . . , 57, we start with the
full-rank tiling (V31,C), where C is a full-rank perfect code of length 31, and proceed
as before. Continuing in this manner establishes (5.4) for all m ≥ 10.

Note that Theorem 5.7 is not a special case of Theorem 5.8, since it holds also
for m < 10. For example, for m = 4 it follows from Theorem 5.7 that the possible
dimensions of the kernel of a full-rank perfect code of length 15 are 1, 2, . . . , 7. The
problem of determining which of these kernel dimensions are attainable is closely
related to the problem of existence of full-rank tilings of Fn2 for n = 8, 9, . . . , 13.
Indeed, a full-rank perfect code of length 15 and kernel of dimension k implies by
Proposition 5.6 the existence of a full-rank tilings of Fn2 for all n ≥ 15−k. Furthermore,
we have the following result.

PROPOSITION 5.9. A full-rank perfect code of length 15 with kernel of dimension
7 exists if and only if a full-rank tiling of F8

2 exists.
Proof. Suppose that (V,A) is a full-rank tiling of F8

2 . Then clearly |V | = |A| = 16.
Hence, by Propositions 5.4 and 5.6, the associated perfect code has length 15, is of
full rank, and has kernel of dimension 15− rank(V ) = 7.
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The linear code A defined in (2.1) plays a prominent role in the construction of
full-rank perfect codes in [9] and has dimension 7 for n = 15. A generator matrix
for A is given by 

a1
a2
a3
a4
a5
a6
a7

 =


1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

 .
However, we now show that A cannot be the kernel of a full-rank perfect code C of
length 15. Indeed, assume to the contrary that this is so. Then (V15/A,C/A) is a
full-rank tiling of F8

2 by Proposition 5.6. Since both V15 and A are known, we can
compute V15/A explicitly to obtain

V15/A =


0 0 0 0 0 0 0 0, 0 0 0 1 0 0 0 1, 1 0 0 0 0 0 0 0, 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1, 0 0 0 0 1 0 0 1, 0 1 0 0 0 0 0 0, 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1, 0 0 0 0 0 1 0 1, 0 0 1 0 0 0 0 0, 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1, 0 0 0 0 0 0 1 1, 0 0 0 1 0 0 0 0, 0 0 0 0 0 0 0 1

 .

We now observe that ker(V15/A) = {(00000000), (00000001)} has dimension 1. In
view of Proposition 5.6, this implies the existence of a full-rank tiling of F7

2 . But such
a tiling does not exist, as shown in [5].

Remark. LeVan and Phelps [25] have recently found full-rank perfect codes of
length 15 with kernels of dimension 2, 3, 4, and 5. This, along with the results of this
section, implies that full-rank tilings of Fn2 exist for all n ≥ 10.

6. Open problems. We have considered herein three topics concerning perfect
codes and tilings: the intersection number problem; embeddings and generalized Ham-
ming weights; and full-rank tilings and kernels of full-rank perfect codes. Solutions
to some of these problems are provided in the foregoing three sections. Nevertheless,
it is fair to say that we know much less than we would like to, and many problems
concerning perfect codes remain open. We conclude this paper with a list of ten open
problems on perfect binary codes which, at least in our opinion, seem to be the most
interesting.

Intersection numbers. For a given m, what are the possible intersection num-
bers of distinct perfect codes of length n = 2m− 1? For more details on this problem,
see section 3.

GHW and CLP. Give a complete characterization of the generalized Hamming
weights and/or the cardinality length profiles for perfect codes. Compare the general-
ized Hamming weight hierarchies for full-rank and not full-rank perfect codes, derived
from different constructions. For more details on this problem, see section 4.

Full-rank tilings. Construct full-rank tilings of Fn2 for n = 8 and n = 9, or prove
that such tilings do not exist. This problem appears to be quite challenging despite
the small size of the sets involved. For more details on this, see section 5 and [5].

Rank and kernel. Given a perfect code C of length n = 2m − 1, its rank
r is in the range n−m, . . . , n, while the dimension k of its kernel is in the range
1, . . . , n−m−2 or n−m. Furthermore, as shown in [9] and [26], each value of r or k
in the corresponding range is attainable. We ask: which pairs (r, k) are attainable as
the rank and kernel dimension of a perfect code of length 2m − 1? For bounds, and
more details, see section 5.

Systematicity. A binary code C with 2k codewords is called systematic if there
exists a set of k positions in which every binary k-tuple appears (exactly once) among
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the codewords of C. Thus C is systematic if there exist some k positions that can
be used as information positions for the code. All known perfect codes are system-
atic, and a longstanding conjecture says that all perfect codes are systematic. This
conjecture is related to certain results on systems of t-resilient functions [18]. The
systematicity problem was posed as open in an earlier version of this paper. It has
been recently solved by Solov’eva and Avgustinovich [31] who showed that the sys-
tematicity conjecture is false: they proved that for each n = 2m−1 with m ≥ 6, there
exists a nonsystematic perfect code. Phelps and LeVan [27] have extended this result
to all m ≥ 4.

Enumeration. Classification of inequivalent perfect codes was first posed as a
research problem in [20, p. 180]. However, it soon became apparent [23] that an exact
classification is intractable. On the other hand, asymptotic bounds on the number of
inequivalent perfect codes of length n = 2m−1 are known. A lower bound of 220.5n

for sufficiently large n is given in [9, 24], while an upper bound of 22n−m can be easily
derived. The gap is very large and any improvement on these bounds would be an
important result.

Optimality of shortening. It is established in [2] that triply shortened perfect
codes of length 2m − 1 are optimal. That is, the number of codewords in these codes
achieves the value of A(n, 3) for n = 2m−2, 2m−3, 2m−4. Referring to the table of
best known codes [19] suggests that shortening a perfect code of length 2m − 1 up to
2m−2 − 1 times is likely to produce optimal codes for m ≤ 9. However, the result of
Kabatiansky and Panchenko [15] shows that this is not true in general for large m.
Thus we ask: What is the largest integer sm such that shortening a perfect code of
length 2m − 1 up to sm times produces optimal codes?

Uniqueness of shortening. Shortening a perfect code of length 2m − 1 once,
that is, taking all the codewords that coincide in a fixed coordinate, produces a code
of length n = 2m−2, with 2n−m codewords and minimum Hamming distance 3. Now,
we ask the reverse question: Given a code C of length n = 2m − 2 with |C| = 2n−m

and minimum Hamming distance 3, is it always possible to extend C to a perfect code
of length 2m − 1? The same question can be asked for shortening by more than one
coordinate.

Uniqueness of STS. It is known that the codewords of weight 3 in a perfect
code of length n = 2m−1 form a Steiner triple system (STS) of order n. Again we ask
the reverse question: Can any Steiner triple system of order n = 2m − 1 be extended
to a perfect code of length n? A solution even for the fist case n = 15, would be very
interesting. This problem was considered by Phelps in [23].

Space partitions. Finally, we suggest the following question. Given a perfect
code C of length n = 2m−1, we know that there always exist n+1 translates of C, say
C0,C1,C2, . . . ,Cn with C0 = C, that form a partition of Fn2 . Under which conditions
is there another, different, partition of Fn2 into perfect codes D0, D1, D2, . . . , Dn with
D0 = C? Can such partitions be classified for a given perfect code C?

Acknowledgments. We wish to thank Simon Litsyn for the preprint of [19].
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discussions.

REFERENCES

[1] H. BAUER, B. GANTER, AND F. HERGERT, Algebraic techniques for nonlinear codes, Combi-
natorica, 3 (1983), pp. 21–33.



222 TUVI ETZION AND ALEXANDER VARDY

[2] M.R. BEST AND A.E. BROUWER, The triply shortened binary Hamming code is optimal, Dis-
crete Math., 17 (1977), pp. 235–245.

[3] A. BLOKHUIS AND C.W.H. LAM, More coverings by rook domains, J. Combin. Theory Ser. A,
36 (1984), pp. 240–244.
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Abstract. Sequence comparison in computational molecular biology is a powerful tool for
deriving evolutionary and functional relationships between genes. However, classical alignment al-
gorithms handle only local mutations (i.e., insertions, deletions, and substitutions of nucleotides)
and ignore global rearrangements (i.e., inversions and transpositions of long fragments). As a result,
the applications of sequence alignment to analyze highly rearranged genomes (i.e., herpes viruses or
plant mitochondrial DNA) are rather limited. The paper addresses the problem of genome compari-
son versus classical gene comparison and presents algorithms to analyze rearrangements in genomes
evolving by transpositions. In the simplest form the problem corresponds to sorting by transposi-
tions, i.e., sorting of an array using transpositions of arbitrary fragments. We derive lower bounds
on transposition distance between permutations and present approximation algorithms for sorting by
transpositions. The algorithms also imply a nontrivial upper bound on the transposition diameter of
the symmetric group. Finally, we formulate two biological problems in genome rearrangements and
describe the first algorithmic steps toward their solution.

Key words. computational molecular biology, genome rearrangements, transpositions, the
symmetric group, approximation algorithm
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1. Introduction. Studies of molecular evolution of herpes viruses raised many
more questions than they answered. Genomes of herpes viruses evolve so rapidly that
the extremes of present-day phenotypes may appear quite unrelated. As a result,
the similarity between many genes in herpes viruses is so low that it is frequently
indistinguishable from the background noise (Karlin, Mocarski, and Schachtel [16]).
In particular, there is little or no cross-hybridization between DNAs of Epstein–Barr
virus EBV and Herpes simplex virus HSV-1 and until recently there was no unam-
biguous evidence that these herpes viruses actually had a common evolutionary origin
(McGeoch [20]). As a result the classical methods of sequence comparison are not very
useful for such highly diverged genomes and the ventures into the quagmire of molec-
ular phylogeny of herpes viruses may lead to contradictions, since different genes give
rise to different evolutionary trees (Griffin and Boursnell [11]). However, recently a
new approach to analyze highly diverged genomes was proposed, based on compar-
ison of gene orders versus traditional comparison of DNA sequences (Sankoff et al.
[24]). Since it is often found that the order of genes is much more conserved than the
DNA sequence (Franklin [9]) this approach seems to be a method of choice for many
“hard-to-analyze” genomes.
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Analysis of genomes of EBV and HSV-1 reveals that evolution of these herpes
viruses involved a number of inversions and transpositions of large fragments; in
particular, an analogue of the gene UL52-BSLF1 (required for DNA replication) in
common herpes virus precursor “jumped” from one location in the genome to another
(biologists call this event a transposition). The analysis of such rearrangements at the
genome level might be more conclusive than the analysis at the gene level traditionally
used in molecular evolution. However, there are almost no computer science results
allowing a biologist to analyze genome rearrangements.

Genomes evolve by inversions and transpositions as well as by more simple opera-
tions of deletion, insertion, and duplication of fragments. Inversions seem to be a very
common rearrangement; in fact, some genomes (for example, many plant mitochon-
drial DNA) are believed to evolve almost solely by inversions (Palmer and Herbon
[23]). A combinatorial problem of sorting by reversals (corresponding to genome rear-
rangements by inversions) has been studied intensively in recent years, and currently
there are two software programs which prove to be useful for analyzing rearrangements
in animal (Sankoff et al. [24]) and plant (Bafna and Pevzner [3]) organelle DNA. In
1992 Kececiouglu and Sankoff suggested the first performance guarantee algorithm
for sorting by reversal (see [17]). Later Bafna and Pevzner [2] devised a 1.75 perfor-
mance guarantee algorithm for sorting by reversals and proved Gollan’s conjecture
on the reversal diameter of the symmetric group. See also Kececioglu and Ravi [18]
and Hannenhalli and Pevzner [13] for recent progress on genome rearrangements. An
interesting problem related to sorting by reversals is the problem of sorting by pre-
fix reversals, also known as the pancake flipping problem (Gates and Papadimitriou
[10]). Improved bounds for sorting by prefix reversals have been obtained recently
(see Cohen and Blum [4]; Heydari and Sudborough [14]).

In a study of herpes viruses, Hannenhalli et al. [12] faced the problem of analyzing
an entire spectrum of genome rearrangements—in particular, transpositions. As a
first approximation, transpositions in genome rearrangements can be modeled in a
straightforward but limited manner by sorting by transpositions, described below.

We assume that the order of genes in a genome is represented by a permutation
π = π1π2, . . . , πn. Extend the permutation to include π0 = 0 and πn+1 = n+ 1. For
a permutation π, a transposition ρ(i, j, k) (defined for all 1 ≤ i < j ≤ n + 1 and all
1 ≤ k ≤ n + 1 such that k 6∈ [i, j]) “inserts” an interval [i, j − 1] of π between πk−1
and πk (Fig. 1.1), i.e., ρ(i, j, k) corresponds to a permutation 1 . . . i− 1 i i+1 . . . . . . . . . j-2 j-1 j . . . k-1 k . . . n

1 . . . i− 1 j . . . k-1 i i+1 . . . . . . . . . j-2 j-1 k . . . n

 .

Clearly, π ·ρ(i, j, k) has the effect of moving genes πi, πi+1, . . . , πj−1 to a new location
in a genome. Also, note that for i < j < k, ρ(i, j, k) has the effect of exchanging
blocks πi, . . . , πj−1 and πj , . . . , πk−1, and ρ(i, j, k) = ρ(j, k, i).

Given permutations π and σ, the transposition distance problem is to find a series
of transpositions ρ1, ρ2, . . . , ρt such that π · ρ1 · ρ2, . . . , ρt = σ and t is minimum. We
call t the transposition distance between π and σ. Note that transposition distance
between π and σ equals the transposition distance between σ−1π and the identity
permutation ı. Sorting π by transpositions is the problem of finding transposition
distance d(π) between π and ı. Note that the “biological” definition of transpositions
used in this paper is different from the usual “algebraic” definition.

Transpositions generate the symmetric group Sn, and we seek a shortest prod-
uct of generators ρ1 · ρ2, . . . , ρt that equals πεSn. Even and Goldreich [8] show that,



226 VINEET BAFNA AND PAVEL PEVZNER

0 8 5 1 4 3 2 7 6 9

0 6 91 4 3 2 7 8 5

FIG. 1.1. Transposition ρ(1, 3, 8) on π transforms cycle graph G(π) into G(πρ).

given a set of generators of a permutation group, determining the shortest product
of generators that equals π is NP-hard. In our problem, the generator set is fixed
and the complexity status of sorting by transpositions is unknown. The only known
polynomially solvable variant of sorting by transpositions is sorting by transpositions
ρ(i, i + 1, i + 2), where the operation is an exchange of adjacent elements. For this
problem, polynomial algorithms exist for both linear and circular permutations (Jer-
rum [15]). Aigner and West [1] found a simple algorithm for sorting by transpositions
ρ(1, 2, i) when the operation is reinsertion of the first element.

Sorting by transpositions is a somewhat harder combinatorial problem than the
previously studied sorting by reversals; in particular, the transposition diameter of
the symmetric group is still unknown. To devise a performance guarantee algorithm
for sorting by transpositions, we establish lower bounds for transposition distance
based on the notion of the cycle graph of a permutation. In section 2 we show that
the number of alternating cycles in this edge-colored graph is a bottleneck for sorting
by transposition. In section 3 we derive upper bounds for sorting by transposition
based on the analysis of crossing cycles in the cycle graph. More involved analysis
in section 4 provides even better upper bounds in the case where the cycle graph
contains long cycles. However, this construction breaks for short cycles. Somewhat
surprisingly, the analysis of parity of cycles in the cycle graph provides a compromise
and leads to a 1.75 performance guarantee algorithm (section 5). Finally, in section
6 we devise a 1.5 performance guarantee algorithm for sorting by transpositions by
exploiting both the structure and parity of crossing cycles in the cycle graph. As
an application, we derive a nontrivial upper bound on the transposition diameter of
the symmetric group. Algorithms for sorting by reversals and transpositions present
the first steps toward the solutions of two open biological problems described in the
last section.

2. Lower bounds for sorting by transpositions. For all 0 ≤ i ≤ n, the pair
(πi, πi+1) is a breakpoint if πi+1 6= πi + 1. Observe that the identity permutation
is the only permutation with 0 breakpoints, and therefore, sorting a permutation
corresponds to decreasing the number of breakpoints. However, this correspondence
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FIG. 2.1. Transpositions change number of cycles in cycle graphs.

is not tight in that a permutation with few breakpoints may be more distant from
the identity permutation than one with more breakpoints. Also, it is easy to see
that a transposition can decrease the number of breakpoints by at most 3, implying
a trivial lower bound of d(π) ≥ #breakpoints(π)

3 . However, not all permutations allow
transpositions that reduce the number of breakpoints by 3, so the bound is not tight.
We introduce the notion of a cycle graph of a permutation and use it to obtain
improved lower bounds.

A directed edge-colored cycle graph of π, denoted by G(π), is the graph with
vertex set {0, 1, . . . , n+ 1} and edge set defined as follows. For all 1 ≤ i ≤ n+ 1, gray
edges are directed from i− 1 to i and black edges from πi to πi−1 (In Fig. 1.1, black
edges are shown by thick lines and gray edges are shown by thin lines).

An alternating cycle of G(π) is a directed cycle in which the edges alternate colors.
Observe that for each vertex in G(π) every incoming edge is uniquely paired with an
outgoing edge of different color. This implies that there is a unique decomposition of
the edge set of G(π) into alternating cycles. In what follows, we will use cycle to refer
to an alternating cycle and use k-cycle to refer to an alternating cycle of length 2k.
Also, we call a k-cycle long if k > 2, and short otherwise.

There are a total of 2(n+1) edges and at most (n+1) cycles in G(π) (the identity
permutation is the only permutation with n+ 1 cycles). For a permutation π, denote
the number of cycles in G(π) as c(π). Then the sequence of transpositions that sort
π must increase the number of cycles from c(π) to n+ 1. For a permutation π and a
transposition ρ, denote ∆c(ρ) = c(πρ) − c(π) as the change in number of cycles due
to transposition ρ.

LEMMA 2.1. ∆c(ρ) ∈ {2, 0,−2}.
Proof. A transposition ρ(i, j, k) involves six vertices of graph G(π) (πi−1, πi, πj−1,

πj , πk−1, πk) and leads to removing three black edges ((πi, πi−1), (πj , πj−1), and
(πk, πk−1)) and adding three new black edges ((πj , πi−1), (πi, πk−1), and (πk, πj−1)).

Three removed edges belong to either three, two, or one cycles in the cycle decom-
position of G(π). In the case where the removed edges belong to three cycles, c(πρ) =
c(π)− 3 + 1, since these three cycles correspond to one cycle in G(πρ) (Fig. 2.1a). In
the case where the removed edges belong to two cycles, c(πρ) = c(π) − 2 + 2, since
these two cycles correspond to two cycles in G(πρ) (Fig. 2.1b). In the case where
the removed edges belong to a single cycle C, there are two subcases (Figs. 2.1c and
2.1d). In the subcase shown in Fig. 2.1c, c(πρ) = c(π) − 1 + 1, since C corresponds
to one cycle in G(πρ). In the subcase shown in Fig. 2.1d, c(πρ) = c(π)− 1 + 3, since
C corresponds to three cycles in G(πρ).

Lemma 2.1 immediately gives a lower bound on d(π).
THEOREM 2.2. d(π) ≥ n+1−c(π)

2 .
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A cycle in G(π) is odd if it has an odd number of black edges and even otherwise.
To establish a better lower bound we analyze odd and even cycles separately. Define
codd(π) (ceven(π)) as the number of odd (even) cycles in π. For a permutation π, and
a transposition ρ, denote ∆codd(ρ) = codd(πρ) − codd(π) as the change in number of
odd cycles due to transposition ρ.

LEMMA 2.3. ∆codd(ρ) ∈ {2, 0,−2}.
Proof. The proof of Lemma 2.1 implies that the only case when a transposition ρ

leads to creating more than two new cycles in G(πρ) is the case presented in Fig. 2.1d.
In this case, three cycles are added to G(π) and one cycle is removed from G(π). If
all three added cycles are odd, then the removed cycle is also odd, and codd(πρ) =
codd(π) − 1 + 3. Therefore ∆codd(ρ) ≤ 2. This condition, Lemma 2.1, and parity
considerations imply ∆codd(ρ) ∈ {2, 0,−2}.

As the identity permutation has n + 1 odd cycles, Lemma 2.3 implies a better
bound.

THEOREM 2.4. d(π) ≥ n+1−codd(π)
2 .

Define d(n) = maxπ∈Sn d(π) to be the transposition diameter of the symmetric
group of order n. Observing that for π = n n − 1, . . . , 2 1, codd(π) = 1 if n is
even and codd(π) ≤ 2 if n is odd, the transposition diameter of the symmetric group
Sn is at least bn2 c. One can verify that d(n n − 1, . . . , 1) ≤ bn2 c + 1 for all n and
d(n) = d(n n− 1, . . . , 1) = bn2 c+ 1 for 3 ≤ n ≤ 10.

3. Upper bounds for sorting by transpositions. For x ∈ {2, 0,−2}, define
an x-move on π as a transposition ρ such that ∆c(ρ) = x. In order to sort faster, we
would like to use as many 2-moves as possible. In this section, we study the structure of
cycles which allow 2-moves and use that to devise a performance guarantee algorithm
for sorting by transpositions.

We number the black edges of the cycle graph G(π) from 1 to n+ 1 by assigning
label i to a black edge from πi to πi−1. We say that transposition ρ(i, j, k) acts on
edges i, j, and k. We also say that a transposition ρ(i, j, k) acts on a cycle C if all three
black edges i, j, and k belong to C. The proof of Lemma 2.1 implies the following
simple observations.

LEMMA 3.1. If a transposition ρ acts on a cycle and creates more than one new
cycle in G(πρ), then ρ is a 2-move.

LEMMA 3.2. If a transposition ρ acts on edges belonging to exactly two different
cycles, then ρ is a 0-move.

Figure 2.1 presents two different kinds of cycles—nonoriented for which no 2-
moves are possible (Fig. 2.1c) and oriented for which a 2-move is possible (Fig. 2.1d).
Below we give a formal definition of oriented and nonoriented cycles.

Consider a k-cycle C visiting (in order) the black edges i1, . . . , ik. A cycle C can
be written in k possible ways depending on the choice of the first black edge. Below
we assume that the initial black edge i1 of cycle C starts at its “rightmost” vertex in
π, i.e., i1 = max1≤t≤k it.

For all k > 1, a cycle C = (i1, . . . , ik) is nonoriented if i1, . . . , ik is a decreasing
sequence; otherwise C is an oriented cycle. We will also use a characterization of
nonoriented cycles in the terms of edge directions. A gray edge joining πt = i−1 with
πs = i in G(π) is directed left if t > s and is directed right otherwise. Clearly, a cycle
C = (i1, . . . , ik) is nonoriented iff k > 1 and C has exactly one right edge (a gray edge
between black edges ik and i1).

LEMMA 3.3. If C is an oriented cycle, then there exists a 2-move acting on C. If
C is a nonoriented cycle, then there exist no 2-moves acting on C.
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FIG. 3.1. A 0-move creating an oriented cycle.

Proof. Let C = (i1, . . . , ik) be an oriented cycle and let 3 ≤ t ≤ k be an index such
that it > it−1. Consider a transposition ρ(it−1, it, i1) acting on C. This transposition
creates a 1-cycle (on vertices πit−1−1 and πit) and some other cycles. Therefore, by
Lemma 3.1, ρ is a 2-move.

Lemmas 3.2 and 3.3 imply the following theorem.
THEOREM 3.4. For an arbitrary (unsorted) permutation π, there exists either a

2-move or a 0-move followed by a 2-move.
Proof. If G(π) has an oriented cycle then, by Lemma 3.3, a 2-move is possible.

Otherwise, consider a nonoriented cycle C = (i1, . . . , ik) and let r be a position of the
maximal element of π in the interval [i2, i1 − 1]. Let s be a position of πr + 1 in π
(Fig. 3.1). Clearly s 6∈ [i2, i1]. Without loss of generality, assume that s > i1, and
consider a transposition ρ(r + 1, s, i2) (Fig. 3.1). The transposition ρ acts on edges
of two different cycles; therefore by Lemma 3.2 ρ is a 0-move. Since ρ changes the
direction of the left edge (πi1−1, πi2), and does not change direction of the right edge
(πik−1, πi1), the cycle C ′ containing these edges in G(πρ) has at least two right edges.
Therefore C ′ is an oriented cycle allowing a 2-move (Lemma 3.3).

Theorem 3.4 provides an increase of c(π) by at least 2 in two consecutive moves
and implies the following upper bound for sorting by transpositions.

THEOREM 3.5. Any permutation π can be sorted in n+ 1− c(π) transpositions.
Theorems 2.2 and 3.5 imply an approximation algorithm for sorting by transposi-

tions with performance guarantee 2. In the following sections, we give a better upper
bound by disallowing −2-moves and forcing at least two consecutive 2-moves between
any two 0-moves. In our approximation algorithm, we will use only 0- and 2-moves,
although we do not have proof that an optimal sequence of transpositions exists which
does not use −2-moves.

4. Crossing cycles. Theorem 3.4 shows that the number of 2-moves can be
made greater than or equal to the number of 0-moves. In order to improve the
performance ratio for sorting by transposition, we need to further increase the number
of 2-moves. Theorem 4.7 provides the first step toward such an improvement, but first
we need to prove a series of technical lemmas.

Consider a triple of black edges x, y, z belonging to the same cycle C in G(π).
C induces a cyclic order on x, y, z, and among three possible representations of this
order we choose the one starting from the rightmost black edge max{x, y, z} as the
canonical representation for a triple (x, y, z). A triple (in a canonical order) is called
nonoriented if x > y > z and oriented otherwise. For example, a triple (k, j, i) in
Fig. 2.1c is nonoriented while triple (k, i, j) in Fig. 2.1d is oriented. All triples of a
nonoriented cycle are nonoriented. On the other hand, every oriented cycle has at
least one oriented triple.

Ordered sequences of integers {v1 < · · · < vk} and {w1 < · · · < wk} are interleav-
ing if either v1 < w1 < v2 < w2 < · · · < vk < wk or w1 < v1 < w2 < v2 · · · < wk < vk.
Sets of integers V and W are interleaving if orderings of V and W are interleaving.
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FIG. 4.1. Crossing and noninterfering cycles.

Let (x, y, z) be a nonoriented triple, i.e., x > y > z. A transposition ρ(i, j, k) is a
shuffling transposition with respect to a triple (x, y, z) if the sets {i, j, k} and {x, y, z}
interleave.

LEMMA 4.1. Let (x, y, z) be a triple in a cycle C, and let i, j, k 6∈ C be black edges
in G(π). Then ρ(i, j, k) changes the orientation of triple (x, y, z) (i.e., it transforms
oriented triple into non-oriented and vice versa) iff ρ is a shuffling transposition for
(x, y, z).

LEMMA 4.2. If C is nonoriented, then for all triples (x, y, z) ∈ C, transposition
ρ(z, y, x) = ρ(y, x, z) transforms C into a nonoriented cycle in G(πρ).

We will also need the following lemma specifying some 2-moves acting on oriented
cycles.

LEMMA 4.3. If (x, y, z) is an oriented triple, then ρ(y, z, x) = ρ(z, x, y) is a
2-move.

Cycles C and C ′ are crossing if there exists an oriented triple in C and a non-
oriented triple in C ′ that are interleaving (Fig. 4.1a). Cycles C and C ′ are
non-interfering if there exist oriented triples in C and C ′ that are not interleaving
(Fig. 4.1b).

LEMMA 4.4. If permutation π has crossing or noninterfering cycles, then there
exist two consecutive 2-moves in π.

Proof. If cycles C and C ′ in G(π) are crossing, there exist an oriented triple
(x, z, y) ∈ C and a nonoriented triple (x′, y′, z′) ∈ C ′ which are interleaving (Fig. 4.1a).
By Lemma 4.3, a transposition ρ(z, y, x) defines a 2-move on C. On the other hand,
since (x, y, z) and (x′, y′, z′) are interleaving, ρ(z, y, x) is a shuffling transposition with
respect to (x′, y′, z′). Thus, by Lemma 4.1 ρ transforms C ′ into an oriented cycle in
G(πρ) and by Lemma 3.3 provides a second 2-move.

Alternatively, if C and C ′ are noninterfering, then there exist oriented triples
(x, z, y) ∈ C and (x′, z′, y′) ∈ C ′ which are noninterleaving (Fig. 4.1b). By Lemma 4.3,
a transposition ρ(z, y, x) defines a 2-move on C. Furthermore, (x′, z′, y′) remains an
oriented triple (Lemma 4.1) of C ′ in G(πρ), which provides a second 2-move.

We say that a transposition acts on two cycles C and C ′ in G(π) if it acts on
black edges of both C and C ′. To prove Theorem 4.7 below, we will need the following
observation about transpositions acting on two cycles.

LEMMA 4.5. Let C be a cycle containing black edges x and y and let D be a cycle
containing black edges x′ and y′. Let ρ be a transposition acting on three of four black
edges x, y, x′, y′.

• If {x, y} does not interleave with {x′, y′}, then ρ creates a cycle with a non-
oriented triple.
• If {x, y} interleaves with {x′, y′}, then ρ creates a cycle with an oriented

triple.
Proof. See Fig. 4.2. All other cases are symmetric.
We say that cycle C = (i1, . . . , ik) spans cycle D = (j1, . . . , jl), if ik < jl < j1 < i1.

The following lemma illustrates an important property of nonoriented cycles.
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FIG. 4.2. Transpositions acting on two cycles.

LEMMA 4.6. For every nonoriented cycle C = (. . . a, . . . , b . . .), with arbitrary
edges a, b, there exists a cycle D(. . . , c . . . , d . . .) such that (a, b) and (c, d) interleave.

Proof. Let πc = maxi∈[b,a−1] πi and πd = πc + 1. Choice of c implies that
d 6∈ [b, a− 1], as C is nonoriented d 6= a, implying that d 6∈ [b, a]. Therefore, (c, d) and
(a, b) interleave.

THEOREM 4.7. If there exists a long cycle in G(π), then either a 2-move or a
0-move followed by two consecutive 2-moves is possible in π.

Proof. If G(π) has an oriented cycle, then by Lemma 3.3 a 2-move is possible.
Also, if there exist nonoriented long cycles C and D with interleaving triples (r, s, t) ∈
C and (x, y, z) ∈ D, then a 0-move ρ acting on edges z, y, x is a shuffling transposition
for C. By Lemma 4.1, ρ transforms C into an oriented cycle C ′. By Lemma 4.2 ρ
transforms D into a nonoriented cycle D′. It is easy to see that C ′ and D′ are crossing;
therefore, by Lemma 4.4 there exist two consecutive 2-moves in G(πρ).

Therefore, assume that no two cycles have interleaving triples. Pick a nonoriented
long cycle C = (i1, . . . , ik), such that C is not spanned by any long cycle. Find
a cycle D = (x, . . . , c, . . . , d, . . . , y) such that the pairs (c, d) and (i1, ik) interleave
(Lemma 4.6). Note that if y < ik, then x < i1; otherwise D would span C. On the
other hand, if y > ik, then x > i1; otherwise (c, d) and (i1, ik) would not interleave.
Therefore, either y < ik < x < i1 or ik < y < i1 < x. Without loss of generality,
we assume the latter. Let s be the rightmost edge in C to the left of y, i.e., s =
maxi∈C,i<y i. Two cases arise.
s > ik: Find cycle E = (v, . . . , c, . . . , d, . . . , u) such that the pairs (c, d) and (ik, s)

interleave (Lemma 4.6). If u < ik, then v < s because, otherwise, E either
spans C (v > i1) or has an interleaving triple with (ik, s, i1) ∈ C (s < v < i1).
If u > ik (Fig. 4.3a), then four cases arise depending on v lying in one of
the intervals [s, y], [y, i1], [i1, x] or [x, n+ 1] (Fig. 4.3b-e). The transpositions
ρ(x, y, v) in Fig. 4.3a and ρ(x, y, u) in Figs. 4.3b-4.3e are shuffling w.r.t. the
triple (i1, s, ik) of C, and by Lemma 4.1 transform C into an oriented cycle C ′

in G(πρ). ρ also transforms D and E into D′ and a 1-cycle in G(πρ). From
Lemma 4.5, D′ is oriented in Fig. 4.3a. In the remaining cases, D′ is oriented
when v ∈ [y, x − 1] and nonoriented otherwise (Lemma 4.5). Observe that
in the first case C ′ and D′ are crossing (Figs. 4.3b, 4.3e); otherwise they are
noninterfering (Figs. 4.3c, 4.3d). In either case, two 2-moves are possible in
G(πρ)(Lemma 4.4).
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FIG. 4.3. 0-move leading to two 2-moves.

Algorithm Tsort(π)

1. While G(π) has a long cycle, perform either a 2-move or a 0, 2, 2-move
(Theorem 4.7).

2. If G(π) has only short cycles, perform a 0-move followed by a 2-move
(Theorem 3.4).

FIG. 5.1. Algorithm Tsort for sorting by transpositions.

s = ik: Let t be the leftmost black edge in C to the right of y, i.e., t = mini∈C,i>y i. As
C is a long cycle, t < i1. Find E = (v, . . . , c, . . . , d, . . . , u) such that the pairs
(c, d) and (t, i1) interleave (Lemma 4.6). Cycle E is different from cycle D
because, otherwise, E and C would have interleaving triples. If v > i1, then
u > t because, otherwise, E either spans C (u < i1) or has an interleaving
triple with (i1, t, ik) ∈ C (i1 < u < t). This case is similar to the cases shown
in Figs. 4.3d, 4.3e. If v < i1, then three cases arise depending on which
of the intervals [0, ik], [ik, y], or [y, t] contains u. The first of these cases is
shown in Fig. 4.3f, while the other two are symmetric to cases in Fig. 4.3c
and 4.3e, respectively. In Fig. 4.3f, the transposition ρ(x, y, u) transforms C
into a nonoriented cycle C ′ (Lemma 4.1), and transforms cycles D,E into an
oriented cycle D′ and a 1-cycle in G(πρ) (Lemma 4.5). Further, C ′ and D′

are crossing, and therefore two 2-moves are possible in G(πρ).

5. Mixing odd and even cycles. Theorem 4.7 guarantees creating at least
four cycles in three moves, thus providing ∆c(ρ) = 4

3 on average, which is better
than ∆c(ρ) = 1, given by Theorem 3.4. However, it can be applied only when G(π)
has long cycles. In case G(π) only has short cycles, the best we can guarantee is a
0-move followed by a 2-move creating four 1-cycles from two 2-cycles (Theorem 3.4).
Theorems 3.4 and 4.7 motivate the algorithm Tsort (Fig. 5.1).

Does Tsort achieve a performance ratio of better than 2? Unfortunately, in the
case that G(π) has only short cycles, the 0-move followed by a 2-move provides only
∆c(ρ) = 4−2

2 = 1 on average. However, for these two moves, ∆codd(ρ) = 4−0
2 = 2, thus

achieving a maximal rate of creating odd cycles from the perspective of Theorem 2.4.
On the other hand, Theorem 4.7 does not guarantee yet that ∆codd(ρ) = 2 for every
2-move. Therefore, if we use either the number of cycles or the number of odd cycles
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as our objective function, we cannot guarantee a performance ratio better than 2.
Somewhat surprisingly, we show that a mixed objective function which gives different
weights to odd and even cycles leads to an improved performance guarantee.

THEOREM 5.1. Tsort provides a performance guarantee of 1.75 for sorting by
transpositions.

Proof. For arbitrary x ≥ 1, define the objective function f(π) = xcodd(π) +
ceven(π), where codd(π) and ceven(π) are the number of odd and even cycles in G(π),
respectively. Clearly, for this range of x, f(π) is uniquely maximized by the identity
permutation, and sorting a permutation corresponds to maximizing f . Observe that
the maximum gain any transposition ρ can achieve is ∆f(ρ) = f(πρ) − f(π) = 2x.
We now evaluate the maximum ∆f guaranteed by Theorems 3.4 and 4.7.

In the case that G(π) only has short cycles, Theorem 3.4 guarantees that in two
moves, four 1-cycles are created from two 2-cycles, implying a gain of 4x− 2 over two
moves, or an average gain of 2x − 1 in one transposition. In any 2-move, two new
cycles are created and, in the worst case (if both are even) we can still guarantee a
gain of 2. By construction, a 0-move in Theorem 4.7 either creates a 1-cycle or does
not change the number of black edges in any cycle. Therefore ∆f ≥ 0 for any 0-move.
Moreover, Theorem 4.7 guarantees that any such 0-move is followed by two 2-moves,
implying an average gain of 4

3 . It follows that ∆f ≥ min{4
3 , 2x − 1} on the average.

Comparing the best possible gain of 2x against the gain provided by Tsort, we get a
performance guarantee of

2x
min{ 4

3 , 2x− 1}
.

The best performance is achieved for x = 7
6 , resulting in the approximation ratio

1.75.

6. A 1.5 approximation algorithm for sorting by transposition. In order
to improve performance still further, we need to strengthen Theorem 4.7. Note that
Theorem 4.7 only guarantees an increase in the number of cycles. However, the
identity permutation has n + 1 cycles, all of length one, indicating that we need to
increase the number of odd cycles. By choosing appropriate 2-moves, we shall ensure
that the number of odd cycles increases by at least two in every 2-move.

We call a transposition ρ valid if ∆c(ρ) = ∆codd(ρ). For a cycle C containing
edges i and j, define d(i, j) as the number of black edges between vertices πi and πj
in C (in particular, d(i, j) = 1 for consecutive black edges i and j).

LEMMA 6.1. If there exists an oriented cycle in G(π), then either a valid 2-move
or a valid 0-move followed by two consecutive valid 2-moves is possible in π.

Proof. Suppose there is no valid 2-move in π. For an arbitrary oriented cycle C
in G(π), consider the following set S of oriented triples of C such that the distance
between the first and second elements of the triple is odd:

S = {(x, y, z) : x, y, z ∈ C and d(x, y) is odd}.

The observation that every oriented cycle C has an oriented triple (x, y, z) such
that x and y are the consecutive black edges in C implies that S is nonempty. Let
(x, y, z) be a triple in S with maximal x.

A transposition ρ acting on edges y, z, and x transforms C into three cycles C1, C2,
and C3 consisting of d(x, y), d(y, z), and d(z, x) black edges. As (x, y, z) ∈ S, cycle
C1 is odd. If either C2 or C3 is odd, then ∆codd(ρ) = 2 and ρ is a valid 2-move,
contradicting the assumption that there are no valid 2-moves in π. Therefore both



234 VINEET BAFNA AND PAVEL PEVZNER

a y z xb

d(x,y)

d(b,x) d(b,x)

d(y,a)

d(y,a)

d(x,y)

d(y,a)

d(b,x)

d(x,y) d(y,a) d(b,x)d(x,y)

(c)

b a y z x

d(b,x)

d(y,a)

d(x,y)
d(x,y)

d(y,a)=

d(y,z)-1

d(b,x) = d(z,x)-1

(a) (b)
y xz

b a

d(y,x)

d(x,y)

d(z,x) d(y,x) d(x,y) d(z,x)

FIG. 6.1. Valid 2-moves and 0, 2, 2-moves on an oriented cycle.

d(y, z) and d(z, x) are even. As both d(y, z) and d(z, x) are even, the fragments of
C from y to z and from z to x contain at least two edges. Let a be a black edge
preceding z in C and b be a black edge following z in C (Fig. 6.1a).

If y < a < x, then transposition ρ acting on edges y, a, and x creates cycles of
length d(y, z) − 1 and d(x, y). Both these numbers are odd and, therefore, ρ is a
valid 2-move, thus contradicting the assumption. Therefore a 6∈ [y, x]. Symmetric
arguments demonstrate that b 6∈ [y, x].

If a > x, then (a, z, x) is an oriented triple with odd d(a, z) = 1, thus contradicting
the choice of (x, y, z). Therefore a < y. If b > x, then (b, a, z) is an oriented triple
with odd d(b, a) = d(b, x) + d(x, y) + d(y, a) = (d(z, x) − 1) + d(x, y) + (d(y, z) − 1),
thus contradicting the choice of (x, y, z). Therefore a, b < y.

The situations described by conditions b < a and a < b are presented in Figs. 6.1b
and 6.1c. If b < a, then ρ(b, a, z) is a valid 2-move (Fig. 6.1b). If a < b, then there
exist 2-moves but no valid 2-moves in π. However, there exists a valid 0-move followed
by two consecutive valid 2-moves (Fig. 6.1c).

Fig. 6.1c presents an example of an oriented cycle which does not allow valid
2-moves. This cycle has a complicated “self-interleaving” structure and, in the fol-
lowing, we try to avoid creating such cycles. In order to achieve this goal, we define
strongly oriented cycles, which have the simplest “self-interleaving” structure among
all oriented cycles.

Let C = (i1, . . . , ik) be a cycle in G(π) and let C∗ = (i1 = j1 > · · · > jk) be
a sequence of black edges of C in decreasing order. Sequences C and C∗ coincide
for a nonoriented cycle and are different otherwise. Define strongly oriented cycles
as oriented cycles for which C∗ can be transformed into C by a single transposition,
i.e., C can be partitioned into strips C1 = (i1, . . . , ia), C2 = (ia+1, . . . , ib), C3 =
(ib+1, . . . , ic), and C4 = (ic+1, . . . , ik) such that C = C1C2C3C4 and C∗ = C1C3C2C4
(C4 might be empty). For example, Fig. 6.1b gives an example of a strongly oriented
cycle, as C = xyabz is transformed into C∗ = xzyab by a single transposition. Clearly,
every strongly oriented cycle has exactly two right edges. On the other hand, not every
oriented cycle with two right edges is strongly oriented (Fig. 6.1c).

LEMMA 6.2. A strongly oriented cycle allows a valid 2-move.
Proof. Depending on whether or not C4 is empty, there are two kinds of cycles, as

shown in Fig. 6.2, with left+mid+right black edges (in Fig. 6.2c, mid = mid′+mid′′).
Dashed lines in the figure represent alternating paths of zero or more edges. In the
following, we shall abuse notation by referring to both the sets of edges and their
numbers as left,mid, and right.

In Fig. 6.2a, consider transpositions of the form ρ(i, j, k), where i is the leftmost
mid edge, j is the rightmost right edge, and k is a left edge. As all such triples
(i, j, k) are oriented; ρ(i, j, k) is a 2-move.
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FIG. 6.2. Strongly oriented cycles: (a), (b) First kind. (c) Second kind.
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FIG. 6.3. Transforming two nonoriented cycles into a strongly oriented cycle.

Figure 6.2a corresponds to the case left > 1 and presents two such transpositions,
say, ρ1(i, j, k1) and ρ2(i, j, k2), in which k1 and k2 are the two leftmost left edges. Both
ρ1 and ρ2 are 2-moves and create three cycles. One of these cycles is a 1-cycle. If
left > 1, then an appropriate choice of either ρ1 or ρ2 provides at least one more odd
cycle, thus indicating that the chosen transposition is a valid 2-move. If left = 1, then
the transposition ρ shown in Fig. 6.2b creates at least two 1-cycles, thus indicating
that ρ is a valid 2-move.

In Fig. 6.2c, the transposition ρ inserting a “middle interval” into the leftmost
edge creates cycles of length 1,mid′′ + left− 1 and mid′ + right. On the other hand,
a transposition % inserting a middle interval into the rightmost edge creates cycles of
length 1,mid′′ + left and mid′ + right − 1. Therefore, either ρ or % creates at least
two odd cycles, thus ensuring a valid 2-move in π.

Next, we present two lemmas which show how strongly oriented cycles arise from
nonoriented cycles.

LEMMA 6.3. If ρ is a shuffling transposition on a nonoriented cycle C, then ρ
transforms C into a strongly oriented cycle in G(πρ).

Proof. The proof follows from the definition.
LEMMA 6.4. Let D(x, . . . , y) and E(x′, . . . , y′) be two nonoriented cycles in G(π)

with no interleaving triples, and let ρ be a transposition acting on three of four black
edges x, y, x′, y′. Then ρ creates a strongly oriented cycle iff D and E have interleaving
pairs of edges.

Proof. Figure 6.3 presents cycles D and E with interleaving pairs of edges, but no
interleaving triple. Assume w.l.o.g that the edges of D partition E into three strips
E = E1E2E3 (E3 is possibly empty), while the edges of E partition the edges of D into
two D = D1D2. The transposition ρ transforms D and E into a 1-cycle and a cycle
F visiting (in order) edges D1D2E1E2E3. On the other hand, F ∗ = D1E2D2E1E3
which can clearly be transformed into F by a transposition.
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If D and E have no interleaving pairs of edges, then it is easy to verify that ρ
transforms D and E into a 1-cycle and a nonoriented cycle F .

Every strongly oriented cycle has exactly two right edges, one of which is of the
form (r, i1). Label the other as (s, t). For strongly oriented cycles of the first kind
(Fig. 6.2a), define

r′ = max
i∈left

i and t′ = min
i∈right

i,

and consider three intervals I1(C) = [r′, r], I2(C) = [t, t′], and I3 = [0, s] ∪ [i1, n+ 1].
For strongly oriented cycles of the second kind (Fig. 6.2c), define

s′ = max
i∈left

i , t′ = min
i∈right

i , a = max
i∈mid′

i and a′ = min
i∈mid′′

i,

and consider intervals I1(C) = [s′, s], I2(C) = [t, t′], and I3(C) = [a, a′].
A strongly oriented cycle C and a nonoriented cycle C ′ = (i1, . . . , ik) are strongly

crossing if there exists a black edge x in C ′ such that each of the sets I1(C), I2(C),
and I3(C) contains exactly one element of the triple (i1, x, ik). Note that 2-moves for
C described in the proof of Lemma 6.2 form shuffling transpositions w.r.t. (i1, x, ik).
This observation and Lemma 6.2 imply the following.

LEMMA 6.5. If G(π) has strongly crossing cycles, then there exist two consecutive
valid 2-moves in G(π).

Next, we modify the concept of “noninterfering” cycles after which we shall have
all the tools needed to strengthen Theorem 4.7. A transposition ρ is safe, with respect
to a strongly oriented cycle C ∈ G(π), if it transforms C into a strongly oriented cycle
in G(πρ). The following lemma gives a sufficient condition for a transposition to be
safe.

LEMMA 6.6. Let C be a strongly oriented cycle, and let (x, y, z) 6∈ C be a triple
such that no edge of C lies in the region between x and y. Then, a transposition acting
on (x, y, z) is safe w.r.t. C.

Let cycles C and C ′ be strongly oriented. C is strongly noninterfering w.r.t. C ′

if it has a right edge (a, b) such that no black edge of C ′ lies in the interval [a, b].
LEMMA 6.7. If G(π) has strongly noninterfering cycles, then there exist two

consecutive valid 2-moves in G(π).
Proof. Let C be strongly noninterfering w.r.t. C ′. Consider a valid 2-move

ρ(x, y, z) on C described in the proof of Lemma 6.2. Observe that one of the right
edges in C is of the form (x, y) and therefore includes the region [x, y], and the other
right edge includes the interval [y, z]. Therefore, if C is strongly noninterfering w.r.t.
C ′, then either no black edge of C ′ lies in [x, y] or no black edge of C ′ lies in [y, z]. In
either case, ρ(x, y, z) is safe w.r.t. C ′ (Lemma 6.6). This implies that a valid 2-move
on C ′ follows a valid 2-move on C ′.

Finally, we can prove a stronger version of Theorem 4.7.
THEOREM 6.8. If there exists a long cycle in G(π), then either a valid 2-move or

a valid 0-move followed by two consecutive valid 2-moves is possible in π.
Proof. We mimic the proof of Theorem 4.7, ensuring that all moves are valid ones.
If G(π) has an oriented cycle, then from Lemma 6.1, a valid 2-move or a valid

0-move followed by two valid 2-moves is always possible.
Next, consider the case when G(π) has nonoriented cycles C and D with interleav-

ing triples (r, s, t) ∈ C and (x, y, z) ∈ D. Then, ρ(x, y, z) transforms C into a strongly
oriented cycle C ′ in G(πρ) (Lemma 6.2) and transforms D into a nonoriented cycle
D′ in G(πρ) (Lemma 4.1). Further observe that each of the intervals I1(C ′), I2(C ′),
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FIG. 6.4. Transforming C,D, and E into strongly noninterfering cycles.

and I3(C ′) contains exactly one element of a (nonoriented) triple in D′. Therefore,
C ′ and D′ are strongly crossing, and from Lemma 6.5, two valid 2-moves are possible
in G(πρ).

Therefore, we can assume that G(π) has no oriented cycles or cycles with inter-
leaving triples. The proof of theorem holds and we consider them in the following
case by case fashion:
Fig. 4.3a. The valid 0-move ρ(y, x, v) transforms D and E into a nonoriented cy-

cle D′ (Lemma 6.4) and transforms C into a strongly oriented cycle C ′

(Lemma 6.2) in G(πρ). Further observe that vertices πx, πv, πy all belong
to D′ and πy ∈ I1(C ′), πv ∈ I2(C ′), πx ∈ I3(C ′), thereby implying that
C ′ and D′ are strongly crossing. From Lemma 6.5, two valid 2-moves are
possible in G(πρ).

Fig. 4.3b. The valid 0-move ρ(y, x, u) transforms D and E into a nonoriented cycle D′

(Lemma 6.4), and transforms C into a strongly oriented cycle C ′ (Lemma 6.2)
in G(πρ). Observe that πy ∈ I1(C ′) and πu ∈ I2(C ′). Moreover, the choice
of s as the rightmost edge to the left of y ensures that there is no edge of C
between v and y, and therefore πv ∈ I3(C ′). As vertices πx, πv, πy all belong
to D′, cycles C ′ and D′ are strongly crossing. From Lemma 6.5, two valid
2-moves are possible in G(πρ).

Fig. 4.3c. In this case, we consider the valid 0-move ρ(u, v, x) (Fig. 6.4) instead of
ρ(y, x, u). ρ transforms C into a strongly oriented cycle C ′ (Lemma 6.2),
and transforms D and E into strongly oriented cycle D′ (as D and E have
no interleaving triples, Lemma 6.4 applies). Define a as the rightmost edge
in D to the left of i1, i.e., a = maxi∈D,i<i1 i, and define b as the leftmost
edge in C to the right of y, i.e., b = mini∈C,i>y i. Note that a < b because,
otherwise, (ik, b, i1) ∈ C and (y, a, x) ∈ D are interleaving triples. If b > v,
then there is no edge of C in the interval [y, v], and it follows that C ′ has no
black edge in the region covered by the right edge (πy−1, πx) ∈ D′. Therefore
D′ is strongly noninterfering w.r.t. C ′. If a < b < v, then there is no black
edge of D in the interval [v, i1], and correspondingly, D′ has no black edge
in the region covered by the right edge (πik−1, πi1) ∈ C ′. Therefore, C ′ is
strongly noninterfering w.r.t. D′. In either case, Lemma 6.7 implies that two
valid 2-moves are possible in G(πρ).

Fig. 4.3d. The valid 0-move ρ(x, y, u) transforms D and E into strongly oriented
cycle D′ (as D and E have no interleaving triples, Lemma 6.4 applies) and
also transforms C into strongly oriented cycle C ′ (Lemma 6.2). Let a be the
rightmost edge of E to the left of s, and let b the leftmost edge of E to the right
of i1. Note that C has no edge in the region between edges b ∈ E and x ∈ D
in G(π) as i1 < b < x. Also, C has no edge e in the region [u, a] because,
otherwise, (u, a, v) ∈ E would interleave (e, s, i1) ∈ C. Correspondingly in
G(πρ), C ′ does not have any black edge in the region covered by the right
edge (πb−1, πa) ∈ D′, implying that D′ is strongly noninterfering w.r.t. C ′.
From Lemma 6.7, two consecutive valid 2-moves are possible in G(πρ).
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Algorithm TransSort(π)

1. While G(π) has a long cycle, perform a valid 2-move or a valid 0, 2, 2-move
(Theorem 6.8).

2. If G(π) has only short cycles, perform a good 0-move followed by a valid 2-move
(Theorem 6.9).

FIG. 6.5. Algorithm TransSort for sorting by transpositions.

Fig. 4.3e. The valid 0-move ρ(x, y, u) transforms C into a strongly oriented cycle C ′

(Lemma 6.2), and cycles D and E into D′. From Lemma 6.4, D′ is strongly
oriented if D and E have interleaving pairs; otherwise it is nonoriented. In
the first case, we use an argument similar to the case in Fig. 4.3d. If D′ is
nonoriented, then observe that πy, πu, πv all belong to D′ and πy ∈ I1(C ′),
πu ∈ I2(C ′), and πv ∈ I3(C ′), implying that D′ and C ′ are strongly crossing.
From Lemma 6.5, two valid 2-moves are possible in G(πρ).

Fig. 4.3f. The valid 0-move ρ(x, y, u) transforms D and E into strongly oriented cycle
D′ (as D and E have no interleaving triples, Lemma 6.4 applies) and trans-
forms C into nonoriented C ′ (Lemma 4.1). Furthermore, πi1 , πt, πik ∈ C ′ lie
in the regions I2(D′), I1(D′), and I3(D′), respectively. Therefore, C ′ and D′

are strongly crossing. From Lemma 6.5, two valid 2-moves are possible in
G(πρ).

Theorem 6.8 describes how we can handle the case when G(π) has long cycles.
For short cycles, we need to formalize the intuitive idea described earlier. Define a
0-move as good if it increases the number of odd cycles by two.

THEOREM 6.9. If G(π) has only short cycles, a good 0-move followed by a valid
2-move is possible.

Proof. We mimic the proof of Theorem 3.4. The 0-move takes two cycles of length
2 and creates an oriented cycle of length 3 and a cycle of length 1. A valid 2-move is
now possible.

Our proofs are constructive and immediately imply an O(n2) algorithm TransSort
for sorting by transpositions. Finally, Theorems 2.4, 6.8, and 6.9 imply the following.

COROLLARY 6.10. Algorithm TransSort sorts permutation π in no more than
3
4 · (n+ 1− codd(π)) transpositions, thereby ensuring a performance guarantee of 1.5.

COROLLARY 6.11. The transposition diameter of the symmetric group Sn is at
most 3

4n.

7. Open problems. Recent advances in large-scale comparative genetic map-
ping offer exciting prospects for understanding mammalian genome evolution. The
large number of conserved segments in the maps of man and mouse suggest that
multiple chromosomal rearrangements have occurred since the divergence of lineages
leading to humans and mice. In their pioneering paper, Nadeau and Taylor [21] es-
timated that just 178± 39 rearrangements have occurred since this divergence. This
estimate survived a ten-fold increase in the amount of the comparative man/mouse
mapping information; the new estimate, based on the latest data (Copeland et al. [5]),
almost did not change compared to Nadeau and Taylor [21]. However, the arguments
used by Nadeau and Taylor [21] are nonconstructive and do not provide any solution
to an open biological problem of reconstructing an evolutionary scenario explaining
man and mouse genome rearrangements.
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Chromosomal rearrangements include not only inversions and transpositions but
translocations, fussions, fissions, insertions, and deletions as well. A combinatorial
analysis of all such rearrangements to derive a scenario of mammalian evolution is far
beyond the possibilities of current algorithms. However, some limited applications of
algorithms for inversions and transpositions to study chromosome evolutions are al-
ready possible. In particular, extreme conservation of genes on X chromosome across
mammalian species provides an opportunity to study evolutionary history of X chro-
mosome independently of the rest of the genomes, thus reducing the computational
complexity of the problem. According to Ohno’s law (Ohno [22]), gene content of X
chromosome is assumed to have remained the same throughout mammalian develop-
ment for the last 125 million years. However, the order of genes on X chromosome
has been disrupted several times. The conservative gene content of X chromosome
implies that the only translocations which affected the gene order in X chromosome
were translocations between two copies of X chromosome and thus might be ignored
for our purposes. A recently discovered violation of the Ohno law by the Csfgmra
gene (Disteche et al. [7]) does not affect this conclusion, since this gene is located
at the very end of the human X chromosome. Davisson [6] and Lyon [19] suggested
two conflicting scenarios of rearrangements in X chromosome under the assumption
that X chromosome was not involved in translocations. Based on the analysis of the
latest data on comparative man/mouse mapping, Bafna and Pevzner [3] found the
most parsimonious scenario for evolutionary history of X chromosome and corrected
the previously suggested scenarios.

Another open problem on genome rearrangements is related to viral evolution. As
was mentioned in the introduction, herpes viruses present a particularly hard case for
classical sequence comparison. On the other hand, they present a particularly suitable
test case for the study of genome rearrangements, since complete sequences of seven
diverse herpes viruses are known. Herpes virus genomes contain from 70 to about
200 genes. Detailed comparison of amino acid sequences of viral proteins resulted
in an “alphabet” of about 30 conserved genes which were rearranged in different
herpes viruses (Hannenhalli et al. [12]). Three types of arrangements of conserved
genes exist, corresponding to the α, β, and γ divisions of herpes viruses. Derived
lower bounds for the pairwise genome rearrangements of viral genomes allowed us to
construct the most parsimonious scenarios for herpes virus evolution. Moreover, there
are only three alternative, equally parsimonious, scenarios of genome rearrangements
in herpes viruses with three different Steiner points (Hannenhalli et al. [12]). It is
impossible to delineate the true scenario among these three based on the currently
available data. However, ongoing efforts to map and sequence different herpes virus
genomes provide a warrant that a true evolutionary scenario will be found in the
future.
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Abstract. In this paper, we introduce new construction methods for Perfect Factors. These are
based on the theory of cyclic codes, interleaving techniques and the Lempel homomorphism. The
constructions enable us to settle the existence question for Perfect Factors for window sizes at most
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1. Introduction. In this paper we address the existence question for Perfect
Factors. Perfect Factors, i.e., sets of uniformly long cycles whose elements are drawn
from an alphabet of size c and in which every possible v-tuple (or “window”) of
elements occurs exactly once, are of significance for two main reasons (apart from
combinatorial interest in their own right).

• They can be used to construct Perfect Maps (or two-dimensional de Bruijn
arrays), see, for example, [1, 3, 10, 11], which are of practical importance in
certain position-location applications.
• They are special cases of Perfect Maps themselves, and hence their existence

is of significance in deciding whether Perfect Maps exist for all parameter sets
satisfying certain simple necessary conditions (it has recently been established
that these necessary conditions are sufficient for prime power size alphabets,
[13, 14]).

It has been conjectured [7] that the simple necessary conditions for the existence of
a Perfect Factor (see Lemma 1.3 below) are sufficient for all finite alphabets and for
all window sizes. Work towards a proof of this conjecture has progressed along two
fronts: first, the conjecture has been shown to be true for specific classes of alphabet
size c (for every v), and second, the conjecture has been shown to be true for small
values of v regardless of the alphabet size.

The truth of the conjecture was established by Etzion [1] for c = 2 and by Paterson
[12] in the case where c is a prime power. Further progress was made by Mitchell,
who introduced two auxiliary classes of combinatorial objects: Perfect Multifactors
(PMFs) [7] and Generalized Perfect Factors (GPFs) [8], which can be combined in
various ways to yield Perfect Factors. Powerful constructions for PMFs and GPFs
have been given in [7, 8]. An important consequence of this latter work is that
the existence question for any particular v can be reduced to an existence question
concerning a finite number of “small” parameter sets (see section 7.1 below). In [7, 8]
these ideas were used to settle the existence question for v ≤ 4.
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In this paper, we continue to attack the existence question for Perfect Factors.
We introduce three new construction methods for PMFs and GPFs. The first of these
uses cyclic codes to construct sequences (section 2), the second is based on interleaving
(sections 3 and 4), and the third uses a generalization of the Lempel homomorphism
(section 5). We show how these methods can be combined to efficiently analyze the
parameter sets required to settle the existence question for v ≤ 6 (section 7). We also
apply our methods to the cases v = 7 and v = 8, resolving the existence question in
all but two cases.

1.1. Notation. We first set up some notation which we will use throughout the
paper.

We are concerned here with c-ary periodic sequences, where by c-ary we mean
sequences whose elements are drawn from the set Zc = {0, 1, . . . , c − 1}. We refer
throughout to c-ary cycles of period n, by which we mean periodic sequences s =
[s0, s1, . . . , sn−1] where si ∈ {0, 1, . . . , c− 1} for every i, (0 ≤ i < n). The least period
of such a cycle is defined to be the least positive integer such that si = si+t for all
0 ≤ i < n (subscripts modulo n).

If t = (t0, t1, . . . , tv−1) is a c-ary v-tuple, i.e., ti ∈ {0, 1, . . . , c − 1} for every i,
(0 ≤ i < v), and s = [s0, s1, . . . , sn−1] is a c-ary cycle of period n (n ≥ v), then we
say that t occurs in s at position j if and only if

ti = si+j

for every i, (0 ≤ i < v), where i+ j is computed modulo n.
If s and s′ are two v-tuples, then we write s + s′ for the v-tuple obtained by

element-wise adding together the two tuples. Similarly, if a is any integer, we write
as for the tuple obtained by element-wise multiplying the tuple s by a. Again, if we
write t = s mod k, then t is the tuple obtained by reducing every element in s modulo
k. An exactly analogous interpretation should be used for arithmetic operations on
cycles.

If s0, s1, . . . , st−1 are t cycles all of period n, and if si = [si0, si1, . . . , si(n−1)]
(0 ≤ i < t), then I(s0, s1, . . . , st−1) denotes the t-fold interleaving of these cycles, i.e.,
I(s0, s1, . . . , st−1) = [s00, s10, . . . , s(t−1)0, s01, s11, . . . , s(t−1)(n−1)], a cycle of period
nt.

We define the left shift operator E acting on cycles of period n as follows. The
action of E on s, denoted Es, is the cycle whose ith term is si+1 (subscripts being
computed modulo n). For m ≥ 2, we define the action of Em on s by writing
Ems = E(Em−1s). For any polynomial f(X) =

∑m
i=0 aiX

i with coefficients in Zc, we
define the action of the operator f(E) on s to be the cycle a0s+a1Es+ · · ·+amE

ms.
We define a truncation operator operating on cycles. Let s = [s0, s1, . . . , snt−1]

be a cycle, and t be the least positive integer such that Et(s) = s, i.e., t is the least
period of s. Then let T (s) = [s0, s1, . . . , st−1]. Any cycle s of period n and least
period t is equally well represented by the cycle T (s).

The weight of a period n cycle is defined to be the sum of its n elements evaluated
in Zc. Notice that

En − 1
E − 1

s = (En−1 + · · ·+ E + 1)s =

[
n−1∑
i=0

si,
n−1∑
i=0

si, . . . ,
n−1∑
i=0

si

]

so that En−1
E−1 s is a constant cycle whose terms equal the weight of s. We say that

a set of period n cycles over Zc is a constant weight set if each of the cycles in the
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set has the same weight. We define the total weight of the set to be the sum of the
weights of the cycles in the set.

In addition, we use the notation (m,n) to represent the Greatest Common Divisor
of m and n (given that m,n are a pair of positive integers or a pair of polynomials
over some field). By convention, (0, n) = n.

1.2. Fundamental definitions and results.

1.2.1. De Bruijn sequences. We first have the following.
DEFINITION 1.1. A c-ary de Bruijn sequence of span v is a c-ary cycle of period cv

which contains cv distinct v-tuples in a period of the cycle; equivalently, every possible
c-ary v-tuple occurs precisely once in a period of a de Bruijn sequence.

It has long been known that c-ary span v de Bruijn sequences exist for all values
of c > 1 and v > 0 (see [2] for a proof of this result and a comprehensive survey of
the long and interesting history of de Bruijn sequences).

1.2.2. Perfect Factors. We next define a generalization of de Bruijn sequences,
the construction of which is the main theme of this paper.

DEFINITION 1.2. Suppose n, c, and v are positive integers (where we also assume
that c ≥ 2). An (n, c, v)–Perfect Factor, or simply an (n, c, v)–PF, is a collection of
cv/n c-ary cycles of period n with the property that every c-ary v-tuple occurs in one
of these cycles.

Note that, because a Perfect Factor contains exactly cv/n cycles, and because
there are clearly cv different c-ary v-tuples, each v-tuple will actually occur exactly
once somewhere in the collection of cycles (and hence all the cycles are distinct). Also
observe that a (cv, c, v)–PF is simply a c-ary span v de Bruijn sequence.

The following necessary conditions for the existence of a Perfect Factor are trivial
to establish.

LEMMA 1.3. Suppose A is a (n, c, v)–PF. Then
1. n|cv, and
2. v < n (or n = v = 1).

CONJECTURE 1.4 (see [7, Conjecture 1.4]). The conditions of Lemma 1.3 are
sufficient for the existence of an (n, c, v)–PF.

We next give a simple but useful construction for Perfect Factors.
CONSTRUCTION 1.5. Suppose n and c are integers greater than 1, where n|cn−1.

Let A∗ be the set of all c-ary cycles of period n with the property that the sum of the
elements in each cycle is congruent to 1 modulo c. If a,a′ ∈ A∗, then define a ∼ a′ if
and only if a = Esa′ for some s. It is simple to see that ∼ is an equivalence relation
on the elements of A∗, and hence define A to be a set of ∼-representatives from A∗.

LEMMA 1.6. If n, c and A are as in Construction 1.5, then A is an (n, c, n− 1)–
PF.

Proof. Consider any c-ary (n−1)-tuple. It clearly occurs at position 0 in a unique
cycle in A∗, and can only occur once in any cycle of A∗. Hence, it occurs once within
a unique cycle in A, and the result follows.

COROLLARY 1.7. The conditions of Lemma 1.3 are sufficient for the existence of
an (n, c, v)–PF when v = n− 1.

In view of the first condition in Lemma 1.3, we can assume that the prime fac-
torizations of c and n are

c =
t∏
i=1

pi
ri and n =

t∏
i=1

pi
si ,

where 0 ≤ si ≤ riv for each i.
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We discuss next the extent to which Conjecture 1.4 is known to be true. The
case where v = 1 is clearly trivial, and we have dealt with the case v = n − 1 in
Corollary 1.7. The conditions of Lemma 1.3 are known to be sufficient when c = 2 [1]
and when c is a power of a prime [12]. It was also proved in [12] that the conditions
of Lemma 1.3 are sufficient when psii > v for every index i. In [7] this result has been
improved to establish the sufficiency of the conditions of Lemma 1.3 whenever psii > v
for at least one index i.

THEOREM 1.8 (see Theorem 7.1 of [7]). An (n, c, v)–PF can be constructed for
any n, c, and v satisfying v < n|cv and c > 1, as long as v < ps and ps|n for some
prime p and some positive integer s.

This immediately implies that Conjecture 1.4 holds for v = 2 and that the conjec-
ture remains open only for periods n =

∏t
i=1 pi

si for which psii ≤ v for each 1 ≤ i ≤ t.
The truth of Conjecture 1.4 has also been established for every c when v ≤ 4

[8]. Certain other cases for v = 6 and larger composite v have recently been dealt with
in [9].

1.2.3. Perfect Multifactors. We define a related set of combinatorial objects,
first introduced in [7].

DEFINITION 1.9. Suppose m, n, c and v are positive integers satisfying m|cv
and c ≥ 2. An (m,n, c, v)–Perfect Multifactor, or simply an (m,n, c, v)–PMF, is a
collection of cv/m c-ary cycles of period mn with the property that for every c-ary
v-tuple t, and for every integer j in the range 0 ≤ j < n, t, occurs at a position p ≡ j
(mod n) in one of these cycles.

Note that, because a PMF contains cv/m cycles (each of period mn and hence
“containing” mn v-tuples), and because there are clearly cv different c-ary v-tuples,
each v-tuple will actually occur exactly n times in the collection of cycles, once in
each of the possible position congruency classes (mod n). This also implies that all
the cycles are distinct.

REMARK 1.10. It should be clear that an (m, 1, c, v)–PMF is precisely equivalent
to an (m, c, v)–PF. In addition, observe that a (1, n, c, v)–PMF is simply a collection
of cv c-ary cycles of period n with the property that every c-ary v-tuple occurs at every
possible position in one of the cycles.

The following necessary conditions for the existence of a Perfect Multifactor are
trivial to establish.

LEMMA 1.11 (see [7]). Suppose A is an (m,n, c, v)–PMF. Then
(i) m|cv, and
(ii) v < mn (or m = 1 and v = n).
It has been conjectured in [7] that the above necessary conditions are sufficient

for the existence of a PMF. The following result establishes the existence conjecture
whenever n ≥ v (and in particular for the special case m = 1).

THEOREM 1.12 [7]. Suppose n, c, v are positive integers (c ≥ 2 and n ≥ v). Then
there exists an (m,n, c, v)–PMF for every positive integer m satisfying m|cv.

We next show how an established construction technique can be used to produce
Perfect Multifactors. A slightly different formulation of the following method was
previously given as Construction E in [8].

CONSTRUCTION 1.13. Suppose c, d, σ, τ , and µ are positive integers where c ≥ 2
and d ≥ 2, and let

A = {ai : 0 ≤ i < σ}

be a set of σ c-ary cycles of period µ, and

B = {bi : 0 ≤ i < τ}
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be a set of τ d-ary cycles also of period µ. Now let

C = {sij : 0 ≤ i < σ, 0 ≤ j < τ}

be the set of cd-ary cycles of period µ defined by

sij = ai + cbj .

THEOREM 1.14. Suppose c, d, σ, τ, µ, A, and B satisfy the conditions of Con-
struction 1.13. Suppose also that, for some v ≥ 1, A is an (m,n, c, v)–PMF and B
is a (1,mn, d, v)–PMF. If C is derived from A and B (with σ = cv/m, τ = dv and
µ = mn) using Construction 1.13, then C is an (m,n, cd, v)–PMF.

Proof. Suppose t is a (cd)-ary v-tuple. Let u = t mod c, and let w = (t − u)/c.
Then u is a c-ary v-tuple and w is a d-ary v-tuple and we have

t = u + cw.

Now suppose 0 ≤ i < n; then we need to show that t occurs at a position congruent
to i modulo n in some cycle of C. Now, since A is an (m,n, c, v)–PMF, u occurs at a
position congruent to i modulo n in some cycle of A; say s occurs at position i + `n
in cycle aj for some ` and j. In addition, since B is a (1,mn, d, v)–PMF, t occurs at
position i+ `n in some cycle, say bk, of A′. It is then immediate to see that t occurs
at position i+ `n in sjk, and the result follows.

Next observe that, by Theorem 1.12, a (1,mn, d, v)–PMF exists whenevermn ≥ v,
and hence by combining Theorem 1.14 with Theorem 6.5 of [7], we have the following.

THEOREM 1.15. Suppose there exists an (m,n, c, v)–PMF. Then, for every β ≥ 1
and every d ≥ 1, there exists an (m,βn, cd, v)–PMF, given that (β,m) = 1.

1.2.4. Generalized Perfect Factors. We now define yet another class of com-
binatorial objects, the definition of which is a generalization of the notion of Perfect
Factor (as is the definition of PMF). We subsequently use these objects to help con-
struct new Perfect Factors.

DEFINITION 1.16. Suppose m, n, c, and v are positive integers satisfying m|cv
and c ≥ 2. An (m,n, c, v)–Generalized Perfect Factor, or simply an (m,n, c, v)–GPF,
is a collection of cv/m c-ary cycles of period mn with the following property. For
every c-ary v-tuple t, there exists an integer j in the range 0 ≤ j < m such that for
every i (0 ≤ i < n) t occurs at position j + im in one of these cycles.

Note that, because a GPF contains exactly cv/m cycles (each “containing” mn
v-tuples), and because there are clearly cv different c-ary v-tuples, each v-tuple will
actually occur exactly n times in the set of cycles, once in each position j + im
(0 ≤ i < n). This immediately implies that all the cycles are distinct.

REMARK 1.17. It should be clear that
(i) an (m, 1, c, v)–GPF is precisely equivalent to an (m, c, v)–PF, and
(ii) a (1, n, c, v)–GPF is precisely equivalent to a (1, n, c, v)–PMF.
The following result is also straightforward to prove.
THEOREM 1.18 (see [8]). Suppose A is an (m,n, c, v)–GPF, where (m,n) = 1.

Then A is also an (m,n, c, v)–PMF.
The following necessary conditions for the existence of a GPF are trivial to es-

tablish.
LEMMA 1.19 (see [8]). Suppose A is an (m,n, c, v)–GPF. Then
(i) m|cv, and
(ii) v < mn (or m = 1 and v = n).
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It is tempting at this point to conjecture that the necessary conditions specified
in Lemma 1.19 for the existence of an (m,n, c, v)–GPF are sufficient. However, as
established in [8], this is not true. Nevertheless we do have the following (constructive)
existence results for GPFs.

THEOREM 1.20 (see [8, Theorems 19 and 21]). Suppose there exists an (m,n, c, v)–
GPF. Then, for every λ ≥ 1 and every d ≥ 1, there exists an (m,λn, cd, v)–GPF.

This result provides a useful analogue to Theorem 1.15.
We also have the following result, which we use repeatedly below.
THEOREM 1.21 (see Theorem 16 of [8]). Suppose m, n, c, and v are positive

integers satisfying m|cv and c ≥ 2, and

A = {a0,a1, . . . ,at−1}

is a set of c-ary cycles of least periods `0, `1, . . . , `t−1, respectively, with the property
that m|`i|mn for every i, 0 ≤ i < t, and with the property that every c-ary v-tuple
occurs precisely once in the set of cycles. Then, for every i (0 ≤ i < t) let wi be
defined as ai concatenated with itself mn/`i times. Next, let

bij = Ejm(wi)

for every j, (0 ≤ j < `i/m). Finally, let

B = {bij : 0 ≤ i < t, 0 ≤ j < `i/m}.

Then B is an (m,n, c, v)–GPF.
We next observe that Construction 1.13 can also be used to produce new GPFs.
THEOREM 1.22. Suppose c, d, σ, τ, µ, A, and B satisfy the conditions of Construc-

tion 1.13. Suppose also that, for some v ≥ 1, A is an (m1, n1, c, v)–GPF and B is an
(m2, n2, d, v)–GPF, where m1n1 = m2n2 and (m1,m2) = 1 (and hence m2|n1). If C
is derived from A and B (with σ = cv/m1, τ = dv/m2 and µ = m1n1 = m2n2) using
Construction 1.13, then C is an (m1m2, n1/m2, cd, v)–GPF.

Proof. Suppose t is a (cd)-ary v-tuple. We need to exhibit an integer j with
0 ≤ j < m1m2 such that for every i (0 ≤ i < n1/m2), t occurs at position j + im1m2
in one of the cycles sij of C. Let u = t mod c, and let w = (t − u)/c. Then u is a
c-ary v-tuple and w is a d-ary v-tuple, and we have

t = u + cw.

Now there exists an integer j1 with 0 ≤ j1 < m1 such that for every i (0 ≤ i < n1),
u occurs at position j1 + im1 in a cycle of A. There also exists an integer j2 with
0 ≤ j2 < m2 such that for every i (0 ≤ i < n2), w occurs at position j2 + im2 in a
cycle of B. Since (m1,m2) = 1, by the Chinese Remainder Theorem there is a unique
j with 0 ≤ j < m1m2 that satisfies the pair of congruences:

j ≡ j1 (mod m1)
j ≡ j2 (mod m2).

Suppose i with 0 ≤ i < n1/m2 is fixed. It is certainly true that there is a cycle
ai ∈ A and a cycle bj ∈ B such that u appears in ai and w appears in bj at position
j + im1m2. The v-tuple t then appears at position j + im1m2 in the cycle sij . It
follows that the set of cycles C forms an (m1m2, n1/m2, cd, v)–GPF.

REMARK 1.23. Observe that, in the case m2 = n1 (and hence m1 = n2 and the
constructed GPF is actually a PF ), by Theorem 1.18 the above result coincides with
Theorem 23 of [8].
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1.3. Using PMFs and GPFs to construct Perfect Factors. We conclude
these introductory remarks by showing how PMFs and GPFs can be used to construct
Perfect Factors. We start with an existence result for Perfect Factors from [8, Theorem
23]. This result, which derives from a simple application of Construction 1.13, is
central to the work in this paper.

THEOREM 1.24. Suppose there exists an (ν, µ, c, v)–GPF and a (µ, ν, d, v)–PMF.
Then there exists a (µν, cd, v)–PF.

Now, from Remark 1.17(i) and Theorem 1.20, it should be clear that if there
exists an (n, c, v)–PF, then we can construct an (n,m, c, v)–GPF for every positive
integer m. Combining this observation with Theorem 1.24 we obtain as an immediate
corollary the following result, first given as Theorem 5.2 of [7].

THEOREM 1.25. If there exists an (n, c, v)–PF and an (m,n, d, v)–PMF, then
there exists an (mn, cd, v)–PF.

Since, by Theorem 1.12, a (1, n, d, v)–PMF exists for every n, d, and v (n ≥ v
and d > 1), we immediately have the following.

COROLLARY 1.26. If there exists an (n, c, v)–PF, then there exists an (n, cd, v)–
PF for every d ≥ 1.

2. Sequence sets from cyclic codes. In this section, we will give constructions
for GPFs and PMFs that are based on the theory of cyclic codes. We refer to [6,
Chapter 7] for the necessary background information that we assume here.

Throughout, we assume that n is an integer and p is a prime with n = pls,
(p, s) = 1. We work with p-ary cycles and codes of length n. We define a cyclic
code of length n over Zp to be an ideal C in the ring Zp[X]/(Xn − 1). This ring
is a principal ideal domain and so C has a generator g. We can associate with g a
polynomial g(X) ∈ Zp[X] with deg g(X) ≤ n and g(X)|Xn − 1. Let k = deg g(X).
We can then write

C = {c(X)g(X) mod Xn − 1 : c(X) ∈ Zp[X],deg c(X) < n− k},

and regard C as a set of polynomials of degree at most n − 1. The code C is a
linear code with dimension n − k. We can associate with each polynomial a(X) =
a0 + a1X + · · ·+ an−1X

n−1 the p-ary n-tuple a = [a0, a1, . . . , an−1]. We call the set
of tuples obtained from the elements of C in this way the codewords of C. We can
regard the codewords as a set of cycles. Then it is easy to see that the action of E
on a cycle is equivalent to that of multiplication of the corresponding polynomial by
Xn−1 mod Xn− 1. Notice also that the weight of a cycle a is equal to a(1), the value
of a(X) evaluated at 1.

We need to examine the tuples appearing in the cycles obtained from C. Because
of the linearity of C, there is a (n− k)× n matrix G (called the generator matrix of
C) such that every codeword of C is a linear combination of the rows of G. We can
assume that G is of the form [In−k|A] where In−k denotes the (n−k)×(n−k) identity
matrix and A is an (n−k)×k matrix. Thus if the n−k values a0, a1, . . . , an−k−1 are
specified, then there is a unique n-tuple a = [a0, a1, . . . , an−k−1, an−k, . . . , an−1] such
that a ∈ C. This shows that every p-ary (n− k)-tuple occurs exactly once in position
zero of a codeword of C. Since the set C is closed under cyclic shifting, the same is
true of any position i with 0 ≤ i < n. This immediately shows that the set of cycles
obtained from any cyclic code C form a (1, n, p, n− k)–PMF.

2.1. Some preliminaries. We will use cosets of cyclic codes to obtain GPFs
and PMFs. The coset of C defined by polynomial b(X) is defined to be the set
C + b(X) (addition modulo Xn − 1). We have the following lemmas.
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LEMMA 2.1. Let C be a length n cyclic code with generator polynomial g(X).
Then the coset C + b(X) is closed under cyclic shifting by all multiples of t positions
if and only if a(X)g(X) ≡ b(X)(Xt − 1) (mod Xn − 1) for some a(X).

Proof. The elements of C + b(X) are the polynomials c(x)g(X) + b(X), where
deg c(X) < n − k, and a set S of polynomials is closed under cyclic shifting by all
multiples of t positions if and only if XtS ≡ S (mod Xn − 1). Now Xt(c(X)g(X) +
b(X)) = Xtc(X)g(X) +Xtb(X) lies in C+ b(X) if and only if Xtb(X) ≡ a(X)g(X) +
b(X) (mod Xn− 1) for some polynomial a(X), which in turn is equivalent to writing
b(X)(Xt − 1) ≡ a(X)g(X) (mod Xn − 1).

LEMMA 2.2. Suppose that r ≤ l, and that for every t with t|n and (t, pl)|pr−1, we
have that the polynomial (

g(X),
Xn − 1
Xt − 1

)
does not divide b(X). Then every cycle derived from the coset C + b(X) has least
period divisible by pr.

Proof. Suppose that the condition in the statement of the lemma holds. Then
for any t with t|n and (t, pl)|pr−1, we have that (g(X), X

n−1
Xt−1 ) does not divide the

polynomial c(X)g(X) + b(X) for any c(X). Hence, for every s(X) ∈ C + b(X),
((Xt − 1)g(X), Xn − 1) does not divide s(X)(Xt − 1). Hence,

s(X)(Xt − 1) 6= 0 mod Xn − 1, for every s(X) ∈ C + b(X).

It follows from this that no cycle from C + b(X) has least period divisible by t. Since
every such cycle has least period dividing n = pls, we deduce that pr must divide the
period of every cycle from C + b(X).

LEMMA 2.3. Suppose that, for every t with t|n (t 6= n), the polynomial(
g(X),

Xn − 1
Xt − 1

)
does not divide b(X). Then every cycle derived from the coset C + b(X) has least
period n.

Proof. Using exactly the same argument as in the proof of Lemma 2.2, no cycle
from C + b(X) has least period divisible by t for any t|n (t 6= n). But every cycle has
least period dividing n and the lemma follows.

2.2. A cyclic code construction for GPFs. We now have a construction
for GPFs.

CONSTRUCTION 2.4. Let n be an integer and p a prime with n = pls, (p, s) = 1.
Suppose 1 ≤ r ≤ l. Let g(X) be a polynomial of degree k in Zp[X] with g(X)|Xn − 1
and suppose X−1 divides g(X) exactly λ times, where 1 ≤ λ ≤ pl−pr−1. Let C denote
the length n p-ary code with generator polynomial g(X). Let b(X) = g(X)/(X − 1)
and define S = C + b(X). We regard S as a set of p-ary cycles of period n. Define
an equivalence relation ∼ on S by writing x ∼ y if and only if x = Et(y) for some t.
Let R be a set of ∼-class representatives. Finally, let A = {T (a) : a ∈ R}.

THEOREM 2.5. Let A be constructed as in Construction 2.4. Then A is a collection
of cycles such that

• every p-ary (n− k)-tuple occurs exactly once in a cycle of A,
• every cycle of A has a least period t satisfying pr|t|n.
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The result of applying Theorem 1.21 to A is a (pr, n/pr, p, n− k)–GPF in which each
cycle has weight equal to b(1).

Proof. Define g(X) and the sets S and A as in Construction 2.4. Notice that
each cycle in S has weight equal to c(1)g(1) + b(1) for some polynomial c(X). But
g(1) = 0 (because X − 1|g(X)), so S has constant weight equal to b(1).

Suppose t|n and (t, pl)|pr−1. Then in Zp[X], Xt− 1 is divisible by X − 1 at most
pr−1 times, while Xn − 1 is divisible by X − 1 exactly pl times. It follows that the
polynomial (g(X), X

n−1
Xt−1 ) is divisible byX−1 exactly λ times. But b(X) = g(X)/X−1

is divisible by X−1 exactly λ−1 times, so (g(X), X
n−1

Xt−1 ) does not divide b(X). From
Lemma 2.2, each cycle in S has least period divisible by pr. Therefore the cycles in
A all have periods that are divisible by pr.

We also know that every (n− k)-tuple appears exactly once in position 0 of some
cycle derived from the code C, and so the same is true of S = C + b(X). Moreover,
because of the choice for b(X), by Lemma 2.1 S is closed under cyclic shifting. It
follows that the (n−k)-tuples occurring in a cycle a of R are exactly the (n−k)-tuples
that occur in position 0 of the cycles in the ∼-class containing a. Thus the set A,
derived from R by truncation, has the property that every p-ary (n− k)-tuple occurs
exactly once as a subsequence of a cycle in A.

Theorem 1.21 guarantees that A can be used to produce a (pr, n/pr, p, n − k)–
GPF. Each cycle of this GPF is obtained from a cycle of A by concatenation and
shifting, and so in fact is a cycle of S. Since the cycles of S all have weight b(1), so
do the cycles of the GPF.

The parameters of the GPFs that can be obtained from Construction 2.4 depend
heavily on the degrees of the factors of Xn − 1 in Zp[X] (since we require a degree
k polynomial g(X) with X − 1|g(X)|Xn − 1). The complete factorization of Xn − 1
in Zp[X] is known [5, Theorems 2.45 and 2.47]: if n = pls with (s, p) = 1, then
Xn − 1 = (Xs − 1)p

l

and

Xs − 1 =
∏
d|s

Cd(X),

where Cd(X) of degree φ(d) is the dth cyclotomic polynomial over Zp[X]. The poly-
nomial Cd(X) has φ(d)/e irreducible factors of degree e, where e is the least positive
integer such that pe ≡ 1 mod d.

EXAMPLE 2.6. We aim to construct a (2, 3, 2, 3)–GPF and a (3, 2, 3, 3)–GPF.
By Theorem 1.22, if these are combined using Construction 1.13, then we obtain a
(6, 6, 3)–PF.

We take n = 6, p = 2 and find that X6 − 1 = (X + 1)2(X2 +X + 1)2 in Z2[X].
We take r = 1 and g(X) = (X + 1)(X2 + X + 1) in Construction 2.4 to obtain a
(2, 3, 2, 3)–GPF in which each cycle has weight 1.

Similarly, X6 − 1 = (X − 1)3(X + 1)3 in Z3[X]. We take r = 1 and g(X) =
(X − 1)(X + 1)2 in Construction 2.4 to obtain a (3, 2, 3, 3)–GPF in which each cycle
has weight 1.

Combining these two GPFs using Construction 1.13, we obtain a (6, 6, 3)–PF.
We now have the following theorem, whose proof gives a constructive method for

obtaining Perfect Factors having prime window size v. This theorem will be useful
when we come to analyze parameter sets for small v in section 7.

THEOREM 2.7. Suppose that p is a prime with p|c and p divides n exactly once.
Suppose further that the parameters (n, c, p) satisfy the necessary conditions of Lemma
1.3. Finally suppose that for some prime q with q|(n/p), we have p ≡ 1 (mod q). Then
there exists an (n, c, p)–PF.
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Proof. Let n, c and p be as above. We aim to use Construction 2.4 to obtain a
(p, n/p, p, p)–GPF.

Consider the factorization of Xn−1 in Zp[X]. Because q satisfies p ≡ 1 (mod q),
the q-th cyclotomic polynomial Cq(X) over Zp[X] has q − 1 ≥ 1 linear factors. Let
X−α, α 6= 1, be one of these. Since q ≥ 2 divides n/p, C1(X)Cq(X) divides Xn/p−1.
We deduce that Xn − 1 = (X − 1)p(X − α)ph(X) for some polynomial h(X) where
(X − 1, h(X)) = 1. We take

g(X) =
(Xn − 1)

(X − 1)p−1(X − α)

so that X − 1 divides g(X) exactly once and g(X) has degree equal to n− p. Taking
` = r = 1 in Construction 2.4, we can obtain a GPF with parameters (p, n/p, p, p).

Now because the parameters (n, c, p) satisfy the necessary conditions of Lemma
1.3 and p divides n exactly once, we have (n/p)|(c/p)p. We can use Theorem 1.12 to
deduce that there exists an (n/p, p, c/p, p)–PMF. Combining this PMF and the GPF
constructed above using Theorem 1.24, we obtain an (n, c, v)–PF.

2.3. A cyclic code construction for PMFs. We now have a corresponding
code construction for PMFs.

CONSTRUCTION 2.8. Let n, p, and r be nonnegative integers where p is prime,
n > 0 and pr|n. Let b(X), g(X) ∈ Zp[X] (g(X)|Xn − 1 and g(X) of degree k), and
suppose

(i) g(X)|b(X)(Xn/pr − 1), and
(ii) (g(X), X

n−1
Xt−1 ) does not divide b(X) for any t|n (t 6= n).

Let C denote the length n p-ary code with generator polynomial g(X), and define
S = C + b(X). We regard S as a set of p-ary cycles of period n. Finally, define an
equivalence relation ∼ on S by writing x ∼ y if and only if x = Eun/p

r

(y) for some
integer u, and let A be a set of ∼-class representatives.

THEOREM 2.9. Let A be constructed as in Construction 2.8. Then A is a
(pr, n/pr, p, n− k)–PMF.

Proof. Define g(X) and the sets S and A as in Construction 2.8.
By Lemma 2.3, condition (ii) of the construction immediately implies that each

cycle in A has least period n.
We also know that, for every i (1 ≤ i < n), every (n − k)-tuple appears exactly

once in position i of some cycle derived from the code C, and so the same is true of
S = C + b(X). Moreover, because of the choice for b(X), Lemma 2.1 implies that
S is closed under cyclic shifting by multiples of n/pr positions. Thus, for every i
(1 ≤ i < n/pr) every (n− k)-tuple appears exactly once at a position congruent to i
modulo n/pr in some cycle from the set A.

The result now follows.
As previously, the parameters of the PMFs that Construction 2.8 allows us to

obtain depend heavily on the degrees of the factors of Xn − 1 in Zp[X] (since we
require a degree k polynomial g(X) with g(X)|Xn − 1).

EXAMPLE 2.10. We aim to construct a (2, 3, 2, 4)–PMF and a (3, 2, 3, 4)–GPF.
By Theorem 1.24, these can be combined to obtain a (6, 6, 4)–PF.

Using Construction 2.8, we take r = 1, n = 6, and p = 2, and find that X6− 1 =
(X + 1)2(X2 + X + 1)2 in Z2[X]. We take b(X) = 1 and g(X) = (X2 + X + 1) to
obtain a (2, 3, 2, 4)–PMF.

Now, X6 − 1 = (X − 1)3(X + 1)3 in Z3[X]. We take r = 1 and g(X) = (X −
1)(X + 1) in Construction 2.4 to obtain a (3, 2, 3, 4)–GPF.
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Applying Theorem 1.24, we obtain a (6, 6, 4)–PF.

3. An interleaving construction for Perfect Multifactors. We now de-
scribe a method for constructing Perfect Multifactors by interleaving the cycles of
a (smaller) Perfect Factor. We subsequently use this construction method to help
construct Perfect Factors with “new” parameters.

3.1. The construction method.
CONSTRUCTION 3.1. Suppose c, n, t, and v are positive integers where c ≥ 2 and

t ≥ 2, and let A = {ai : 0 ≤ i < cv/n} be an (n, c, v)–PF.
Now define a set B containing ctv/n c-ary cycles of period nt by

B = {bij : i = (i0, i1, . . . , it−1), (0 ≤ is < cv/n); j = (j0, j1, . . . , jt−2), (0 ≤ js < n)}

where

bij = I(ai0 , E
j0ai1 , . . . , E

jt−2ait−1).

We then have the following result.
THEOREM 3.2. Suppose c, n, t, v, and A satisfy the conditions of Construction 3.1.

If B is constructed from A using Construction 3.1, then B is an (n, t, c, tv)–PMF.
Proof. Suppose y is any c-ary tv-tuple, and choose any r with 0 ≤ r < t. We

need to show that y occurs at a position congruent to r modulo t in a cycle of B.
First, let

y = I(x0,x1, . . . ,xt−1),

where xu is a c-ary v-tuple for every u. Now, y occurs at position r + st in bij (for
some s, i and j) if and only if

xu occurs at position

 s
s+ 1
s+ 1

in

 Eju+r−1aiu+r if 0 ≤ u < t− r,
ai0 if u = t− r,
Eju+r−1−taiu+r−t if t− r + 1 ≤ u < t.

Now, since A is an (n, c, v)–PF, there exists a unique pair of values (s, i0) for which
xt−r occurs at position s + 1 in ai0 . Given this value of s, then there exist unique
pairs of values: (ju+r−1, iu+r) for which

xu occurs at position s in Eju+r−1aiu+r , (0 ≤ u < t− r),

and also there exist unique pairs of values: (ju+r−1−t, iu+r−t) for which

xu occurs at position s+ 1 in Eju+r−1−taiu+r−t , (t− r + 1 ≤ u < t).

Thus y occurs at a position congruent to r modulo t in a unique cycle of B, and
hence B is an (n, t, c, tv)–PMF.

EXAMPLE 3.3. Let A be the following set of five 5-ary cycles of period 5, which
constitute a (5, 5, 2)–PF.

a0 = [0 0 1 3 1 ], a1 = [1 1 2 4 2 ], a2 = [2 2 3 0 3 ], a3 = [3 3 4 1 4 ], a4 = [4 4 0 2 0 ].

Then, by applying Construction 3.1 with t = 2 we obtain the following (5, 2, 5, 4)–
PMF (a set of 125 cycles of period 10 in which every 5-ary 4-tuple occurs at positions
congruent to 0 and 1 modulo 2).
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b(00)(0) = [ 0 0 0 0 1 1 3 3 1 1 ], b(00)(1) = [ 0 0 0 1 1 3 3 1 1 0 ], b(00)(2) = [ 0 1 0 3 1 1 3 0 1 0 ],
b(00)(3) = [ 0 3 0 1 1 0 3 0 1 1 ], b(00)(4) = [ 0 1 0 0 1 0 3 1 1 3 ],
b(01)(0) = [ 0 1 0 1 1 2 3 4 1 2 ], b(01)(1) = [ 0 1 0 2 1 4 3 2 1 1 ], b(01)(2) = [ 0 2 0 4 1 2 3 1 1 1 ],
b(01)(3) = [ 0 4 0 2 1 1 3 1 1 2 ], b(01)(4) = [ 0 2 0 1 1 1 3 2 1 4 ],
b(02)(0) = [ 0 2 0 2 1 3 3 0 1 3 ], b(02)(1) = [ 0 2 0 3 1 0 3 3 1 2 ], b(02)(2) = [ 0 3 0 0 1 3 3 2 1 2 ],
b(02)(3) = [ 0 0 0 3 1 2 3 2 1 3 ], b(02)(4) = [ 0 3 0 2 1 2 3 3 1 0 ],
b(03)(0) = [ 0 3 0 3 1 4 3 1 1 4 ], b(03)(1) = [ 0 3 0 4 1 1 3 4 1 3 ], b(03)(2) = [ 0 4 0 1 1 4 3 3 1 3 ],
b(03)(3) = [ 0 1 0 4 1 3 3 3 1 4 ], b(03)(4) = [ 0 4 0 3 1 3 3 4 1 1 ],
b(04)(0) = [ 0 4 0 4 1 0 3 2 1 0 ], b(04)(1) = [ 0 4 0 0 1 2 3 0 1 4 ], b(04)(2) = [ 0 0 0 2 1 0 3 4 1 4 ],
b(04)(3) = [ 0 2 0 0 1 4 3 4 1 0 ], b(04)(4) = [ 0 0 0 4 1 4 3 0 1 2 ],
b(10)(0) = [ 1 0 1 0 2 1 4 3 2 1 ], b(10)(1) = [ 1 0 1 1 2 3 4 1 2 0 ], b(10)(2) = [ 1 1 1 3 2 1 4 0 2 0 ],
b(10)(3) = [ 1 3 1 1 2 0 4 0 2 1 ], b(10)(4) = [ 1 1 1 0 2 0 4 1 2 3 ],
b(11)(0) = [ 1 1 1 1 2 2 4 4 2 2 ], b(11)(1) = [ 1 1 1 2 2 4 4 2 2 1 ], b(11)(2) = [ 1 2 1 4 2 2 4 1 2 1 ],
b(11)(3) = [ 1 4 1 2 2 1 4 1 2 2 ], b(11)(4) = [ 1 2 1 1 2 1 4 2 2 4 ],
b(12)(0) = [ 1 2 1 2 2 3 4 0 2 3 ], b(12)(1) = [ 1 2 1 3 2 0 4 3 2 2 ], b(12)(2) = [ 1 3 1 0 2 3 4 2 2 2 ],
b(12)(3) = [ 1 0 1 3 2 2 4 2 2 3 ], b(12)(4) = [ 1 3 1 2 2 2 4 3 2 0 ],
b(13)(0) = [ 1 3 1 3 2 4 4 1 2 4 ], b(13)(1) = [ 1 3 1 4 2 1 4 4 2 3 ], b(13)(2) = [ 1 4 1 1 2 4 4 3 2 3 ],
b(13)(3) = [ 1 1 1 4 2 3 4 3 2 4 ], b(13)(4) = [ 1 4 1 3 2 3 4 4 2 1 ],
b(14)(0) = [ 1 4 1 4 2 0 4 2 2 0 ], b(14)(1) = [ 1 4 1 0 2 2 4 0 2 4 ], b(14)(2) = [ 1 0 1 2 2 0 4 4 2 4 ],
b(14)(3) = [ 1 2 1 0 2 4 4 4 2 0 ], b(14)(4) = [ 1 0 1 4 2 4 4 0 2 2 ],
b(20)(0) = [ 2 0 2 0 3 1 0 3 3 1 ], b(20)(1) = [ 2 0 2 1 3 3 0 1 3 0 ], b(20)(2) = [ 2 1 2 3 3 1 0 0 3 0 ],
b(20)(3) = [ 2 3 2 1 3 0 0 0 3 1 ], b(20)(4) = [ 2 1 2 0 3 0 0 1 3 3 ],
b(21)(0) = [ 2 1 2 1 3 2 0 4 3 2 ], b(21)(1) = [ 2 1 2 2 3 4 0 2 3 1 ], b(21)(2) = [ 2 2 2 4 3 2 0 1 3 1 ],
b(21)(3) = [ 2 4 2 2 3 1 0 1 3 2 ], b(21)(4) = [ 2 2 2 1 3 1 0 2 3 4 ],
b(22)(0) = [ 2 2 2 2 3 3 0 0 3 3 ], b(22)(1) = [ 2 2 2 3 3 0 0 3 3 2 ], b(22)(2) = [ 2 3 2 0 3 3 0 2 3 2 ],
b(22)(3) = [ 2 0 2 3 3 2 0 2 3 3 ], b(22)(4) = [ 2 3 2 2 3 2 0 3 3 0 ],
b(23)(0) = [ 2 3 2 3 3 4 0 1 3 4 ], b(23)(1) = [ 2 3 2 4 3 1 0 4 3 3 ], b(23)(2) = [ 2 4 2 1 3 4 0 3 3 3 ],
b(23)(3) = [ 2 1 2 4 3 3 0 3 3 4 ], b(23)(4) = [ 2 4 2 3 3 3 0 4 3 1 ],
b(24)(0) = [ 2 4 2 4 3 0 0 2 3 0 ], b(24)(1) = [ 2 4 2 0 3 2 0 0 3 4 ], b(24)(2) = [ 2 0 2 2 3 0 0 4 3 4 ],
b(24)(3) = [ 2 2 2 0 3 4 0 4 3 0 ], b(24)(4) = [ 2 0 2 4 3 4 0 0 3 2 ],
b(30)(0) = [ 3 0 3 0 4 1 1 3 4 1 ], b(30)(1) = [ 3 0 3 1 4 3 1 1 4 0 ], b(30)(2) = [ 3 1 3 3 4 1 1 0 4 0 ],
b(30)(3) = [ 3 3 3 1 4 0 1 0 4 1 ], b(30)(4) = [ 3 1 3 0 4 0 1 1 4 3 ],
b(31)(0) = [ 3 1 3 1 4 2 1 4 4 2 ], b(31)(1) = [ 3 1 3 2 4 4 1 2 4 1 ], b(31)(2) = [ 3 2 3 4 4 2 1 1 4 1 ],
b(31)(3) = [ 3 4 3 2 4 1 1 1 4 2 ], b(31)(4) = [ 3 2 3 1 4 1 1 2 4 4 ],
b(32)(0) = [ 3 2 3 2 4 3 1 0 4 3 ], b(32)(1) = [ 3 2 3 3 4 0 1 3 4 2 ], b(32)(2) = [ 3 3 3 0 4 3 1 2 4 2 ],
b(32)(3) = [ 3 0 3 3 4 2 1 2 4 3 ], b(32)(4) = [ 3 3 3 2 4 2 1 3 4 0 ],
b(33)(0) = [ 3 3 3 3 4 4 1 1 4 4 ], b(33)(1) = [ 3 3 3 4 4 1 1 4 4 3 ], b(33)(2) = [ 3 4 3 1 4 4 1 3 4 3 ],
b(33)(3) = [ 3 1 3 4 4 3 1 3 4 4 ], b(33)(4) = [ 3 4 3 3 4 3 1 4 4 1 ],
b(34)(0) = [ 3 4 3 4 4 0 1 2 4 0 ], b(34)(1) = [ 3 4 3 0 4 2 1 0 4 4 ], b(34)(2) = [ 3 0 3 2 4 0 1 4 4 4 ],
b(34)(3) = [ 3 2 3 0 4 4 1 4 4 0 ], b(34)(4) = [ 3 0 3 4 4 4 1 0 4 2 ],
b(40)(0) = [ 4 0 4 0 0 1 2 3 0 1 ], b(40)(1) = [ 4 0 4 1 0 3 2 1 0 0 ], b(40)(2) = [ 4 1 4 3 0 1 2 0 0 0 ],
b(40)(3) = [ 4 3 4 1 0 0 2 0 0 1 ], b(40)(4) = [ 4 1 4 0 0 0 2 1 0 3 ],
b(41)(0) = [ 4 1 4 1 0 2 2 4 0 2 ], b(41)(1) = [ 4 1 4 2 0 4 2 2 0 1 ], b(41)(2) = [ 4 2 4 4 0 2 2 1 0 1 ],
b(41)(3) = [ 4 4 4 2 0 1 2 1 0 2 ], b(41)(4) = [ 4 2 4 1 0 1 2 2 0 4 ],
b(42)(0) = [ 4 2 4 2 0 3 2 0 0 3 ], b(42)(1) = [ 4 2 4 3 0 0 2 3 0 2 ], b(42)(2) = [ 4 3 4 0 0 3 2 2 0 2 ],
b(42)(3) = [ 4 0 4 3 0 2 2 2 0 3 ], b(42)(4) = [ 4 3 4 2 0 2 2 3 0 0 ],
b(43)(0) = [ 4 3 4 3 0 4 2 1 0 4 ], b(43)(1) = [ 4 3 4 4 0 1 2 4 0 3 ], b(43)(2) = [ 4 4 4 1 0 4 2 3 0 3 ],
b(43)(3) = [ 4 1 4 4 0 3 2 3 0 4 ], b(43)(4) = [ 4 4 4 3 0 3 2 4 0 1 ],
b(44)(0) = [ 4 4 4 4 0 0 2 2 0 0 ], b(44)(1) = [ 4 4 4 0 0 2 2 0 0 4 ], b(44)(2) = [ 4 0 4 2 0 0 2 4 0 4 ],
b(44)(3) = [ 4 2 4 0 0 4 2 4 0 0 ], b(44)(4) = [ 4 0 4 4 0 4 2 0 0 2 ],

4. An interleaving construction for GPFs. We now describe a method
which enables us to construct many new GPFs; it is similar to Construction 3.1,
and is actually a generalization of Construction 3.1 of [9].

4.1. The construction method.
CONSTRUCTION 4.1. Suppose c, n, t, and v are positive integers where c ≥ 2.

Suppose also that

A = {a0,a1, . . . ,acv/n−1}

is an (n, c, v)–PF. Consider the set S of all n-ary cycles x = [x0, x1, . . . , xt−1] with
the property that

t−1∑
i=0

xi ≡ 1 (mod n).
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If x,y ∈ S, then write x ∼ y if and only if x = Ei(y) for some i. It is simple to
verify that ∼ is an equivalence relation on S which partitions S into q classes, say.
Now, let

X = {x0,x1, . . . ,xq−1}

be a set of ∼-class representatives. Next, let

At = {(ai0 ,ai1 , . . . ,ait−1) : ai0 ,ai1 , . . . ,ait−1 ∈ A}

be the set of all t-tuples of elements of A. Now, define B′ to be the collection of all
cycles of the form

I(E0ai0 , E
x0ai1 , E

x0+x1ai2 , . . . , E
x0+x1+···+xt−2ait−1),

where (x0, x1, . . . , xt−1) ∈ X and (ai0 ,ai1 , . . . ,ait−1) ∈ At. Hence, |B′| = qctv/nt.
Finally, put B = {T (z) : z ∈ B′}. Note that while B′ may contain duplicate

cycles, B (defined as a set) will not, i.e., duplicates are discarded.
We can now state and prove the following result.
THEOREM 4.2. Suppose c, n, t, v, and A satisfy the conditions of Construction 4.1.

If B is constructed from A using Construction 4.1, then B is a collection of cycles with
the property that every c-ary (tv)-tuple occurs exactly once in a cycle of B. Every
cycle b ∈ B has least period `bn, for some positive integer `b satisfying `b|t and
( t
`b
, n) = 1.
Proof. Suppose y is any c-ary (tv)-tuple. We first show that y occurs in one of

the cycles of B′. Suppose

y = I(z0, z1, . . . , zt−1),

where z0, z1, . . . , zt−1 are c-ary t-tuples. Now suppose that zi occurs in cycle a`i at
position ki, for every i satisfying 0 ≤ i < t. In addition we define a further n-ary
t-tuple x = (x0, x1, . . . , xt−1) where xi ≡ ki+1 − ki (mod n), for every i satisfying
0 ≤ i < t− 1, and xt−1 ≡ k0 − kt−1 + 1 (mod n). First observe that x ∈ S, since

t−1∑
i=0

xi ≡
t−2∑
i=0

(ki+1 − ki) + (k0 − kt−1 + 1) ≡ 1 (mod n).

Hence, there exists some cyclic shift of x, say

Eu(x) = (xu, xu+1, . . . , xt−1, x0, . . . , xu−1),

which is a member of X. Hence, if we define the n-ary t-tuple (v0, v1, . . . , vt−1) by

vi =
{

0 if i = 0,∑i+u−1
j=u xj mod n (subscripts modulo t) if 0 < i ≤ t− 1,

then the following cycle is a member of B′:

w = I(Ev0a`u , E
v1a`u+1 , . . . , E

vt−u−1a`t−1 , E
vt−ua`0 , . . . , E

vt−1a`u−1).
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Now, zu+i occurs in Evi(a`u+i) at position ku+i− vi, (0 ≤ i < t−u), and zi occurs in
Evi+t−u(a`i) at position ki − vt−u+i, (0 ≤ i ≤ u − 1), where positions are calculated
modulo n. By definition of x we also have

vi =

 0 if i = 0,
ku+i − ku mod n if 0 < i < t− u,
ku−t+i − ku + 1 mod n if t− u ≤ i ≤ t− 1.

Thus, zu+i occurs in Evi(a`u+i) at position ku, (0 ≤ i < t − u), and zi occurs in
Evi+t−u(a`i) at position ku + 1, (0 ≤ i ≤ u − 1). Hence, y occurs in w at position
kut− u.

Now, since a (tv)-tuple y occurs in a cycle of B′, it follows (from the way in which
B was derived from B′) that y must occur in a cycle of B. Next, suppose that y
occurs at two different points in the cycles of B′. Now, because A is a PF, y can
only arise from one (t − 1)-tuple of “relative shifts” and one t-tuple from At. Hence
y can only arise twice if the same (t − 1)-tuple of relative shifts occurs twice in the
same element of X (the same (t − 1)-tuple of relative shifts cannot arise in different
elements of X since X contains a unique element from each equivalence class under
∼ and this class is uniquely determined by a (t− 1)-tuple of relative shifts). That is,
the same (tv)-tuple can only occur multiple times in two ways:

• within the same cycle of B′, or
• in two distinct cycles of B′ generated by the same set of relative shifts x and

by two different cyclic shifts of the same t-tuple of elements of A.
In both cases this can only happen when the t-tuple of relative shifts used to derive
the cycle(s) (x say) satisfies x = Eix for some i (0 < i < t). The second case is rather
easier to deal with, since in this case the resulting cycles of B′ will be identical to one
another (except for a cyclic shift). Hence, the duplication will be removed when B is
derived from B′. We therefore need only consider the first case. If the same (tv)-tuple
occurs twice within the same cycle b of B′, say at positions i and j, then we must
have Eib = Ejb, and hence the (tv)-tuple will not be repeated within T (b). Hence,
all the (tv)-tuples in the cycles of B are distinct.

We next consider the possible periods of the cycles in B. Suppose b = Eib for
some i (0 < i ≤ nt). Note that we must have i|nt. Suppose also that i′ = i mod t, and
hence if x ∈ X is used to produce b, then x = Ei

′
x and so i′|t. Now, by definition

of S, if x = [x0, x1, . . . , xt−1], then
∑t−1
j=0 xj ≡ 1 mod n, and hence, since x = Ei

′
(x),

we have (
t

i′

) i′−1∑
j=0

xj ≡ 1 (mod n).

Note that this implies that (t/i′, n) = 1 and also that (
∑i′−1
j=0 xj , n) = 1.

Now, since i′|t and i ≡ i′ (mod t), it follows that i′|i, say i = νi′. Hence, since
b = Eib, we have

ν

i′−1∑
j=0

xj ≡ 0 (mod n)

(this follows since the total relative shift at a displacement of i in b must be zero).
But we have already observed that (

∑i′−1
j=0 xj , n) = 1, and hence we must have n|ν.
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Hence, ni′|i and (t/i′, n) = 1. Since we have already observed that i|nt, the desired
result on the periods of cycles in B follows.

When we combine the above result with Theorem 1.21, we immediately have the
following.

COROLLARY 4.3. If an (n, c, v)–PF exists, then there exists a (n, t, c, tv)–GPF for
every positive integer t.

REMARK 4.4. In fact the cycles of the GPF in this corollary can be derived directly
from the cycles in the set B′ of Construction 4.1 merely by discarding duplicate cycles
from the set (that is, without truncating cycles as in the derivation of B from B′).
This means that each cycle in the GPF is obtained by t-fold interleaving of the cycles
of the (n, c, v)–PF.

REMARK 4.5. It is straightforward to see that n|tn−1 if and only if (t/`, n) 6= 1 for
every factor ` of t (except for ` = t). Hence, if n|tn−1, then Construction 4.1 yields a
set B of cycles of period exactly nt (in fact B = B′), and hence B is an (nt, c, tv)–PF.
This corresponds to Construction 3.1 of [9].

4.2. Examples.
EXAMPLE 4.6. Let A be the (5, 5, 1)–PF consisting of the single cycle [01234].

Then, to apply Construction 4.1 to this cycle with t = 3, we first need to define

X = {[001], [024], [033], [042], [114], [123], [132], [222], [344]}.

Using this choice for X we then obtain the following set B of nine cycles (of periods
15 and 5) in which every 5-ary 3-tuple occurs exactly once.

[0 0 0 1 1 1 2 2 2 3 3 3 4 4 4], [0 0 2 1 1 3 2 2 4 3 3 0 4 4 1], [0 0 3 1 1 4 2 2 0 3 3 1 4 4 2],
[0 0 4 1 1 0 2 2 1 3 3 2 4 4 3], [0 1 2 1 2 3 2 3 4 3 4 0 4 0 1], [0 1 3 1 2 4 2 3 0 3 4 1 4 0 2],
[0 1 4 1 2 0 2 3 1 3 4 2 4 0 3], [0 2 4 1 3], [0 3 2 1 4 3 2 0 4 3 1 0 4 2 1].

Using Theorem 1.21, the set B can be used to produce a (5, 3, 5, 3)–GPF.
EXAMPLE 4.7. Let A be the following set of five 5-ary cycles of period 5, which

constitute a (5, 5, 2)–PF.

a0 = [0 0 1 3 1 ], a1 = [1 1 2 4 2 ], a2 = [2 2 3 0 3 ], a3 = [3 3 4 1 4 ], a4 = [4 4 0 2 0 ].

Put t = 2 and

X = {[33], [01], [42]}.

In the table below, we give the set of 65 cycles resulting from applying Construction 4.1
to A with t = 2. In each row we give the three cycles obtained by applying the three
“shift tuples” of X to a pair of interleaved cycles from A, with indices as marked at
the start of the row. Note that the 10 duplicate cycles (which do not count as part of
the 65 cycles) are preceded with an asterisk, and arise when the representative from
X has cyclic symmetry. Five of the cycles have period 5 and sixty have period 10, and
hence we can use these cycles to produce a (5, 2, 5, 4)–GPF.
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[33] [01] [42]

00 [03011] [0000113311] [0100103113]
01 [0402113112], [0101123412], [0201113214],
02 [0003123213], [0202133013], [0302123310],
03 [0104133314], [0303143114], [0403133411],
04 [0200143410], [0404103210], [0004143012],
10 ∗[1311204021], [1010214321], [1110204123],
11 [14122], [1111224022], [1211214224],
12 [1013224223], [1212234023], [1312224320],
13 [1114234324], [1313244124], [1413234421],
14 [1210244420], [1414204220], [1014244022],
20 ∗[2321300031], [2020310331], [2120300133],
21 ∗[2422310132], [2121320032], [2221310230],
22 [20233], [2222330033], [2322320330],
23 [2124330334], [2323340134], [2423330431],
24 [2220340430], [2424300230], [2024340032],
30 ∗[3331401041], [3030411341], [3130401143],
31 ∗[3432411142], [3131421442], [3231411244],
32 ∗[3033421243], [3232431043], [3332421340],
33 [31344], [3333441144], [3433431441],
34 [3230441440], [3434401240], [3034441042],
40 ∗[4341002001], [4040012301], [4140002103],
41 ∗[4442012102], [4141022402], [4241012204],
42 ∗[4043022203], [4242032003], [4342022300],
43 ∗[4144032304], [4343042104], [4443032401],
44 [42400], [4444002200], [4044042002].

5. The Lempel homomorphism and the construction of PMFs and
GPFs. The Lempel homomorphism [4] (and its generalization to arbitrary finite
fields), has been very widely applied in the construction of de Bruijn sequences [4],
Perfect Factors [1, 12] and Perfect Maps [13]. We now briefly show how it can be
applied to the construction of PMFs and GPFs over alphabets Zc.

5.1. The Lempel homomorphism. We first define a version of the Lempel
homomorphism on c-ary cycles, where the elements of the c-ary alphabet are taken
as the integers modulo c.

DEFINITION 5.1. We define the Lempel homomorphism D acting on c-ary cycles
to be the operator E − 1 (we will usually write E − 1 for D). Thus if c, n are positive
integers (c > 1), and a = [a0, a1, . . . , an−1] is a c-ary cycle of period n, then Da is
the following c-ary cycle of period n

[a1 − a0, a2 − a1, . . . , an−1 − an−2, a0 − an−1],

where the arithmetic is computed modulo c.
DEFINITION 5.2. Suppose c, n are positive integers (c > 1), and let

a = [a0, a1, . . . , an−1]

be a c-ary cycle of period n and weight w. Then we define the pre-image of a under
D, denoted D−1a or (E−1)−1a, to be the following set of (w, c) c-ary cycles of period
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nc/(w, c):{
[s, s+ a0, s+ a0 + a1, . . . , s+

n−2∑
i=0

ai, s+ w, s+ w + a0, s+ w + a0 + a1, . . . ,

s+ w +
n−2∑
i=0

ai, s+ 2w, . . . , s+ (c/(w, c)− 1)w +
n−2∑
i=0

ai] : 0 ≤ s < (w, c)

}
.

Clearly, a ∈ D−1Da for any cycle a. We call the operator (E − 1)−1 the Lempel
inverse homomorphism (LIH).

Of course, given a cycle a as in the above definition, we can apply (E − 1)−1 to
the set (E − 1)−1a to obtain a second set of cycles, which we denote by (E − 1)−2a.
Notice that the cycles of this set need not all have the same period (because the cycles
in (E − 1)−1a need not all have the same weight). We can continue in this way and
write (E− 1)−ka for the set of cycles obtained by making k applications of (E− 1)−1

to a.
We also need to define the action of the Lempel homomorphism and its inverse

on c-ary tuples. For convenience we also denote these mappings by D and D−1 (the
domain of the mapping should always be clear from the context).

DEFINITION 5.3. Suppose c and v are positive integers (c > 1), and let

s = (s0, s1, . . . , sv−1)

be a c-ary v-tuple. Then define Ds to be the following c-ary (v − 1)-tuple:

(s1 − s0, s2 − s1, . . . , st−1 − st−2).

On the other hand if w = (w0, w1, . . . , wv−2) is a c-ary (v − 1)-tuple, then we define
D−1w to be the following c-set of c-ary v-tuples:

D−1w =

{
(s, s+ w0, s+ w0 + w1, . . . , s+

v−2∑
i=0

wi) : s ∈ Zc

}
.

We will also use E − 1 and (E − 1)−1 to denote D and D−1 acting on c-ary tuples.
We can now state the following result which follows immediately from the defini-

tions.
LEMMA 5.4. Let a be a c-ary cycle of period n, s a c-ary v-tuple and w a c-ary

(v − 1)-tuple. Then
• Ds = w if and only if s ∈ D−1w,
• if s appears in a at position p, then Ds appears in Da at position p, and
• if s appears in a at position p, then any (v+1)-tuple of D−1s appears in some

cycle of (E − 1)−1a at a position p′ with p′ ≡ p mod n.
We use the following construction method, which is based on the Lempel inverse

homomorphism, to construct Perfect Factors, PMFs, and GPFs.
CONSTRUCTION 5.5. Suppose c and r are positive integers, where c > 1, and let

A be a set of c-ary cycles

{a0,a1, . . . ,at−1}
of periods `0, `1, . . . , `t−1 and weights w0, w1, . . . , wt−1, respectively. Then let B be
the following set of

∑t−1
i=0(wi, c) cycles:

B =
t−1⋃
i=0

(E − 1)−1ai.

We now have the following.
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THEOREM 5.6. Suppose c,m, n, and v are positive integers (c > 1), and let A
be a set of c-ary cycles of constant weight w. Suppose also that B is derived from A
using Construction 5.5. Then

• if A is an (n, c, v)–PF, then B is an (nc/(w, c), c, v + 1)–PF,
• if A is an (m,n, c, v)–PMF, then B is an (mc/(w, c), n, c, v + 1)–PMF, and
• if A is an (m,n, c, v)–GPF, then B is an (mc/(w, c), n, c, v + 1)–GPF.

Proof. This follows immediately from the definition of the Lempel inverse homo-
morphism and Lemma 5.4.

By considering the special case where w = 0, we immediately have the following.
COROLLARY 5.7. Suppose c,m, n, and v are positive integers (c > 1), and let A

be a set of c-ary cycles of constant weight zero. Suppose also that B is derived from
A using Construction 5.5. Then

• if A is an (n, c, v)–PF, then B is an (n, c, v + 1)–PF,
• if A is an (m,n, c, v)–PMF, then B is an (m,n, c, v + 1)–PMF, and
• if A is an (m,n, c, v)–GPF, then B is an (m,n, c, v + 1)–GPF.

Of course, if the set of cycles B in Theorem 5.6 or Corollary 5.7 has constant
weight, then Construction 5.5 can be applied again to B to produce a new set of cycles
which will again form a Perfect Factor/PMF/GPF. This process can be repeated to
produce a series of Perfect Factors/PMFs/GPFs with increasing window size, so long
as the cycles in each set all have the same weight. In the next section we will see how
the interleaving constructions of sections 3 and 4 can be combined with repeated use
of Construction 5.5 to produce a powerful set of construction methods.

5.2. Examples.
EXAMPLE 5.8. The (5, 2, 5, 4)–PMF constructed in Example 3.3 has constant

weight zero. Hence, if we apply Construction 5.5 then, by Corollary 5.7, we obtain a
(5, 2, 5, 5)–PMF.

EXAMPLE 5.9. The (5, 2, 5, 4)–GPF constructed in Example 4.7 has constant
weight zero. Hence, if we apply Construction 5.5 then, by Corollary 5.7, we obtain a
(5, 2, 5, 5)–GPF.

6. Combining interleaving and the Lempel homomorphism. Consider
applying one of Constructions 3.1 or 4.1 to an (n, c, v)–PF A. The resulting set of
cycles B will be either a (n, t, c, tv)–PMF, a (n, t, c, tv)–GPF, or a (tn, c, tv)–PF. We
ask: what is the maximum number of times that Construction 5.5 can be applied to
the cycles of B while yielding a set of cycles of period tn? In order for the construction
to be applicable δ times, we require that the set

{(E − 1)−(δ−1)b,b ∈ B}

be constant weight zero. By repeated use of Corollary 5.7, it follows that if δ ap-
plications are possible while maintaining zero weight, then we can obtain either an
(n, t, c, tv + δ)–PMF, an (n, t, c, tv + δ)–GPF, or a (tn, c, tv + δ)–PF.

The answer to our question depends on the maximum value of k such that the
set

{(E − 1)−ka,a ∈ A}

is constant weight, as well as on the prime factorizations of t and c. Before giving the
answer, we need some preliminary results.

LEMMA 6.1. Suppose that c does not divide t. Then in Zc[E], E−1 divides Et−1
exactly once.
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Proof. In Zc[E], we have Et − 1 = (E − 1)gt(E), where

gt(E) := Et−1 + Et−2 + · · ·+ E + 1

satisfies gt(1) = t. When c does not divide t, we have gt(1) 6= 0 mod c and so E − 1
does not divide gt(E). The lemma follows.

LEMMA 6.2. Suppose that c is square-free (i.e., c is a product of distinct primes).
Let t =

∏
i pi

βi and c =
∏
i pi

αi , where βi ≥ 0 and αi = 0 or 1, be the prime
factorizations of t and c. Then in Zc[E], E − 1 divides Et − 1 exactly δt,c times,
where

δt,c = min
αi=1

{
pi
βi
}
.

Proof. Consider first the case where c is a prime p and t = pβ . Then in Zp[E],

Et − 1 = Ep
β − 1 = (E − 1)p

β

,

since
(
pβ

i

)
= 0 mod p for 1 ≤ i ≤ pβ − 1. So in this case, E − 1 divides Et − 1 exactly

t = pβ times.
Now let t and c have prime factorizations as in the statement of the lemma.

Suppose αi = 1. Then in Zpi [E],

Et − 1 = (Epi
βi − 1)(E(`−1)piβi + · · ·+ Epi

βi + 1),

where ` = t/pi
βi is coprime to pi. So in Zpi [E],

Et − 1 = (E − 1)pi
βi
g`(Epi

βi ).

But g`(1) = ` 6= 0 mod pi, so we deduce that in Zpi [E], E − 1 divides Et − 1 exactly
pi
βi times. But, by a Chinese Remainder Theorem argument, E− 1 divides Et− 1 at

least δ times in Zc[E] if and only if it does so at least δ times over each polynomial
ring Zpi [E] for which pi divides c. The result follows.

Now suppose A is an (n, c, v)–PF and that for some w ∈ Zc, some k ≥ 0 and for
each a ∈ A, any cycle in (E − 1)−ka has period n and weight w. Then each a ∈ A
satisfies

En − 1
E − 1

(E − 1)−k a = [w,w, . . . , w].(6.1)

If w = 0, then this means that Corollary 5.7 can be applied up to k + 1 times to the
cycles of A to produce (n, c, v+δ)–PFs for each 1 ≤ δ ≤ k+1. If w 6= 0, then we have

En − 1
E − 1

(E − 1)−(k−1) a = (E − 1)[w,w, . . . , w] = [0, 0, . . . , 0],

and we see that up to k applications of Construction 5.5 to A are possible to produce
(n, c, v + δ)–PFs for each 1 ≤ δ ≤ k. Theorem 5.6 guarantees that a final application
of Construction 5.5 can be used to yield a (nc/(w, c), c, v + k + 1)–PF.

Now let B be obtained from A by t-fold interleaving, either as in Construction 3.1
(to obtain a PMF) or as in Construction 4.1 combined with Theorem 1.21 (to obtain
a GPF). Then in either case (and by Remark 4.4 in the second case), each cycle of B
satisfies relation (6.1) but with E replaced by Et, i.e., if b ∈ B, then

Etn − 1
(Et − 1)(k+1) b = [w,w, . . . , w].
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Writing Et − 1 = (E − 1)δt,cht,c(E) where ht,c(E) is not divisible by E − 1, we have,
for each b ∈ B,

Etn − 1
(E − 1)(k+1)δt,c

· 1
ht,c(E)k+1 b = [w,w, . . . , w].

Multiplying by ht,c(E)k+1, and noting that ht,c(E)k+1[w] is also a constant cycle, we
see that for some w′ (where w′ = 0 if w = 0),

Etn − 1
E − 1

· (E − 1)−((k+1)δt,c−1) b = [w′, w′, . . . , w′], b ∈ B.

We can interpret this equation as follows. If w′ = 0 (in particular, if w = 0), then
the sequences of the set

{(E − 1)−((k+1)δt,c−1)b,b ∈ B}

have zero weight and period tn, so that Construction 5.5 can be applied up to (k+1)δt,c
times to the cycles of B. Similarly, if w′ 6= 0, then Construction 5.5 can be applied
up to (k + 1)δt,c − 1 times to the cycles of B.

We summarize with the following theorem.
THEOREM 6.3. Suppose c is square-free. Let B be a (tn, c, tv)–PF/(n, t, c, tv)–

PMF/ (n, t, c, tv)–GPF obtained from (n, c, v)–PF A by t-fold interleaving. Suppose
that Construction 5.5 applied k ≥ 0 times to the cycles of A results in cycles of period
n all having weight w. We write ` = (k + 1)δt,c. If w = 0, then Construction 5.5 can
be applied up to ` times to the cycles of B, resulting in constant weight (tn, c, tv+ δ)–
PFs/(n, t, c, tv + δ)–PMFs/ (n, t, c, tv + δ)–GPFs for each 1 ≤ δ ≤ `. If w 6= 0, then
Construction 5.5 can be applied up to ` − 1 times to the cycles of B, resulting in
constant weight (tn, c, tv + δ)–PFs/(n, t, c, tv + δ)–PMFs/ (n, t, c, tv + δ)–GPFs for
each 1 ≤ δ ≤ `− 1.

EXAMPLE 6.4. Let A be the (5, 5, 2)–PF of Example 3.3. It is easy to verify that
the sequences of A satisfy

(E − 1)2a = [1], a ∈ A.

Over Z5, we have E5 − 1 = (E − 1)5, and so we can write

E5 − 1
E − 1

(E − 1)−2a = (E − 1)2a = [1], a ∈ A,

and we can take k = 2 and w = 1 in Theorem 6.3. Applying Theorem 3.2 with t = 2,
we can construct a (5, 2, 5, 4)–PMF B. Now δ2,5 = 1, so according to Theorem 6.3,
Corollary 5.7 can be applied up to l − 1 = 2 times to the cycles of B, resulting in a
constant weight (5, 2, 5, 5)–PMF and a constant weight (5, 2, 5, 6)–PMF.

EXAMPLE 6.5. The (5, 3, 5, 3)–GPF constructed in Example 4.6 was obtained
from the (5, 5, 1)–PF consisting of the single cycle [01234]. Arguing as in the above
example, we can take k = 3 and w = 1 in Theorem 6.3 to see that Construction 5.5 can
be applied up to l−1 = 3 times to the cycles of the GPF, resulting in a constant weight
(5, 3, 5, 4)–GPF, a constant weight (5, 3, 5, 5)–GPF, and a constant weight (5, 3, 5, 6)–
GPF.
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7. Perfect Factors for small windows.

7.1. A reduction for the existence problem. Corollary 1.26 allows us to
make an important reduction in the sets of parameters for which we need to consider
the existence question for Perfect Factors.

Recall from the discussion in section 1.2.2 that to prove Conjecture 1.4 for any
fixed v, we need only construct Perfect Factors with parameters (n, c, v) (n > v + 1),
where

c =
t∏
i=1

pi
ri and n =

t∏
i=1

pi
si ,

and both 0 ≤ si ≤ riv and pi
si ≤ v for each i.

For a particular choice of c and v as above, we write

c′ =
∏
si 6=0

pi.

Now for each i, pisi ≤ v ≤ pi
v. Hence si ≤ v and so n|(c′)v. Thus the parameters

(n, c′, v) satisfy the necessary conditions of Lemma 1.3. Moreover, by Corollary 1.26,
the existence of such an (n, c′, v)–PF implies the existence of a (n, c, v)–PF. So to settle
Conjecture 1.4 for v, it is sufficient to construct Perfect Factors for all parameters
(n, c, v) where n > v + 1, c = p1 . . . pt is square-free, and where n =

∏t
i=1 pi

si with
1 ≤ si and pi

si ≤ v for each i.
Notice this means that every prime pi that divides c must in turn divide n.

Moreover, each pi satisfies pi ≤ v. So to settle the existence question for any particular
v, it is sufficient to consider Perfect Factors for a finite set of alphabets (whose sizes
are products of distinct primes) and for a small set of parameters for each of these
alphabets.

We summarize the above reduction formally as the following.
LEMMA 7.1. Suppose v ≥ 1 is fixed, and that there exist (n, c, v)–PFs for every

square-free c = p1 . . . pt and every n > v + 1 with n =
∏t
i=1 pi

si where si ≥ 1 and
pi
si ≤ v for each i. Then Conjecture 1.4 is true for v.

REMARK 7.2. Note that, because v < n, t is always at least 2 in the above lemma.

7.2. Perfect Factors for v ≤ 6. We now show that Conjecture 1.4 is true for
v ≤ 6. This has already been shown for v ≤ 4. However, in order to demonstrate the
power of our new construction methods, we consider anew all v up to v = 6.

7.2.1. Perfect Factors for v = 2. For v = 2, there is no parameter set satis-
fying the conditions of Lemma 7.1. We conclude that Conjecture 1.4 is true for v = 2.
In fact, this means that the methods of [7] are strong enough to settle the existence
problem in this case, as already noted in the introductory section.

7.2.2. Perfect Factors for v = 3. By Lemma 7.1, we need only consider the
existence of a (6, 6, 3)–PF. A Perfect Factor with these parameters was obtained in
Example 2.6.

7.2.3. Perfect Factors for v = 4. Again by Lemma 7.1, only the following
two parameter sets need to be considered: (6, 6, 4) and (12, 6, 4).

A PF for the first parameter set was obtained in Example 2.10. A (12, 6, 4)–PF
can be obtained by applying Construction 4.1 to a (6, 6, 2)–PF with t = 2 (see Re-
mark 4.5).
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7.2.4. Perfect Factors for v = 5. By Lemma 7.1, only the following six
parameter sets need to be considered:

(10, 10, 5), (12, 6, 5), (15, 15, 5), (20, 10, 5), (30, 30, 5), and (60, 30, 5).

The parameter sets (10, 10, 5), (20, 10, 5), (30, 30, 5), and (60, 30, 5) fall to Theorem
2.7.

Consider the parameters (12, 6, 5). The polynomial X12 − 1 factorizes as
(X + 1)4(X2 + X + 1)4 in Z2[X] and as (X − 1)3(X3 + X2 + X + 1)3 in Z3[X].
We take g(X) = (X + 1)(X2 +X + 1)3, p = 2, and r = l = 2 in Construction 2.4 to
obtain a (4, 3, 2, 5)–GPF. Similarly, we take g(X) = (X−1)(X3 +X2 +X+1)2, p = 3,
and r = l = 1 in Construction 2.4 to obtain a (3, 4, 3, 5)–GPF. Combining these GPFs
using Construction 1.13, we obtain (according to Theorem 1.22) a (12, 6, 5)–PF.

Finally, consider the parameters (15, 15, 5). By considering the factorization of
X15 − 1 in Z3[X] and Z5[X] and following a similar procedure to that above, we can
obtain a (15, 15, 5)–PF. The polynomials g(X) can be taken to be (X − 1)2(X4 +
X3 +X2 +X + 1)2 in Z3[X] and (X − 1)2(X2 +X + 1)4 in Z5[X].

7.2.5. Perfect Factors for v = 6. By Lemma 7.1, only the following six
parameter sets need to be considered:

(10, 10, 6), (12, 6, 6), (15, 15, 6), (20, 10, 6), (30, 30, 6), and (60, 30, 6).

PFs with parameters (12, 6, 6), (20, 10, 6), and (60, 30, 6) can be obtained by ap-
plying Construction 4.1 with t = 2 to PFs with parameters (6, 6, 3), (10, 10, 3), and
(30, 30, 3), respectively (c.f. section 3.4 of [9]).

Consider the parameters (10, 10, 6). A (5, 2, 5, 6)–GPF can be obtained using
the polynomial (X − 1)(X + 1)3 in Z5[X]. We can obtain a (2, 5, 2, 6)-PMF using
Construction 2.8 by taking g(X) = X4 + X3 + X2 + X + 1 and b(X) = 1 in Z2[X].
Combining these using Theorem 1.24, we obtain a (10, 10, 6)–PF.

A (15, 15, 6)–PF can be obtained by combining GPFs constructed using the poly-
nomials (X − 1)(X4 + X3 + X2 + X + 1)2 in Z3[X] and (X − 1)(X2 + X + 1)4 in
Z5[X].

Finally, consider the parameters (30, 30, 6). It is easy to see from cyclotomic
factorizations how to obtain degree 24 factors g(X) of X30 − 1 in each of Z3[X] and
Z5[X]. These can be used to construct a (3, 10, 3, 6)–GPF and a (5, 6, 5, 6)–GPF.
Combining these using Construction 1.13, by Theorem 1.22 we obtain a (15, 2, 15, 6)–
GPF. By Theorem 1.12, there exists a (2, 15, 2, 6)–PMF. Applying Theorem 1.24, we
can obtain a (30, 30, 6)–PF.

7.3. Perfect Factors for v = 7 and v = 8. We finally consider the existence
of perfect factors for v = 7 and v = 8, and in doing so list the smallest undecided
cases.

By Lemma 7.1, for v = 7, the following 17 parameter sets need to be considered:

(10, 10, 7), (12, 6, 7), (14, 14, 7), (15, 15, 7), (20, 10, 7), (21, 21, 7),
(28, 14, 7), (30, 30, 7), (35, 35, 7), (42, 42, 7), (60, 30, 7), (70, 70, 7),
(84, 42, 7), (105, 105, 7), (140, 70, 7), (210, 210, 7), and (420, 210, 7).

All these parameter sets, except (10, 10, 7), (12, 6, 7), (15, 15, 7), (20, 10, 7), (30, 30, 7),
(35, 35, 7), and (60, 60, 7), fall to Theorem 2.7. Constructions based on cyclic codes
can be used to build PFs for 6 out of these 7 remaining sets (we omit the details),
the parameters (10, 10, 7) resisting attack by such methods.
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Similarly when v = 8, 14 of the 24 parameter sets that remain after applying
Lemma 7.1 fall to Construction 4.1 with t = 2. All but one of the remaining ten sets
then fall to constructions based on cyclic codes. The parameter set (10, 10, 8) remains
undecided.

One reason for the difficulty with the sets (10, 10, 7) and (10, 10, 8) is that X10−1
has no factors of degrees 2 or 3 in Z2[X] that are suitable for use in our cyclic code
constructions. If a (10, 10, 7)–PF and a (10, 10, 8)–PF could be shown to exist, then
Conjecture 1.4 would also be true for v ≤ 8. Such PFs would contain 106 and 107

cycles of period 10, respectively, and as such appear to be out of the reach of computer
search.

8. Conclusions. We have provided further evidence to support the conjecture
that the necessary conditions of Lemma 1.3 are sufficient for the existence of a Perfect
Factor. Indeed it is probably possible to extend our case by case analysis to cover
most parameter sets for v = 9 and beyond.

More importantly, we have provided new and powerful construction methods
which may have the potential to help establish the conjecture for general v. In this
direction it may be worthwhile examining in more detail the different ways in which
these methods can be combined to produce Perfect Factors. We have already done
this for interleaving combined with the Lempel inverse homomorphism in section 6 of
this paper.

It is also worth noting that we have only used the coding-theoretic methods
developed here to attack the existence question for small v. However, even for small v,
these methods do have some limitations, as illustrated by our failure with parameters
(10, 10, 7) and (10, 10, 8). Indeed, it is not hard to show that if p ≥ 5 is prime and 2 is
primitive modulo p, then X2p−1 has factorization (X+1)2(Xp−1 +Xp−2 +· · ·+1)2 in
Z2[X]. So, in this case, X2p−1 has no factors of degrees 2, 3, · · · , p−2 that can be used
in our cyclic code constructions. This means that the cyclic code techniques in this
paper cannot be used to help construct (2p, 2p, v)–PFs for any v with p+2 ≤ v ≤ 2p−2.
These are examples of parameter sets for which no construction methods are currently
known.

Acknowledgment. We would like to thank an anonymous referee for valuable
comments.
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Abstract. Hofmeister introduced the notion of a concrete (resp., concrete regular) covering of
a graph G and gave formulas for enumerating the isomorphism classes of concrete (resp., concrete
regular) coverings of G [Ars Combin., 32 (1991), pp. 121–127; SIAM J. Discrete Math., 8 (1995),
pp. 51–61]. In this paper, we show that the number of the isomorphism classes of n-fold concrete
(resp., concrete regular) coverings of G is equal to that of the isomorphism classes of n-fold (resp.,
regular) coverings of a new graph, the join G+∞ of G and an extra vertex∞. As a consequence, we
can enumerate the isomorphism classes of concrete (resp., concrete regular) coverings of a graph by
using known formulas for enumerating the isomorphism classes of coverings (resp., regular coverings)
of a graph.

Key words. concrete graph coverings, voltage assignments, enumeration
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1. Introduction. Let G be a connected finite simple graph with vertex set V (G)
and edge set E(G). The neighborhood of a vertex v ∈ V (G), denoted by N(v),
is the set of vertices adjacent to v. We use |X| for the cardinality of a set X. An
automorphism of G is a permutation of the vertex set V (G) which preserves adjacency.
Obviously, a composition of two automorphisms is also an automorphism. Hence the
automorphisms of G form a permutation group, Aut (G), which acts on the vertex set
V (G).

A graph G̃ is called a covering of G with projection p : G̃ → G if there is a
surjection p : V (G̃) → V (G) such that p|N(ṽ) : N(ṽ) → N(v) is a bijection for all
vertex v ∈ V (G) and ṽ ∈ p−1(v). We also say that the projection p : G̃ → G is an
n-fold covering of G if p is n-to-one. A covering p : G̃ → G is said to be regular if
there is a subgroup A of the automorphism group Aut(G̃) of G̃ acting freely on G̃

such that the quotient graph G̃/A is isomorphic to G. In fact, the group A is the
covering transformation group of the covering p : G̃ → G. The fiber of an edge or a
vertex is its preimage under p.

An n-fold covering p : G̃ → G is said to be concrete if it is accompanied by an
explicit partition P = {P1, . . . , Pn} of V (G̃) such that every partition set Pi meets
every vertex fiber exactly once; we write (p,P) for short. The partition sets Pi are
the sheets of p. A concrete regular covering is a concrete covering (p,P), in which
p : G̃ → G is regular and every covering transformation of G̃ preserves the sheets
in P.
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Let Γ be a group of automorphisms of the graph G. Two coverings pi : G̃i → G,
i = 1, 2 are said to be isomorphic with respect to Γ if there exist a graph isomorphism
Φ : G̃1 → G̃2 and a graph automorphism γ ∈ Γ such that the diagram

G̃1 G̃2

G G

-

-

Φ

γ?
p1

?
p2

commutes. Such a Φ is called a covering isomorphism with respect to Γ. Two concrete
coverings (pi,Pi), i = 1, 2 are said to be isomorphic with respect to Γ if p1 and p2 are
isomorphic in the sense of the above commutative diagram with a sheet preserving
map Φ. Note that for any group Γ of automorphisms of G, the (concrete) covering
isomorphic relation with respect to Γ on the (concrete) coverings of G is an equivalence
relation.

Every edge of a graph G gives rise to a pair of oppositely directed edges. By
e−1 = vu, we mean the reverse edge to a directed edge e = uv. We denote the
set of directed edges of G by D(G). Following Gross and Tucker [2], [3], a per-
mutation voltage assignment φ of G is a function φ : D(G) → Sn with the prop-
erty that φ(e−1) = φ(e)−1 for each e ∈ D(G), where Sn is the symmetric group
on n elements {1, . . . , n}. The permutation derived graph Gφ is defined as follows:
V (Gφ) = V (G) × {1, . . . , n}, and for each edge e = uv ∈ D(G) and j ∈ {1, . . . , n}
let there be an edge (e, j) in D(Gφ) joining a vertex (u, j) and (v, φ(e)j). The
first coordinate projection pφ : Gφ → G, called the natural projection, is an n-
fold covering. Let A be a finite group. An ordinary voltage assignment (or, A-
voltage assignment) of G is a function φ : D(G) → A with the property that
φ(e−1) = φ(e)−1 for each e ∈ D(G). The values of φ are called voltages, and A is
called the voltage group. The ordinary derived graph G ×φ A derived from an or-
dinary voltage assignment φ : D(G) → A has as its vertex set V (G) × A and as
its edge set E(G) × A so that an edge of G ×φ A joins a vertex (u, g) to (v, φ(e)g)
for e = uv ∈ D(G) and g ∈ A. In the (ordinary) derived graph G ×φ A, a ver-
tex (u, g) is denoted by ug, and an edge (e, g) by eg. The first coordinate pro-
jection pφ : G ×φ A → G, called the natural projection, commutes with the left
multiplication action of the φ(e) and the right action of A on the fibers, which is
free and transitive, so that pφ is an |A|-fold regular covering, called simply an A-
covering.

Let C1(G;n) (resp., C1(G;A)) denote the set of all permutation voltage assign-
ments φ : D(G) → Sn (resp., A-voltage assignments φ : D(G) → A) of G. For a
spanning tree T of G, let C1

T (G;n) (resp., C1
T (G;A)) denote the set of elements φ of

C1(G;n) (resp., C1(G;A)) such that φ(uv) = identity for each uv ∈ D(T ). Gross and
Tucker [2], [3] showed that every n-fold covering (resp., regular covering) G̃ of a graph
G can be derived from a permutation (resp., ordinary) voltage assignment in C1

T (G;n)
(resp., C1

T (G;A) for a group A of order n). Hofmeister [8], [9] proved that every con-
crete covering (resp., concrete regular covering) G̃ of a graph G can be derived from a
permutation (resp., ordinary) voltage assignment with sheets Pi = {(v, i)|v ∈ V (G)},
i = 1, . . . , n (resp., Pa = {(v, a)|v ∈ V (G)}, a ∈ A).

In this paper, we show that the number of the isomorphism classes of n-fold
concrete (resp., concrete regular) coverings of G is equal to that of the isomorphism
classes of n-fold (resp., regular) coverings of a new graph, the join G +∞ of G and
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an extra vertex ∞. This means that we can enumerate the isomorphism classes of
concrete (resp., concrete regular) coverings of a graph by using known formulas for
enumerating the isomorphism classes of coverings (resp., regular coverings) of a graph,
which can be found in [6], [7], [10], [11], [15], [17], and [18].

2. Coverings and concrete coverings. In this section, we show that there ex-
ists a one-to-one correspondence between the isomorphism classes of concrete (resp.,
regular) coverings of a graph G and the isomorphism classes of (resp., regular) cover-
ings of a new graph G∞, the join G+∞ of G and an extra vertex ∞.

For a group Γ of automorphisms of a graph G, let Iso Γ(G;n) (resp., IsoRΓ (G;n),
IsoCΓ (G;n), IsoCRΓ (G;n)) denote the number of the isomorphism classes of n-fold
(resp., regular, concrete, concrete regular) coverings of G with respect to Γ, and
let Iso Γ(G;A) (resp., IsoCΓ (G;A)) denote the number of the isomorphism classes of
(resp., concrete) A-coverings of G with respect to Γ.

Let G be a graph and let G∞ = G+∞ be the join of G and an extra vertex ∞,
i.e., G∞ consists of a copy of G and∞ with additional edges joining every vertex of G
to the vertex ∞. It is clear that an automorphism of G can be uniquely extended to
an automorphism of G∞ which fixes ∞. Hence, from now on we can identify a group
of automorphisms of G with the group of corresponding automorphisms of G∞. Let
T∞ be the spanning tree of G∞ with E(T∞) = {∞v | v ∈ V (G)}. Then γ(T∞) = T∞
for every automorphism γ of G because γ(∞) =∞.

THEOREM 2.1. Let G be a graph and Γ a group of automorphisms of G. Then

IsoCΓ (G;n) = Iso Γ(G∞;n)

for any natural number n.
Proof. It is known [8] that any two n-fold concrete coverings Gφ and Gψ are

isomorphic with respect to Γ as concrete coverings if and only if there exist a permu-
tation σ ∈ Sn and an automorphism γ ∈ Γ such that ψ(γ(u)γ(v)) = σφ(uv)σ−1 for
each uv ∈ D(G). It is also known [14] that for an n-fold covering p : G̃∞ → G∞, there
exists a voltage assignment φ∗ ∈ C1

T∞
(G∞;n) such that the covering pφ

∗
: Gφ

∗

∞ → G∞

is isomorphic to the covering p : G̃∞ → G∞ with respect to the trivial automor-
phism group {1} of G∞, and two coverings pφ

∗
: Gφ

∗

∞ → G∞ and pψ
∗

: Gψ
∗

∞ → G∞,
φ∗, ψ∗ ∈ C1

T∞
(G∞;n) are isomorphic with respect to Γ if and only if there exist a per-

mutation σ ∈ Sn and an automorphism γ ∈ Γ such that ψ∗(γ(u)γ(v)) = σφ∗(uv)σ−1

for each uv ∈ D(G∞)−D(T∞) = D(G).
Define f : C1

T∞
(G∞;n) → C1(G;n) by f(φ∗) = φ∗|G, the restriction of φ∗ on G.

Then f is bijective and, by the above discussion, two coverings pφ
∗

: Gφ
∗

∞ → G∞ and
pψ
∗

: Gψ
∗

∞ → G∞ are isomorphic with respect to Γ if and only if the two concrete
coverings pf(φ∗) : Gf(φ∗) → G and pf(ψ∗) : Gf(ψ∗) → G are isomorphic with respect
to Γ. This completes the proof.

In a way similar to Theorem 3 in [12], we can prove the following theorem.
THEOREM 2.2. Let G be a graph and Γ a group of automorphisms of G. Then

IsoCΓ (G;A) = Iso Γ(G∞;A)

for any finite group A and

IsoCRΓ (G;n) = IsoRΓ (G∞;n)

for any natural number n.
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3. Enumeration of concrete coverings. In this section, we obtain an enu-
meration formula for the isomorphism classes of concrete coverings of a graph G as a
reformulation of Hofmeister’s enumeration formula for those of concrete coverings.

To do this, we recall some notations in [14]. Let T be a spanning tree in a graph
H. For an automorphism γ of H with γ(T ) = T , we define an equivalence relation
∼γ on D(H) − D(T ) as follows: e1 ∼γ e2 if and only if e1 = γ`e2 for some `. An
equivalence class [e] of e is called of class 1 if both e and e−1 are contained in the same
equivalence class and is called of class 2 otherwise. For any edge e ∈ D(H)−D(T ),
we define a number η(γ, e) to be the smallest natural number ` such that e−1 = γ`e
if [e] is of class 1, and the smallest natural number ` such that e = γ`e if [e] is of class
2. This number is well defined because γ has finite order in Γ. Note that if H = G∞
and T = T∞, then D(G∞) − D(T∞) = D(G). Recall that Aut (G) can be regarded
as the set of all automorphisms γ of G∞ such that γ(T∞) = T∞.

Now, we can deduce the following from Theorem 2.1 and Theorem 3 in [14].
THEOREM 3.1. For any subgroup Γ of Aut (G),

IsoCΓ (G;n) = Iso Γ(G∞;n)

=
1
|Γ|n!

∑
(γ,σ)∈Γ×Sn

 ∏
[e]∈Class 1

|I(ση(γ,e))|

 ∏
[e]∈Class 2

|F (ση(γ,e))|

 1
2

,

where the product over the empty index set is defined as 1 and, for any natural number
r, I(σr) = {τ ∈ Sn : σrτσ−r = τ−1} and F (σr) = {τ ∈ Sn : σrτσ−r = τ} are defined
as subsets of the symmetric group Sn.

For a permutation σ ∈ Sn, let (`1, . . . , `n) be the cycle type of σ, i.e., for each
integer i from 1 to n, a decomposition of σ into a product of disjoint cycles has exactly
`i cycles of length i. Then `1 + 2`2 + · · ·+ n`n = n and

|F (σ)| = `1!2`2`2!, · · · , n`n`n!.

To compute |I(σ)|, let ν = τσ in Sn, then στσ−1 = τ−1 if and only if ν2 = σ2, so the
number |I(σ)| is equal to the number of ν in Sn such that ν2 = σ2. By using this, we
can see that

|I(σ)| =
∑

ti = ki, i odd and 2i > n,
t2i = 1

2ki, i even and 2i ≤ n,
ti + 2t2i = ki, i odd and 2i ≤ n

k1!2k2k2!, · · · , nknkn!
t1!2t2t2!, · · · , ntntn!

,

where (k1, . . . , kn) is the cycle type of σ2, i.e.,

ki =


`i if i is odd and 2i > n,
0 if i is even and 2i > n,
`i + 2`2i if i is odd and 2i ≤ n,
2`2i if i is even and 2i ≤ n.

Let γ ∈ Aut(G) and |V (G)| = m; then γ is a permutation on m elements, i.e.,
γ ∈ Sm (γ also can be considered as a permutation on V (G∞) satisfying γ(∞) =∞).
Also, γ can be decomposed into a product of disjoint cycles. If γ has no even length
cycle, then every equivalence class of edges in D(G)(= D(G∞)−D(T∞)) is of class 2.
If γ has an even length cycle, say (u1u2, · · · , u2k) is such a cycle, and utuk+t ∈ D(G)
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for some t, then utuk+t ∈ D(G) for every t, [e] = {uiuj | |i− j| = k } is of class 1 and
η(γ, e) = k. Conversely, every equivalence class of class 1 can be obtained in this way.
Now suppose that [e] is of class 2; let e = uv be an element of [e]. If u, v are in the same
cycle of γ, then η(γ, e) is the length of this cycle. If u, v are in different cycles of γ,
then η(γ, e) is the least common multiple of the lengths of these two cycles containing
u and v, respectively. In this way, we can calculate IsoCΓ (G;n) = Iso Γ(G∞;n) for
any graph G and any Γ ≤ Aut (G). For example, if γ is the identity, then every
equivalence class of e ∈ D(G) is of class 2 and contains only one edge and η(γ, e) = 1,
i.e., there are 2|E(G)| equivalence classes of class 2. Therefore, we have the following
corollary.

COROLLARY 3.2. The number IsoC{1}(G;n) of the isomorphism classes of n-fold
concrete coverings of a graph G with respect to the trivial automorphism group {1} is

IsoC{1}(G;n) =
∑

`1+2`2+···+n`n=n

(`1! 2`2`2!, · · · , n`n`n!)|E(G)|−1.

4. Enumeration of concrete regular coverings. Hofmeister [9] gave a gen-
eral enumeration formula for the isomorphism classes of concrete regular coverings
with respect to a group of automorphisms of a given base graph. In this section, we
obtain new enumeration formulas for the isomorphism classes of concrete regular cov-
erings as a reformulation of Hofmeister’s enumeration formulas for those of concrete
regular coverings.

For convenience, we denote by IsocRΓ (G;n) (resp., Isoc Γ(G;A)) the number of the
isomorphism classes of connected regular (resp., connected A-) coverings of G with
respect to a group Γ of automorphisms of G which fixes a spanning tree T of G.

Now, the following theorem comes from our Theorem 2.2 and from Theorems 4, 5,
and 6 in [13].

THEOREM 4.1. Let G be a graph and Γ a group of automorphisms of G. Let A
be a finite group. Then

IsoCΓ (G;A) = Iso Γ(G∞;A) =
∑
S

Isoc Γ(G∞;S),

where S runs over all of the isomorphism classes of subgroups of A,

IsoCRΓ (G;n) = IsoRΓ (G∞;n) =
∑
d|n

IsocRΓ (G∞; d),

and

IsocRΓ (G∞; d) =
∑
B

Isoc Γ(G∞;B),

where B runs over all of the isomorphism classes of groups of order d.
A finite group A is said to have the isomorphism extension property if every

isomorphism between any two isomorphic subgroups of A can be extended to an
automorphism of A. We divide D(G) into equivalence classes of classes 1 and 2 for
each γ ∈ Γ in the same way as in section 3. From our Theorem 2.2 and from Theorem 5
in [12], we can deduce the following.

THEOREM 4.2. Let G be a graph and Γ a group of automorphisms of G. Let A
be a finite group with the isomorphism extension property. Then
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IsoCΓ (G;A) = Iso Γ(G∞;A)

=
1

|Γ||Aut (A)|
∑

(γ,σ)∈Γ×Aut (A)

 ∏
[e]∈Class 1

|I(ση(γ,e))|

 ∏
[e]∈Class 2

|F (ση(γ,e))|

 1
2

,

where the product over the empty index set is defined as 1 and, for any natural number
r, I(σr) = {g ∈ A : σr(g) = g−1} and F (σr) = {g ∈ A : σr(g) = g} are defined as
subsets of A.

For the trivial automorphism group {1} of G, we have the following corollary.
COROLLARY 4.3. If a finite group A has the isomorphism extension property,

then the number IsoC{1}(G;A) of the isomorphism classes of concrete A-coverings of
a graph G with respect to the trivial automorphism group {1} is

IsoC{1}(G;A) =
1

|Aut (A)|
∑

σ∈Aut (A)

|F (σ)||E(G)|,

where F (σ) = {g ∈ A : σ(g) = g}.
Kwak, Chun, and Lee [13] obtained the following.
THEOREM 4.4. Let G be a graph and A a finite group. Then

Isoc {1}(G∞;A) =
|G(A; |E(G)|)|
|Aut (A)| ,

where G(A;n) = { (g1, g2, . . . , gn) ∈ An : {g1, g2, . . . , gn} generates A}.
In [13], Kwak, Chun, and Lee calculated the number Isoc {1}(G;A) of the isomor-

phism classes of connected A-coverings of G for any finite abelian group A. By using
their results in [13] and our Theorem 2.2, we have the following.

COROLLARY 4.5. Let G be a graph, p a prime, and m > 0. Then

IsoC{1}(G;Zpm) =


1 +m, if G = K2,

1 + p|E(G)| − 1
p− 1 · p

m(|E(G)|−1) − 1
p|E(G)|−1 − 1

, otherwise,

and

IsoC{1}(G;mZp) = 1 +
m∑
h=1

(p|E(G)| − 1)(p|E(G)|−1 − 1) · · · (p|E(G)|−h+1 − 1)
(ph − 1)(ph−1 − 1) · · · (p− 1)

,

where Zpm is the cyclic group of order pm and mZp is the direct sum of m copies
of Zp.

5. Applications. In this section, we give a one-to-one correspondence between
the isomorphism classes of concrete double coverings of a graph G with respect to a
group Γ of automorphisms of G and the isomorphism classes of spanning subgraphs
of G with respect to Γ, where, by definition, two subgraphs S and H are isomorphic
with respect to Γ if there exists a γ ∈ Γ such that γ(H) = S.

Let Z2 = {0, 1} be the additive group of order 2. Then every Z2-voltage assign-
ment φ in C1(G;Z2) can be regarded as a map φ : E(G)→ Z2 because the inverse of
any element g of Z2 is g itself. The subgraph G[φ] of G associated with φ is defined as

V (G[φ]) = V (G), E(G[φ]) = {{u, v}|φ({u, v}) = 1}.



ISOMORPHISM CLASSES OF CONCRETE GRAPH COVERINGS 271

Then G[φ] is a spanning subgraph of G and every spanning subgraph of G can be
obtained in this way. Moreover, it gives a one-to-one correspondence between the set
of all spanning subgraphs of G and the set C1(G;Z2) of all Z2-voltage assignments
of G.

It is easy to show that for any two voltage assignments φ and ψ in C1(G;Z2), G[φ]
and G[ψ] are isomorphic with respect to a group Γ of automorphisms of G if and only
if there exists a γ ∈ Γ such that φ({u, v}) = ψ({γ(u), γ(v)}) for all {u, v} ∈ E(G).

As in the proof of Theorem 2.1, we can see that two concrete double coverings of
G, G ×φ Z2, and G ×ψ Z2, derived from φ and ψ, respectively, are isomorphic with
respect to Γ if and only if φ({u, v}) = ψ({γ(u), γ(v)}) for all {u, v} ∈ E(G).

Now, we summarize our discussions as follows.
THEOREM 5.1. Let G be a graph and Γ a group of automorphisms of G. Then the

number IsoCΓ (G; 2) of the isomorphism classes of concrete double coverings of G with
respect to Γ is equal to the number of the isomorphism classes of spanning subgraphs
of G with respect to Γ.

Notice that the number of the isomorphism classes of spanning subgraphs of G
with respect to Aut (G) was already estimated in [5]. In fact, in this paper we give
a new method to estimate that number by giving a formula for counting the number
IsoCΓ (G; 2).

Since the set of all spanning subgraphs of the complete graph Kn on n vertices
is just the set of all graphs with n vertices and Aut (Kn) is the symmetric group Sn,
we have the following.

COROLLARY 5.2. The number IsoCSn(Kn; 2) of the isomorphism classes of concrete
double coverings of Kn with respect to Aut (Kn) = Sn is equal to the number gn of
the isomorphism classes of graphs with n vertices.

The following comes from Theorem 4.2.
THEOREM 5.3. Let G be a graph and Γ a group of automorphisms of G. Then

the number IsoCΓ (G; 2) of the isomorphism classes of concrete double coverings of G
with respect to Γ is

IsoCΓ (G; 2) = Iso Γ(G∞; 2) =
1
|Γ|
∑
γ∈Γ

2|E(G/〈γ〉)| =
∑
γ

2|E(G/〈γ〉)|

|Z(γ)| ,

where γ in the latter summation runs over all representatives of the conjugacy classes
of Γ, G/〈γ〉 is the quotient graph induced by the action of the subgroup 〈γ〉 generated
by γ, and Z(γ) is the center of γ in Γ.

If G = Kn, then for each γ ∈ Aut (Kn) = Sn with cycle type (`1, `2, . . . , `n),

|Z(γ)| = `1!2`2`2!, · · · , n`n`n! and |E(Kn/〈γ〉)| =
1
2

(
n∑

s,t=1

`s`t(s, t)−
∑
s=odd

`s

)
,

where (s, t) denotes the greatest common divisor of s and t. Now, the following comes
from these facts and Theorem 5.3.

COROLLARY 5.4. The number gn of the isomorphism classes of graphs with n
vertices is

gn = IsoCSn(Kn; 2) =
∑

`1+2`2+···+n`n=n

2N(`1,`2,...,`n)

`1!2`2`2!, · · · , n`n`n!
,
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where

N(`1, `2, . . . , `n) =
1
2

(
n∑

s,t=1

`s`t(s, t)−
∑
s=odd

`s

)

and (s, t) denotes the greatest common divisor of s and t.
In fact, the number gn was already known in [1] and [4].
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ENUMERATION OF REGULAR GRAPH COVERINGS HAVING
FINITE ABELIAN COVERING TRANSFORMATION GROUPS∗
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Abstract. Several isomorphism classes of graph coverings of a graph G have been enumerated
by many authors. An enumeration of the isomorphism classes of n-fold coverings of a graph G
was done by Kwak and Lee [Canad. J. Math., XLII (1990), pp. 747–761] and independently by
Hofmeister [Discrete Math., 98 (1991), pp. 437–444]. An enumeration of the isomorphism classes
of connected n-fold coverings of a graph G was recently done by Kwak and Lee [J. Graph Theory,
23 (1996), pp. 105–109]. But the enumeration of the isomorphism classes of regular coverings of a
graph G has been done for only a few cases. In fact, the isomorphism classes of A-coverings of G
were enumerated when A is the cyclic group Zn, the dihedral group Dn (n: odd), and the direct
sum of m copies of Zp. (See [Discrete Math., 143 (1995), pp. 87–97], [J. Graph Theory, 15 (1993),
pp. 621–627], and [Discrete Math., 148 (1996), pp. 85–105]).

In this paper, we discuss a method to enumerate the isomorphism classes of connected A-coverings
of a graph G for any finite group A and derive some formulas for enumerating the isomorphism classes
of regular n-fold coverings for any natural number n. In particular, we calculate the number of the
isomorphism classes of A-coverings of G when A is a finite abelian group or the dihedral group Dn.
Our method gives partial answers to the open problems 1 and 2 in [Discrete Math., 148 (1996),
pp. 85–105] and also gives a formula to calculate the number of the subgroups of a given index of
any finitely generated free abelian group.

Key words. regular coverings of a graph, (ordinary) voltage assignments, enumeration

AMS subject classifications. 05C10, 05C30, 20K27, 57M15

PII. S0895480196304428

1. Introduction. Let G be a connected finite simple graph with vertex set V (G)
and edge set E(G). The neighborhood of a vertex v ∈ V (G), denoted by N(v), is the
set of vertices adjacent to v. We use |X| for the cardinality of a set X. The number
β(G) = |E(G)| − |V (G)|+ 1 is equal to the number of independent cycles in G and it
is referred to as the Betti number of G.

Two graphs G and H are isomorphic if there exists a one-to-one correspondence
between their vertex sets which preserves adjacency, and such a correspondence is
called an isomorphism between G and H. An automorphism of a graph G is an iso-
morphism of G onto itself. Thus, an automorphism of G is a permutation of the vertex
set V (G) which preserves adjacency. Obviously, a composition of two automorphisms
is also an automorphism. Hence the automorphisms of G form a permutation group,
Aut (G), which acts on the vertex set V (G).

A graph G̃ is called a covering of G with projection p : G̃ → G if there is a
surjection p : V (G̃) → V (G) such that p|N(ṽ) : N(ṽ) → N(v) is a bijection for any
vertex v ∈ V (G) and ṽ ∈ p−1(v). We also say that the projection p : G̃ → G is
an n-fold covering of G if p is n-to-one. A covering p : G̃ → G is said to be regular
(simply, A-covering) if there is a subgroup A of the automorphism group Aut (G̃) of
G̃ acting freely on G̃ so that the graph G is isomorphic to the quotient graph G̃/A,
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say by h, and the quotient map G̃ → G̃/A is the composition h ◦ p of p and h. The
fiber of an edge or a vertex is its preimage under p.

Two coverings pi : G̃i → G, i = 1, 2 are said to be isomorphic if there exists a
graph isomorphism Φ : G̃1 → G̃2 such that the diagram

G̃1 G̃2

G

-Φ

J
J
Ĵ

p1





�
p2

commutes. Such a Φ is called a covering isomorphism.
Every edge of a graph G gives rise to a pair of oppositely directed edges. By

e−1 = vu, we mean the reverse edge to a directed edge e = uv. We denote the set of
directed edges of G by D(G). Let A be a finite group. An ordinary voltage assignment
(or, A-voltage assignment) of G is a function φ : D(G) → A with the property that
φ(e−1) = φ(e)−1 for each e ∈ D(G). The values of φ are called voltages, and A is
called the voltage group. The ordinary derived graph G×φA derived from an ordinary
voltage assignment φ : D(G) → A has as its vertex set V (G) × A, and as its edge
set E(G) ×A, so that an edge (e, g) of G ×φ A joins a vertex (u, g) to (v, φ(e)g) for
e = uv ∈ D(G) and g ∈ A. In the (ordinary) derived graph G ×φ A, a vertex (u, g)
is denoted by ug and an edge (e, g) is denoted by eg. The first coordinate projection
pφ : G×φA → G, called the natural projection, commutes with the left multiplication
action of the φ(e) and the right multiplication action of A on the fibers, which is free
and transitive, so that pφ is a regular |A|-fold covering, called simply an A-covering.
Gross and Tucker [1] showed that every A-covering G̃ of a graph G can be derived
from an A-voltage assignment.

Kwak and Lee enumerated the isomorphism classes of n-fold coverings of a graph
G as follows.

THEOREM 1.1 (see [9]). The number Iso (G;n) of isomorphism classes of n-fold
coverings of a connected graph G is

Iso (G;n) =
∑

`1+2`2+···+n`n=n

(`1! 2`2`2! · · ·n`n`n!)β(G)−1.

But the enumeration of the isomorphism classes of regular coverings of a graph
has been done for only few cases. In fact, the isomorphism classes of A-coverings of
G were enumerated when A is the cyclic group Zn, the dihedral group Dn (n: odd),
and the direct sum of m copies of Zp. (See [3]–[10], [14].)

In this paper, we derive formulas for enumerating the isomorphism classes of
regular n-fold coverings for any natural number n and enumerate the isomorphism
classes of A-coverings of G when A is a finite abelian group or the dihedral
group Dn.

2. Enumeration of regular n-fold coverings. For a finite group A, let Iso (G;
A) (resp., Isoc (G;A)) denote the number of the isomorphism classes of A-coverings
(resp., connected A-coverings) of G. Let IsoR(G;n) (resp., IsocR(G;n)) denote the
number of the isomorphism classes of regular n-fold coverings (resp., connected regular
n-fold coverings) of G. The number Isoc (G;n) of the isomorphism classes of connected
n-fold coverings of G was already calculated by Kwak and Lee (see [13]). In this
section, we calculate the number IsoR(G;n) of the isomorphism classes of regular
n-fold coverings of G.
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For a finite group A, let C1(G;A) denote the set of all A-voltage assignments φ
of G. Let T be a spanning tree of G and let

C1
T (G;A) = {φ ∈ C1(G;A) : φ(uv) = identity for each uv ∈ D(T )}.

It is known that every A-covering of G can be derived from an A-voltage assignment
φ in C1

T (G;A) (see [1], [8]). From now on, let T denote a fixed spanning tree of a
graph G, and we consider only an A-voltage assignment φ in C1

T (G;A).
For a voltage assignment φ ∈ C1

T (G;A), let Aφ(v) denote the local voltage group
of φ at v which is, by definition, the subgroup of A consisting of all net φ-voltages of
the closed walks based at v ∈ V (G). The net φ-voltage of a closed walk is the product
of the forward voltages (written from right to left) along the edges of the walk. Clearly,
the local voltage groups Aφ(v) of φ ∈ C1

T (G;A), v ∈ V (G) are independent of the
choice of the base vertex v, and we simply denote it by Aφ. It is clear by the definition
of the ordinary derived graph G×φA that for any voltage assignment φ ∈ C1

T (G;A),
the derived graph G ×φ A is connected if and only if the local voltage group Aφ is
just the full group A.

Hong, Kwak, and Lee obtained an algebraic characterization of two A-coverings
of a graph G to be isomorphic.

THEOREM 2.1 (see [8]). Let φ and ψ be two voltage assignments in C1
T (G;A).

Then two A-coverings pφ : G×φ A → G and pψ : G×ψ A → G are isomorphic if and
only if there exists a group isomorphism σ : Aφ → Aψ such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ) (or ∈ D(G)). Moreover, if both φ and ψ derive connected
coverings, then it is also equivalent to say that there exists a group automorphism
σ ∈ Aut(A) such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ) (or ∈ D(G)).
By using a method similar to the proof of Theorem 2.1, we can have the following

theorem.
THEOREM 2.2. Let A and B be two finite groups, and let φ ∈ C1

T (G;A), ψ ∈
C1
T (G;B) be two voltage assignments. Then two coverings pφ : G ×φ A → G and

pψ : G ×ψ B → G are isomorphic if and only if there exists a group isomorphism
σ : Aφ → Bψ such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ) (or ∈ D(G)). Moreover, if both φ and ψ derive connected
coverings, then it is also equivalent to say that there exists a group isomorphism
σ : A → B such that

ψ(uv) = σ(φ(uv))

for all uv ∈ D(G)−D(T ) (or ∈ D(G)).
Let φ ∈ C1

T (G;A) be a voltage assignment. Then the covering pφ : G×φ A → G
is regular, and each component of G×φA is isomorphic to the component of G×φA
containing the vertices { vid | v ∈ V (G) }, called the identity component of G ×φ A,
where id denotes the identity element of the group A. In fact, the identity component
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of an A-covering G×φ A is just the Aφ-covering G×φ Aφ by the construction of the
derived graph. Now, it comes from Theorem 2.2 that two regular coverings of the
same fold number of a graph are isomorphic if and only if their identity components
are isomorphic as coverings. Notice that the order of any subgroup of a finite group
A is a divisor of the order |A| of the group A. Now we have the following theorem.

THEOREM 2.3. For any natural number n,

IsoR(G;n) =
∑
d|n

IsocR(G; d).

In particular, if n = p` for a prime p, then

IsoR(G; p`) =
∑̀
i=0

IsocR(G; pi).

From Theorem 2.2, we can see that Iso(G;A) = Iso(G;B) and Isoc(G;A) =
Isoc(G;B) for any two isomorphic finite groups A and B. Moreover, Iso(G;A) (resp.,
Isoc(G;A)) is equal to the number of isomorphism classes of (resp., connected) regular
|A|-fold coverings of G whose covering transformation groups are isomorphic to the
group A. The following theorem comes from these facts and Theorem 2.2.

THEOREM 2.4. For any natural number n,

IsocR(G;n) =
∑
A

Isoc (G;A),

where A runs over all representatives of isomorphism classes of groups of order n.
An analogous argument to the proof of Theorem 2.3 gives the following.
THEOREM 2.5. For any finite group A,

Iso (G;A) =
∑
S

Isoc (G;S),

where S runs over all representatives of isomorphism classes of subgroups of A.
By combining Theorems 2.3, 2.5, and 2.4, we can see that

IsoR(G; p2) = IsocR(G; p2) + IsocR(G; p) + IsocR(G; 1)

= Isoc (G;Zp ⊕ Zp) + Isoc (G;Zp2) + Isoc (G;Zp) + 1

= Iso (G;Zp ⊕ Zp) + Isoc (G;Zp2).

Now, we need to calculate the number Isoc (G;A) for any finite group A. For a
finite group A and a natural number n, let

G(A;n) = { (g1, g2, . . . , gn) ∈ An : {g1, g2, . . . , gn} generates A}.

THEOREM 2.6. For any finite group A,

Isoc (G;A) =
|G(A;β(G))|
|Aut (A)| .

Proof. It is clear that for any A-voltage assignment φ in C1
T (G;A), the local

voltage group Aφ is the subgroup of A generated by voltages φ(e) on the edges e
in the cotree G − T . Recall that the covering graph G ×φ A of G is connected if
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and only if the local voltage group Aφ is the full group A. We also notice that the
number of positively directed edges in G − T is |E(G − T )|, which is equal to β(G).
By the definition of G(A;n), G(A;β(G)) can be identified with the set of A-voltage
assignments of G whose derived coverings are all of the connected A-coverings of G.
Now, Theorem 2.6 comes from the Burnside lemma, because the Aut (A) action on
G(A;n) given in Theorem 2.1 is free for each n.

Example 1. Let Zpm be the cyclic group of order pm, p prime. Then Aut (Zpm)
can be identified with the set of all elements of Zpm which are relatively prime to pm;
that is, the set {λ ∈ Zpm : (λ, pm) = 1}, and

G(Zpm ;β(G))={(g1, g2, · · · , gβ(G)) ∈ (Zpm)β(G) | at least one of gi’s generates Zpm}.

It implies that

|Aut (Zpm)| = pm−1(p− 1) and |G(Zpm ;β(G))| = pβ(G)m − pβ(G)(m−1).

Then, by Theorem 2.6,

Isoc (G;Zpm) =
pβ(G)m − pβ(G)(m−1)

pm−1(p− 1)
= p(β(G)−1)(m−1) p

β(G) − 1
p− 1

for m > 0. By Theorem 2.5 and the lattice structure of subgroups of Zpm , we have

Iso (G;Zpm) = 1 +
m∑
h=1

p(β(G)−1)(h−1) p
β(G) − 1
p− 1

= 1 +
pβ(G) − 1
p− 1

pm(β(G)−1) − 1
pβ(G)−1 − 1

.

Note that the number Iso (G;Zp) = IsoR(G; p) was already calculated in [9].
Next, we derive a product formula for the isomorphism classes of (connected)

regular coverings of a graph G.
THEOREM 2.7. For any two finite groups A and B with (|A|, |B|) = 1,

Isoc (G;A⊕ B) = Isoc (G;A) Isoc (G;B),

and

Iso (G;A⊕ B) = Iso (G;A) Iso (G;B).

Proof. For any φ ∈ C1
T (G;A⊕ B), we define φA ∈ C1

T (G;A) and φB ∈ C1
T (G;B)

so that

φ(e) = (φA(e), φB(e))

for any e in D(G). If φ derives a connected covering, then the local voltage group
(A⊕B)φ is A⊕B. Because (|A|, |B|) = 1, both φA and φB derive connected coverings.
Conversely, if φ1 ∈ C1

T (G;A) and φ2 ∈ C1
T (G;B) drive connected coverings, then the

voltage assignment φ ∈ C1
T (G;A ⊕ B) defined by φ(e) = (φ1(e), φ2(e)), e ∈ D(G)

derives a connected covering because Aφ1 = A, Bφ2 = B, and (|A|, |B|) = 1. It
implies that

|G(A⊕ B;β(G))| = |G(A;β(G))| |G(B;β(G))|.

Since Aut (A⊕ B) = Aut (A)⊕Aut (B), it comes from Theorem 2.6 that

Isoc (G;A⊕ B) = Isoc (G;A) Isoc (G;B).
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Notice that every subgroup of A ⊕ B is of the form S1 ⊕ S2, where S1 and S2 are
subgroups of A and B, respectively. Since (|A|, |B|) = 1, (|S1|, |S2|) = 1. Now, it
comes from Theorem 2.5 that Iso (G;A⊕ B) = Iso (G;A) Iso (G;B).

COROLLARY 2.8. Let m and n be two relatively prime numbers. Then

IsoR(G;mn) ≥ IsoR(G;m) IsoR(G;n).

In particular, if p and q are two distinct prime numbers such that p < q and p 6 | (q−1),
then

IsoR(G; pq) = IsoR(G; p) IsoR(G; q).

Proof. Let A and B be two groups of order m and n, respectively. Then A⊕B is
a group of order mn. This implies that

IsoR(G;mn) ≥ IsoR(G;m) IsoR(G;n).

Note that if p and q are two distinct prime numbers such that p < q and p 6 | (q − 1),
then every group of order pq is isomorphic to the cyclic group Zpq of order pq (see
[16]). Hence,

IsoR(G; pq) = Iso (G;Zpq) = Iso (G;Zp) Iso (G;Zq) = IsoR(G; p) IsoR(G; q).

This completes the proof.
Remark . The number IsoR(G;mn) can be strictly greater than the number

IsoR(G;m) IsoR(G;n), even if m and n are distinct primes. For example, if β(G) ≥ 2,
m = 2, and n = 3, then IsoR(G; 6) > IsoR(G; 2) IsoR(G; 3), because

IsoR(G; 6) = Isoc (G;Z6) + Isoc (G;D3) + Isoc (G;Z2) + Isoc (G;Z3) + 1

= Iso (G;Z6) + Isoc (G;D3),

and

Iso (G;Z6) = Iso (G;Z2) Iso (G;Z3) = IsoR(G; 2) IsoR(G; 3).

3. Enumeration of A-coverings; A = abelian group. In [5], Hofmeis-
ter gave a formula for calculating the number Iso (G;mZp), where mZp is the m-
dimensional vector space over the finite field Zp. In this section, we calculate the
number Iso (G;A) for any finite abelian group A, which is much simpler and more
explicit than Hofmeister’s, when A = mZp.

By the classification of finite abelian groups, any finite abelian group A is isomor-
phic to a direct sum of finite cyclic groups of order powers of prime numbers. In order
to calculate the number Iso (G;A), it suffices, by Theorems 2.5 and 2.7, to calculate
the number Iso (G;⊕`h=1mhZpsh ) or the number Isoc (G;⊕`h=1mhZpsh ) for a prime p.
To do this, we start with the following lemma.

LEMMA 3.1.
1. For any natural numbers m and n with m ≤ n, and a prime p, we have

|G(mZp;n)| = p
m(m−1)

2 (pn − 1)(pn−1 − 1) · · · (pn−m+1 − 1),

and

|Aut (mZp)| = |G(mZp;m)| = p
m(m−1)

2 (pm − 1)(pm−1 − 1) · · · (p− 1).
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2. For any natural number s ≥ 1, we have

|G(mZps ;n)| = p(s−1)mn|G(mZp;n)|,
and

|Aut (mZps)| = p(s−1)m2 |Aut (mZp)|.
Proof. 1. To calculate the number |G(mZp;n)|, it suffices to find a one-to-one

correspondence between the set G(mZp;n) and the set of all linearly independent m
ordered vectors in nZp, because the cardinality of the set of all linearly independent m
ordered vectors in nZp is (pn − 1)(pn − p), . . . , (pn − pm−1). For each (v1,v2, . . . ,vn)
in G(mZp;n), let A be the m × n matrix having v1,v2, . . . ,vn as column vectors.
Then each row of the matrix A is a vector in nZp and the rows of A form a linearly
independent m ordered vectors in nZp, because the rank of A is m. This completes
the calculation of |G(mZp;n)|. Since there is a one-to-one correspondence between
Aut (mZp) and the group of all linear automorphisms on the vector space mZp over
the field Zp, we get |Aut (mZp)| = |G(mZp;m)|.

2. Let Zps =< 1 >, where 1 is a generator of the additive cyclic group Zps . Then
the element ps−1 in Zps generates the cyclic subgroup Zp of the group Zps , and an
element γ in Zps generates the group Zps if and only if ps−1γ generates the subgroup
Zp. It implies that any n elements g1, . . . , gn in the group mZps generate the group
mZps if and only if the n elements ps−1g1, . . . , p

s−1gn generate the subgroup mZp;
that is,

G(mZps ;n) = {(g1, . . . , gn) ∈ (mZps)n | {g1, . . . , gn} generates mZps}

= {(g1, . . . , gn) ∈ (mZps)n | {ps−1g1, . . . , p
s−1gn} generates mZp}.

Since the map θ : mZps → mZp defined by θ(γ1, . . . , γm) = (ps−1γ1, . . . , p
s−1γm)

is a group homomorphism and its kernel, Ker(θ), is generated by the m elements
(p, 0, . . . , 0), (0, p, . . . , 0), . . . , (0, 0, . . . , p), we get |Ker(θ)| = p(s−1)m and

|G(mZps ;n)| = |Ker(θ)|n |G(mZp;n)| = p(s−1)mn|G(mZp;n)|.
Finally, we note that mZps is an m-dimensional free module over the ring Zps . To
count the number |Aut (mZps)|, let e1, . . . , em denote the standard basis for the free
module mZps . Then the map θ : Aut (mZps) → G(mZps ;m) defined by θ(σ) =
(σ(e1), . . . , σ(em)) is clearly bijective. Hence,

|Aut (mZps)| = |G(mZps ;m)| = p(s−1)m2 |G(mZp;m)| = p(s−1)m2 |Aut (mZp)|
by the second equation of 1.

By Theorems 2.5, 2.6, and Lemma 3.1, we have the following corollary.
COROLLARY 3.2. For any m, the number of the isomorphism classes of connected

mZp-coverings of G is

Isoc (G;mZp) =
(pβ(G) − 1)(pβ(G)−1 − 1) · · · (pβ(G)−m+1 − 1)

(pm − 1)(pm−1 − 1) · · · (p− 1)
,

and the number of the isomorphism classes of mZp-coverings of G is

Iso (G;mZp) = 1 +
m∑
h=1

(pβ(G) − 1)(pβ(G)−1 − 1) · · · (pβ(G)−h+1 − 1)
(ph − 1)(ph−1 − 1) · · · (p− 1)

= 1 +
pβ(G) − 1
p− 1

(
1 +

pβ(G)−1 − 1
p2 − 1

(
1 + · · ·

(
1 +

pβ(G)−m+1 − 1
pm − 1

)
· · ·
))
.
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Notice that the calculating formula for the number Iso (G;mZp) in Corollary 3.2
is much more explicit than that of Hofmeister’s in [5].

Remark. It is well known (see [17]) that the number of the m-dimensional sub-
spaces of the n-dimensional vector space nZp over the field Zp is equal to the Gaussian
coefficient

[
n
m

]
p

=

n∏
i=n−m+1

(pi − 1)

m∏
i=1

(pi − 1)

.

Hence, we can say that the number of the isomorphism classes of connected mZp-
coverings of a graph G is equal to the number of the m-dimensional subspaces of the
β(G)-dimensional vector space β(G)Zp.

Let m1Zps1 ⊕m2Zps2 be the direct sum of two abelian groups m1Zps1 and m2Zps2
(say, s2 < s1) and let g1 = (g11, g12), . . . , gn = (gn1, gn2) ∈ m1Zps1 ⊕ m2Zps2 .
Then {g1, . . . , gn} generates m1Zps1 ⊕m2Zps2 if and only if {(ps1−1g11, p

s2−1g12), . . . ,
(ps1−1gn1, p

s2−1gn2)} generates (m1 + m2)Zp. An analogous argument to the proof
of Lemma 3.1 gives

|G(m1Zps1 ⊕m2Zps2 ;n)| = pn(m1(s1−1)+m2(s2−1))|G((m1 +m2)Zp;n)|.

But, in general,

|Aut (m1Zps1 ⊕m2Zps2 )| 6= |G(m1Zps1 ⊕m2Zps2 ;m1 +m2)|.

In fact, a group-theoretic exercise gives

|Aut (m1Zps1 ⊕m2Zps2 )| = pg(mi,si)
2∏
i=1

mi∏
h=1

(
pmi−h+1 − 1

)
,

where

g(mi, si) = m

(
2∑
i=1

mi(si − 1)

)
−m1m2(s1 − s2 − 1) +

m(m− 1)
2

with m = m1 +m2 and s2 < s1. In general, we have the following.
LEMMA 3.3. Let m1, . . . ,m` and s1, . . . , s` be natural numbers with s` < · · · < s1.

Let p be a prime number. Then we have
1.
∣∣G (⊕`h=1mhZpsh ;n

)∣∣ = pn(m1(s1−1)+···+m`(s`−1))|G((m1 + · · ·+m`)Zp;n)|.

2.
∣∣Aut (⊕`h=1mhZpsh )

∣∣ = pg(mi,si)
∏̀
i=1

mi∏
h=1

(
pmi−h+1 − 1

)
, where

g(mi, si) = m

(∑̀
i=1

mi(si − 1)

)
−
`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

+
m(m− 1)

2

with m = m1 + · · ·+m`.
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TABLE 3.1
The numbers Isoc and Iso for small (p, q) and small β(G).

Isoc Iso
β (p, q) Zp3 ⊕ Zp Zq2 Zp3 ⊕ Zp ⊕ Zq2 Zp3 ⊕ Zp Zq2 Zp3 ⊕ Zp ⊕ Zq2
1 (2, 3) 0 1 0 4 3 12
2 (2, 5) 6 30 180 32 37 1184
3 (3, 5) 1404 775 1088100 2757 807 2224899
4 (3, 7) 126360 137200 1695792000 161451 137601 22215819051
5 (5, 7) 9518437500 6725201 64013405393437500 9533687306 6728003 64142676795829918

Now, the following comes from Theorem 2.6 and Lemma 3.3.
THEOREM 3.4. Let m1, . . . ,m` and s1, . . . , s` be natural numbers with s` < · · · <

s1. Then the number of the isomorphism classes of connected ⊕`h=1mhZpsh -coverings
of G is

Isoc (G;⊕`h=1mhZpsh ) = pf(β(G),mi,si)

m∏
i=1

pβ(G)−i+1 − 1

∏̀
j=1

mj∏
h=1

pmj−h+1 − 1

,

where m = m1 + · · ·+m`, p is prime and

f(β(G),mi, si) = (β(G)−m)

(∑̀
i=1

mi(si − 1)

)
+
`−1∑
i=1

mi

 ∑̀
j=i+1

mj(si − sj − 1)

 .

Now, we can calculate the number Iso (G;A) for any finite abelian group A by
using Theorems 2.5, 2.7, and 3.4 repeatedly if necessary. For example, if p and q are
two distinct prime numbers, then

Iso
(
G;Zp3 ⊕ Zp ⊕ Zq2

)
= Iso

(
G;Zp3 ⊕ Zp

)
Iso

(
G;Zq2

)
=

(
1 +

3∑
i=1

Isoc
(
G;Zpi

)
+

3∑
i=1

Isoc
(
G;Zpi ⊕ Zp

))(
1 +

2∑
i=1

Isoc
(
G;Zqi

))

=
(

1 +
pβ(G) − 1
p− 1

(
1 + pβ(G)−1

(
1 + pβ(G)−1

))
+

(
pβ(G) − 1

) (
pβ(G)−1 − 1

)
(p− 1) (p2 − 1)

(
1 + pβ(G)−2(p+ 1)

(
1 + pβ(G)−1

)))

×
(

1 +

(
qβ(G) − 1

) (
qβ(G)−1 + 1

)
q − 1

)
.

For some abelian groupsA and small β(G), the numbers Isoc (G;A) and Iso (G;A)
are listed in Table 3.1.

Remark. For a connected A-covering p : G̃ → G, the image p∗(π1(G̃)) of the
fundamental group of the covering graph G̃ is a normal subgroup of the fundamen-
tal group π1(G) of the base graph G, and the quotient group π1(G)/p∗(π1(G̃)) is
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isomorphic to A. If A is abelian, then p∗(π1(G̃)) contains the commutator sub-
group [π1(G), π1(G)] of the free group π1(G) generated by β(G) elements. Since
[π1(G), π1(G)] is a normal subgroup of π1(G), the natural homomorphism q : π1(G)→
π1(G)/[π1(G), π1(G)] induces a one-to-one correspondence between the set of all sub-
groups of π1(G) containing [π1(G), π1(G)] and the set of all subgroups of the quotient
group π1(G)/[π1(G), π1(G)]. Notice that π1(G)/[π1(G), π1(G)] is the free abelian
group generated by β(G) elements. Now, from a well-known classification theorem for
regular coverings of a topological space, it follows that the number

∑
A IsocR(G;A),

where A runs over all representatives of isomorphism classes of abelian groups of order
n, is equal to the number of subgroups of index n of the free abelian group generated
by β(G) elements.

4. Enumeration of Dn-coverings. Recall that the dihedral group of order 2n
can be presented as follows:

Dn =
〈
a, b : a2 = 1 = bn, aba = b−1〉 .

In [8], Hong, Kwak, and Lee calculated the number Iso (G;Dn) for odd n ≥ 3. As an
extension of their results, we now calculate the number Iso (G;Dn) for any n ≥ 3.

Note that D1 = Z2, D2 = Z2 ⊕Z2, Dn is not abelian for n ≥ 3 with 〈a〉 = Z2 and
〈b〉 = Zn, and an element of Dn can be of the form bi or abi for some 0 ≤ i ≤ n− 1.

LEMMA 4.1. Let n be a natural number with prime decomposition pm1
1 · · · pm`` .

Then
1. |Aut(Dn)| = n pm1−1

1 (p1 − 1) · · · pm`−1
` (p` − 1).

2. For any natural number r,

|G(Dn; r)| = (2r − 1)
∏̀
i=1

p
(mi−1)r+1
i

(
pr−1
i − 1

)
.

Proof. It is not hard to show that

Aut(Dn) =
{
σij : σij(a) = abi, σij(b) = bj , 0 ≤ i, j ≤ n− 1, (n, j) = 1

}
.

It implies that |Aut(Dn)| = n pm1−1
1 (p1 − 1) · · · pm`−1

` (p` − 1).
Next, we calculate the number |G(Dn; r)|. Since the prime decomposition of n

is pm1
1 · · · pm`` , Zn =< b > is isomorphic to ⊕`i=1Zpmii , where Zpmii =< bi > with

b = b1 · · · b`. Note that Dn = Zn∪aZn, disjoint union. It is clear that if (g1, . . . , gr) ∈
G(Dn; r), then there exists at least one j (1 ≤ j ≤ r) such that gj ∈ aZn = {abi | i =
1, . . . , n}. Given any nonempty subset S of {1, 2, . . . , r}, let G[S] denote the set

{(g1, . . . , gr) ∈ G(Dn; r) : gj ∈ aZn for j ∈ S and gj ∈ Zn for j 6∈ S}.

Then ⋃
S( 6=∅)⊂{1,2,...,r}

G[S] = G(Dn; r).

Moreover, G[S] and G[T ] are disjoint for any two distinct nonempty subsets S and T
of {1, 2, . . . , r}. It implies that

|G(Dn; r)| =

∣∣∣∣∣∣
⋃

S( 6=∅)⊂{1,2,...,r}
G[S]

∣∣∣∣∣∣ =
∑

S( 6=∅)⊂{1,2,...,r}
|G[S]|.
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For convenience, for each g ∈ Dn, let

g =

 (g′1, . . . , g
′
`) if g ∈ Zn = ⊕`i=1Zpmii

a(g′1, . . . , g
′
`) if g ∈ aZn = a⊕`i=1 Zpmii .

Let S be a nonempty subset of {1, . . . , r} and (g1, . . . , gr) ∈ (Dn)r ≡
∏r
i=1 Dn. Then

(g1, . . . , gr) ∈ G[S] if and only if for each i = 1, · · · , `,

(g′1i , . . . , g
′
ri) ∈

r∏
i=1

Zpmii −
pi−1⋃
k=0

∏
j 6∈S

Z
p
mi−1
i

×
∏
j∈S

bki Zpmi−1
i

 ,

where Z
p
mi−1
i

is the subgroup of Zpmii generated by bpii . It implies that for any
nonempty subset S of {1, 2, . . . , r},

|G[S]| =
∏̀
i=1

(
pmiri − p(mi−1)|S|

i · pi · p(mi−1)(r−|S|)
i

)
=
∏̀
i=1

p
(mi−1)r+1
i

(
pr−1
i − 1

)
,

which does not depend on the set S. Now, the cardinality |G(Dn; r)| of the set G(Dn; r)
is

∑
S( 6=∅)⊂{1,2,···,r}

|G[S]| = (2r − 1)
∏̀
i=1

p
(mi−1)r+1
i

(
pr−1
i − 1

)
.

Notice that any subgroup of the dihedral group Dn is isomorphic to one of Di (i
is a divisor of n) and Zj (j is a divisor of n), where Z1 = {identity}. It follows from
Theorem 2.5 that for any n ≥ 3,

Iso (G;Dn) =



∑
m|n

Isoc (G;Zm) +
∑
m|n

Isoc (G;Dm) if n is odd,

∑
m|n

Isoc (G;Zm) +
∑

m|n,m 6=1

Isoc (G;Dm) if n is even,

=


Iso (G;Zn) +

∑
m|n

Isoc (G;Dm) if n is odd,

Iso (G;Zn) +
∑

m|n,m 6=1

Isoc (G;Dm) if n is even.

First, we calculate the number Isoc (G;Dn) for any n ≥ 3. The following comes
from Theorem 2.6 and Lemma 4.1.

THEOREM 4.2. For any n ≥ 3, the number of the isomorphism classes of connected
Dn-coverings of G is

Isoc (G;Dn) =
(

2β(G) − 1
)∏̀
i=1

p
(mi−1)(β(G)−2)
i

p
β(G)−1
i − 1
pi − 1

,

where pm1
1 · · · pm`` is the prime decomposition of n.
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For any edge e in the cotree G− T , we have β(G− e) = β(G)− 1. By Example 1
and Theorems 3.4 and 4.2, we have

Isoc (G;Dn) = (2β(G) − 1)Isoc (G− e;Zn)

for any n ≥ 3. Thus, if n is odd, then∑
m|n

Isoc (G;Dm) =
(

2β(G) − 1
)∑
m|n

Isoc (G− e;Zm) =
(

2β(G) − 1
)

Iso (G− e;Zn).

If n is even, then∑
m|n,m 6=1

Isoc (G;Dm)

=
∑

m|n,m≥3

Isoc (G;Dm) + Isoc (G;D2)

=
(

2β(G) − 1
)∑

m|n
Isoc (G− e;Zm)− [1 + Isoc (G− e;Z2)]

+ Isoc (G;D2)

=
(

2β(G) − 1
)

Iso (G− e;Zn)−
(

2β(G) − 1
)

2β(G)−1

+
1
3

(
2β(G) − 1

)(
2β(G)−1 − 1

)
=
(

2β(G) − 1
)

Iso (G− e;Zn)− 1
3

(
4β(G) − 1

)
.

We summarize our discussion as follows.
THEOREM 4.3. For any n ≥ 3, the number of the isomorphism classes of Dn-

covering of G is

Iso (G;Dn) =


Iso (G;Zn) +

(
2β(G) − 1

)
Iso (G− e;Zn) if n is odd,

Iso (G;Zn) +
(

2β(G) − 1
)

Iso (G− e;Zn)

−1
3

(
4β(G) − 1

)
if n is even,

where e is an edge in the cotree G− T , and

Iso (G;Zn) =



1 if β(G) = 0,∏̀
i=1

(mi + 1) if β(G) = 1,

∏̀
i=1

(
1 +

p
β(G)
i − 1
pi − 1

p
mi(β(G)−1)
i − 1

p
β(G)−1
i − 1

)
if β(G) ≥ 2,

where the prime decomposition of n is pm1
1 pm2

2 · · · pm`` .
The number Iso (G;Zn) comes from Theorem 2.7 and Example 1. We note that

the numbers Iso (G;Dn) (n = odd) and Iso (G;Zn) were already counted in [8], but the
calculating method in [8] is different from that in this paper. The numbers Isoc (G;Dn)
and Iso (G;Dn) for small n and β(G) are listed in Tables 4.1 and 4.2.
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TABLE 4.1
The number Isoc (G;Dn).

β n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

1 0 0 0 0 0 0 0 0 0
2 3 3 3 3 3 3 3 3 3
3 28 42 42 84 56 84 84 126 84
4 195 420 465 1365 855 1680 1755 3255 1995
5 1240 3720 4836 18600 12400 29760 33480 72540 45384

TABLE 4.2
The number Iso (G;Dn).

β n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

1 3 3 3 4 3 4 4 4 3
2 11 14 13 27 15 29 26 35 19
3 49 85 81 231 121 281 250 431 225
4 251 591 637 2251 1271 3231 3086 6267 3475
5 1393 4403 5649 23899 15233 42099 44674 102555 61521
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Abstract. During the last decade, a lot of progress has been made in the enumerative branch
of topological graph theory. Enumeration formulas were developed for a large class of graph covering
projections. The purpose of this paper is to count graph covering projections of graphs such that
the corresponding covering space is a connected graph. The main tool of the enumeration is Pólya’s
theorem.
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1. Introduction. In this paper, we consider simple undirected graphs. As usual,
the vertex set and the edge set of the graph G are denoted by V (G) and E(G),
respectively. An r-to-one graph epimorphism p : H → G which sends the neighbors of
each vertex x ∈ V (H) bijectively to the neighbors of p(x) ∈ V (G) is called an r-fold
covering projection of G. The graph H is the covering graph, and the graph G is the
base graph of p. Topologically speaking, p is a local homeomorphism. The fibers of
the r-fold covering projection p : H → G are the sets p−1(v) (v ∈ V (G)). The number
r is called the degree of p and will be denoted by deg(p). For an introduction into the
field of topological graph theory see, e.g., the famous textbook [2].

Now let Γ ≤ Aut(G) be a group of automorphisms of G. There is a natural
kind of isomorphism with respect to Γ (or Γ-isomorphism, for short) between covering
projections of G, given by a commutative diagram

-
ψ

H

?
p̃

H̃

- G
γ

?
p

G

(1.1)

with an isomorphism ψ and γ ∈ Γ.
The interested reader can see much progress in the enumerative branch of topo-

logical graph theory during the last decade. Some milestones are the enumeration of
double covers of graphs [3], the enumeration of covering projections of labeled graphs
(which was established in [4] and [10] independently), and the enumeration of graph
coverings with certain regularity properties; examples are [7], [8], and [16]. Concrete
and regular concrete graph covering projections are counted in [5] and [6], respectively.
Some further interesting papers are [11] and [12].
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All counting formulas which were obtained so far have no restrictions of connec-
tivity for the covering graph. However, the following question arises immediately:
Given the number of covering projections of G up to Γ-isomorphism, how many of
them have connected covering graphs? The purpose of this paper is to solve this
problem. For this, we will make use of Pólya’s enumeration theorem [14] (it should
be remembered that it was anticipated in [15]).

It is clear that any covering graph of G is not connected if G is not. Hence, we
make the general assumption that the base graph G is connected.

2. Pólya’s enumeration theorem. The main tool for enumeration will be
Pólya’s enumeration theorem. This theorem can be formulated in different and more
or less abstract ways. What we need is the so-called power series formulation. Let
X = {1, . . . , n} (n ∈ N), and let Y be countable. Let Φ be a group acting on X.
Clearly, Φ acts on the set of functions Y X via

ϕ(f) = f ◦ ϕ−1 ,

where f : X → Y and ϕ ∈ Φ. The orbit of f is denoted by [f ].
Now, let w : Y → N0 be a weight function, i.e., a function with the property that

|w−1(k)| <∞ for all k ∈ N0. Set ck = |w−1(k)|, and let

c(x) =
∞∑
k=0

ckx
k

be the figure counting series.
The weight of a function f : X → Y is given by

w(f) =
∑
x∈X

w(f(x)) ,

and it is straightforward to see that w is constant on the corresponding orbits [f ];
hence we may define w([f ]) = w(f). Now let Ck be the number of function orbits of
weight k. Then the series

C(x) =
∞∑
k=0

Ckx
k

is called the function counting series.
Next we define the cycle index of the group Φ acting on X. For ϕ ∈ Φ, let

(λ1(ϕ), . . . , λn(ϕ)) be the cycle type of ϕ, i.e., λi(ϕ) is the number of cycles of the
permutation ϕ of length i. The cycle index of the group Φ acting on X is the poly-
nomial

Z(Φ, s1, . . . , sn) =
1
|Φ|

∑
ϕ∈Φ

n∏
i=1

s
λi(ϕ)
i .

For abbreviation, we set, for a power series q(x),

Z(Φ, q(x)) = Z(Φ, q(x), q(x2), . . . , q(xn)) .

Pólya’s enumeration theorem shows how to obtain the function counting series
C(x) from the figure counting series c(x).
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THEOREM 2.1. The function counting series C(x) is determined by substituting
the figure counting series c(x) into the cycle index of Φ:

C(x) = Z(Φ, c(x)).

3. A recursion formula for connected covering projections. Let C be the
set of all covering projections of G up to Γ-isomorphism, and let C be the set of all
covering projections of G in C such that the covering graph is connected. Then the
degree function deg is a weight function on C (as well as on C). Let cr be the number
of covering projections p ∈ C of degree r. The figure counting series for the considered
problem is the generating function c(x) of the numbers cr.

Moreover, for k ∈ N, set Xk = {1, . . . , k}. Every function

f : Xk −→ C

may be understood as a covering projection p of G with exactly k components. The
degree of p is obtained by summing up the degrees of them. Since Γ-isomorphism
describes covering projections up to the ordering of the components, we consider the
action of the symmetric group Sk on the set Xk. Obviously, the degree function is
constant on the orbits [f ]. By c

(k)
r we denote the number of function orbits with

degree r, which is exactly the number of r-fold covering projections of G with respect
to Γ-isomorphism such that the covering graph consists of exactly k components. The
corresponding function counting series is

c(k)(x) =
∞∑
r=1

c(k)
r xr .

LEMMA 3.1. For every k ∈ N,

c(k)(x) = Z(Sk, c(x)) .

In order to prove this lemma, just apply Pólya’s enumeration theorem to the
described situation.

Let Cr be the number of projections p ∈ C of degree r, and let

C(x) =
∞∑
r=1

Crx
r

be the corresponding counting series. Obviously,

Cr =
r∑

k=1

c(k)
r .

A short calculation leads to

C(x) =
∞∑
k=1

c(k)(x) .

For any power series q(x), we set

Z(S∞, q(x)) =
∞∑
k=0

Z(Sk, q(x)) ,

where Z(S0, q(x)) is defined to be 1. Using Lemma 3.1, we obtain the following.
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LEMMA 3.2. The counting series for arbitrary and connected graph covering pro-
jections of the graph G are related by

1 + C(x) = Z(S∞, c(x)) .

In order to finish the enumeration, we will follow the approach used by Cadogan [1]
for counting connected graphs up to isomorphism by their order.

LEMMA 3.3. For every power series q(x),

Z(S∞, q(x)) = exp
∞∑
k=1

q(xk)
k

.

An elegant proof of this well-known identity can be found in [13].
Now define the power series a(x) by setting

a(x) =
∞∑
r=1

arx
r = log(1 + C(x)) .(3.1)

Using a(x), we can formulate a formula for the numbers cr.
THEOREM 3.4.
(i) The numbers ar can be computed by the recursion

rar = rCr −
r−1∑
k=1

kakCr−k .

(ii) The numbers cr of covering projections of G such that the covering graph is
connected can be computed by

cr =
∑
d|r

µ(d)
d

ar/d ,

where µ is the usual number theoretic Möbius function.
Proof. In order to prove (i), consider the first derivative of equation (3.1):

C ′(x) = a′(x) ea(x) = a′(x)(1 + C(x)) .

Comparing coefficients of both sides leads to the recursion formula for the numbers ar.
From Lemmas 3.2 and 3.3 we obtain

∞∑
r=1

arx
r =

∞∑
k=1

c(xk)
k

.

Considering the coefficients leads to

rar =
∑
d|r

dcd .

Now the formula of (ii) can be obtained using Möbius inversion.
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4. Connected covering projections of labeled graphs. As an example, we
apply Theorem 3.4 to labeled graphs. A graph G is called labeled if it is considered
together with the trivial automorphism group. In this case, the diagram (1.1) reduces
to a triangle

H -
ψ

H̃

A
A
AU

.p
�
�
��

p̃

G

(4.1)

As noticed in the introduction, the enumeration of r-fold covering projections of
labeled graphs was done in [4] and [10]. It turned out that the numbers Cr only
depend on the Betti number of G, i.e., the number β(G) = m−n+ 1, where m is the
number of edges and n is the number of vertices of G.

In order to present the formula given in [4] we need a little bit more terminology.
Let R be the ring of rational polynominals in the variables s1, . . . , sr. The cap

product on R, introduced by Redfield [15], is first defined for sequences si11 si22 . . . sirr ,
sj11 sj22 . . . sjrr , . . . of q ≥ 2 monomials in R by

(si11 . . . sirr ) ∩ (sj11 . . . sjrr ) ∩ · · · =
(

r∏
k=1

kik ik!

)q−1

if ik = jk = · · · for all k; otherwise it is 0. Then the cap product is linearly extended
to arbitrary polynomials in these variables.

Now let (λ) = (λ1, . . . , λr) be a partition of r, i.e.,

r =
r∑
i=1

iλi.

The partition polynominal P (s1, . . . , sr) is the generating function of the partitions
of r:

P (s1, . . . , sr) =
∑
(λ)

sλ1
1 · · · sλrr .

THEOREM 4.1. The number of isomorphism classes of r-fold covering projections
of G with respect to the trivial automorphism is

Cr = P (s1, . . . , sr)
β(G)
∩ .

The powers are to be understood with respect to the cap product, which is indicated by
the ∩-index.

Using Theorems 3.4 and 4.1, we computed for β(G) ≤ 10 and r ≤ 20 the numbers
Cr (extending Table 1 of [4]), rar, and cr. Tables 4.1, 4.2, and 4.3 contain part of our
results.1 For the computations, the comfortable data structures of SYMMETRICA
[9] were used.

1The reader who is interested in the full tables should send e-mail to Michael.Hofmeister@
mchp.siemens.de.
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TABLE 4.1
Numbers Cr for labeled graphs.

β(G)\r 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1
1 1 2 3 5 7 11 15
2 1 4 11 43 161 901 5579
3 1 8 49 681 14721 524137 25.471105
4 1 16 251 14491 1.730861 373.486525 128038.522439
5 1 32 1393 336465 207.388305 268749.463729 645.244638.648481
6 1 64 8051 7.997683 24883.501301 193.492277.719861 3.252016.862827.895399
7 1 128 47449 191.374041 2.985987.361161 139314.094050.615817 16390.161154.343271.867025
8 1 256 282251 4588.603531 358.318118.583341 100.306131.218514.392365 82.606411.299779.452709.715959

TABLE 4.2
Numbers rar for labeled graphs.

β(G)\r 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1
1 1 3 4 7 6 12 8
2 1 7 22 111 486 3772 29142
3 1 15 124 2431 68766 3.025596 173.773496
4 1 31 706 56511 8.564226 2229.093460 893451.977874
5 1 63 4084 1.338367 1035.048246 1.611184.631772 4514.783110.968488
6 1 127 23962 31.950591 124375.002186 1160.801154.354052 22.762752.177283.700562
7 1 255 141964 765.274111 14.928949.886766 835866.495874.930476 114730.150164.000899.271416
8 1 511 845986 18353.155071 1791.567290.355426 601.834630.143712.918420 578.244176.306890.931094.903234

TABLE 4.3
Numbers cr for labeled graphs.

β(G)\r 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 1 3 7 26 97 624 4163
3 1 7 41 604 13753 504243 24.824785
4 1 15 235 14120 1.712845 371.515454 127635.996839
5 1 31 1361 334576 207.009649 268530.771271 644.969015.852641
6 1 63 7987 7.987616 24875.000437 193.466859.054994 3.251821.739611.957223
7 1 127 47321 191.318464 2.985789.977353 139311.082645.798043 16390.021452.000128.467345
8 1 255 281995 4588.288640 358.313458.071085 100.305771.690618.678654 82.606310.900984.418727.843319

Note added in proof. After the reviewing process of this paper had been com-
pleted, I obtained knowledge of the fact that J.H. Kwak and J. Lee counted connected
covering projections of labeled graphs (Enumeration of connected graph coverings,
J. Graph Theory, 23 (1996), pp. 105–109). However, they used elementary counting
methods which do not apply for base graphs with nontrivial automorphism groups.
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Abstract. This paper is concerned with a new distance in undirected graphs with weighted
edges, which gives new insights into the structure of all minimum spanning trees of a graph. This
distance is a generalized one, in the sense that it takes values in a certain Heyting semigroup. More
precisely, it associates with each pair of distinct vertices in a connected component of a graph the
set of all paths joining them in the minimum spanning trees of that component. A partial order
and an addition of these sets of paths are defined. We show how general algorithms for path algebra
problems can be used to compute the generalized distance. Some theoretical problems concerning
this distance are formulated. The main application of our generalized distance is related to recent
clustering procedures. Given a connected graph with weighted edges and certain vertices labeled
as centers, we define a centered forest to be a spanning forest with exactly one center in each tree
component. A partition of the vertices determined by a minimum centered forest will be called a
centered partition. These partitions are characterized in terms of the generalized distance, and some
corollaries are derived.

Key words. chain distance, Heyting semigroup, generalized distance, semiring, clustering,
minimum centered forest, centered partition
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1. Introduction. Several distances in undirected graphs with weighted edges
have been defined and studied. For instance, the minimum length distance between
two vertices is the smallest length of an elementary path connecting those vertices.
By the length of a path, we mean the sum of weights on its edges. If we replace
the sum of weights by the maximum weight in the definition of the minimum length
distance, we obtain the chain distance. In this paper we define a distance with val-
ues in a certain Heyting semigroup (see Definition 2.7). These generalized distances
were investigated by Jawhari, Pouzet, and Misane [7]; however, no examples of such
distances in undirected graphs, other than the classical ones, were considered in their
paper.

In section 2 we construct the Heyting semigroup which we need for the definition
of the generalized distance. This construction is based on the definition of a partial
order of multisets which generalizes the lexicographic order. In section 3 we define our
generalized distance in a graph and prove that it can be expressed in terms of some
easily comprehensible graph-theoretic notions; namely, it associates with each pair of
distinct vertices in a connected component the set of all paths joining them in the
minimum spanning trees (MSTs) of that component. The results of section 2 enable
us to “add” and compare such sets of paths. We show that the general algorithms for
path algebra problems given in Gondran and Minoux [6] and Pan and Reif [10] can
be used to compute the generalized distance. Some theoretical problems related to
our distance are formulated.
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In section 4 we present an application of our generalized distance to clustering.
Several clustering algorithms, such as K-Means (see Tou and Gonzalez [13]), and
Fuzzy c-Means (see Bezdek [1]), are able to detect the cores (centers) of the clusters,
but often misclassify the samples situated close to the borders of the clusters. We
have to apply a second clustering algorithm to these remaining samples in order to
associate them more accurately with the centers. Such two step clustering procedures
were recently proposed in Lenart [9] and Postaire, Zhang, and Lecocq-Botte [11]. The
first paper uses the Fuzzy c-Means algorithm to detect the centers of the clusters,
while the second one uses morphological transformations. In both papers, a graph-
theoretical method similar to the single-linkage method (see Rohlf [12]) is used in
the second step. This method, which is investigated in section 4, is well suited for
detecting the irregularities of the borders of clusters. The obtained partitions of the set
of samples will be called centered partitions. Single-linkage clusters can be expressed
in terms of the chain distance; as centered partitions are similar to partitions into
single-linkage clusters, it is natural to try to characterize them in metrical terms.
We present such a characterization using our generalized distance. Simple examples
show that we cannot formulate similar statements in terms of other distances, such
as the chain distance. The metrical characterization of centered partitions enables us
to give a short, conceptual proof for the maximum split property (see also Delattre
and Hansen [4]).

2. Generalized lexicographic orders. Consider a finite set X. A multiset
with elements from X is a function A:X → N ∪ {0,∞}; each image A(x) represents
the number of occurrences of x in A. We will call a multiset empty, written A = ∅,
if A(x) = 0 for all x ∈ X, and nonsingular if A(x) 6= ∞ for all x ∈ X. A subset of
X can be regarded as a multiset by identifying it with its characteristic function. Let
S(X) denote the set of all subsets of X, M(X) the set of nonsingular multisets, and
M∞(X) the set of all multisets with elements from X.

By virtue of the fact that multisets are mere generalizations of sets, it is natural
to make use of set-theoretic notations whenever confusion is not likely. Thus, we will
write x ∈ A to indicate A(x) 6= 0 and write A ⊆ B to indicate A(x) ≤ B(x) for
all x ∈ X; as usual, A ⊂ B means that A ⊆ B and A 6= B. Set difference can be
extended naturally to multisets:

(A \B)(x) := max {A(x)−B(x), 0}, ∀x ∈ X .(2.1)

The operations called multisum and multiproduct are simply addition and mul-
tiplication of multisets as functions; we will write them as + and juxtaposition, re-
spectively.

Throughout this paper, we will write |V | for the cardinality of a given set V , and
[n] for the set of integers {1, 2, . . . , n}.

Consider a preferential arrangement of X (i.e., a partition with a linear order on
its blocks) σ(X1, ..., Xs). We can associate with σ a partial order �σ on M(X) by
identifying this set with the ground set of the lexicographic product

⊗s
i=1(M(Xi),⊆)

(see, e.g., Davey and Priestley [3]). More explicitly, we have

A ≺σ B ⇐⇒ ∃k ∈ [s] : ∀i ∈ [k − 1] AXi = BXi, and AXk ⊂ BXk .(2.2)

We will call �σ a generalized lexicographic order.
For the rest of this section, we fix a preferential arrangement σ of X and let

�=�σ. Clearly, (M(X),+) is a commutative semigroup having the empty set as
identity.
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PROPOSITION 2.3. (M(X),+,�) is a commutative ordered semigroup with iden-
tity ∅.

Proof. Consider A,B,C in M(X) such that A ≺ B, and let k be the smallest
positive integer for which AXk ⊂ BXk. Then (A + C)Xk ⊂ (B + C)Xk, while
(A+ C)Xi = (B + C)Xi for all i ∈ [k − 1].

It is worth noting that (S(X),∪,�) is not an ordered semigroup; this is the
main reason that we need to work with multisets and multisum. On the other hand,
(M(X),�) is not a lattice in general, although it is a join-semilattice. To exhibit a
counterexample, let X = {x1, x2, x3}, σ = ({x1, x2}, {x3}), A = {x1}, and B = {x2}.
The set of lower bounds of A andB consists of all multisets C with C(x1) = C(x2) = 0,
which does not even have a maximal element. One way to overcome this difficulty is
to use singular multisets, i.e., multisets in which some elements occur infinitely many
often. This approach turns out to be unsatisfactory. Instead, we use a construction
which works in a more general setting.

Let (P,≤) be a poset satisfying the descending chain condition; that is, given
any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of elements of P , there exists an index k
such that xk = xk+1 = · · · . Denote by Sa(P ) the set of all antichains of P , and let
min:S(P ) → Sa(P ) map each subset of P to the set of its minimal elements. Given
Q ⊆ P , we use the notation ↑Q := {p ∈ P | ∃q ∈ Q : q ≤ p}. The subset Q is
said to be an up-set if ↑Q = Q. The poset (Pu,⊇) of all up-sets of P , ordered by
reverse inclusion, is known to be a complete and distributive lattice with ∪ and ∩ as
meet and join, respectively (see Davey and Priestley [3, p. 30]). Let us consider the
bijection from Sa(P ) to Pu given by Q 7→↑Q, with inverse R 7→ min R (note that the
descending chain condition for P is essential). We set Q ≤ R in Sa(P ) if and only if
↑Q ⊇↑R, thus turning (Sa(P ),≤) into a complete and distributive lattice. In more
explicit terms, we have

Q ≤ R ⇐⇒ ∀r ∈ R, ∃q ∈ Q : q ≤ r(2.4)

for all Q,R ∈ Sa(P ). Given Qi ∈ Sa(P ) for i ∈ I, their meet is specified by

∧
i∈I

Qi = min
⋃
i∈I

Qi .(2.5)

Clearly, the least element of Sa(P ) is min P , while the greatest element is ∅.
If P is also equipped with an operation ◦ such that (P, ◦,≤) is an ordered semi-

group, then we can extend this operation to Sa(P ) by setting

Q ◦R := min {q ◦ r | q ∈ Q, r ∈ R}(2.6)

for all Q,R ∈ Sa(P ). It is easy to check that (Sa(P ), ◦,≤) is also an ordered semi-
group. If (P, ◦) has identity e, then (Sa(P ), ◦) has identity {e}. Moreover, commuta-
tivity of (P, ◦) is equivalent to commutativity of (Sa(P ), ◦).

We now return to the ordered semigroup (M(X),+,�), which, as we have seen,
is not a lattice. It can be shown by induction with respect to the cardinality of X
that all antichains of (M(X),�) are finite. Let us recall from Jawhari, Pouzet, and
Misane [7] the definition of a Heyting semigroup.

DEFINITION 2.7. (H,+,≤) is a Heyting semigroup if
1. (H,≤) is a complete lattice with least element 0;
2. (H,+,≤) is an ordered semigroup with identity 0;
3. (

∧
i∈I xi) + (

∧
j∈J yj) =

∧
i∈I,j∈J(xi + yj) for all xi, yj ∈ H.
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PROPOSITION 2.8. (Sa(M(X)),+,�) is a commutative Heyting semigroup with
identity {∅}, least element {∅}, and greatest element ∅.

Proof. We will first prove that the poset (M(X),�) satisfies the descending chain
condition. Consider an infinite decreasing sequence (An)n∈N in M(X). Since A1X1
has only a finite number of sub-multisets, we can find k1 ∈ N such that Ak1X1 =
Ak1+1X1 = · · · . Applying the same argument successively to X2, ..., Xs, we find k1 ≤
k2 ≤ · · · ≤ ks such that AkiXi = Aki+1Xi = · · · for all i ∈ [s]. But Ak =

∑s
i=1AkXi

for all k, whence Aks = Aks+1 = · · · . Conditions (1) and (2) in the definition of a
Heyting semigroup now follow from the above discussion about the set of antichains
of a given poset. Condition (3) follows from (2.5) and (2.6).

3. A generalized distance in undirected graphs with weighted edges.
Consider G = (V,E) an undirected simple graph (no loops or parallel edges), and a
weight function ρ:E → [0,∞) with image Im ρ = {r1, . . . , rs}; we insist that r1 >
r2 > · · · > rs. Given an edge {x, y}, we will write ρ(x, y), instead of ρ({x, y}),
for convenience. The triple (V,E, ρ) is known as a weighted graph. Consider the
preferential arrangement (ρ−1(r1), ρ−1(r2), . . . , ρ−1(rs)) of E and the corresponding
generalized lexicographic order � on M(E). The defining relation (2.2) becomes

E1 ≺ E2 ⇐⇒ sup ρ(E1 \ E2) < sup ρ(E2 \ E1)(3.1)

for all E1, E2 ∈ M(E) (as usual, sup ∅ = −∞). According to the results in sec-
tion 2, we have the commutative ordered semigroup (M(E),+,�) and the commu-
tative Heyting semigroup (Sa(M(E)),+,�).

Let us denote by P(x, y) the set of all x, y-connecting elementary paths, where
a given elementary path is identified with its set of edges; thus P(x, y) ⊆ S(S(E)).
We shall not attempt to distinguish notationally between a path and its set of edges,
since in those cases where it matters, we have taken care to ensure that the context
is clear. Given a path p, we denote by ρ(p) the multiset of its edge weights. We now
define a map d:V × V → Sa(M(E)) by

d(x, y) :=
{
{∅} if x = y,
min P(x, y) otherwise.(3.2)

Hence, d(x, y) is the set of x, y-connecting elementary paths which are minimal with
respect to �. Clearly, d takes values in Sa(S(E)).

Let us now recall from Jawhari, Pouzet, and Misane [7] the definition of a gener-
alized distance.

DEFINITION 3.3. Let (H,+,≤) be a Heyting semigroup with least element 0. The
function d:X ×X → H is a generalized distance on X if it satisfies

1. d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x) for all x, y ∈ X;
3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

In this case, (X, d) is called a metric space over H (or generalized metric space).
We are now able to formulate.
PROPOSITION 3.4. The map d defined by (3.2) is a generalized distance on V .
Proof. It is straightforward that d is symmetric and that d(x, y) = {∅} if and

only if x = y. Now let x, y, z ∈ V . If at least two of them coincide or lie in different
connected components of G, the triangle inequality is obvious. Otherwise, let p1 + p2
be a typical element of d(x, z) + d(z, y), where p1 ∈ d(x, z) and p2 ∈ d(z, y). Clearly,
P(x, y) contains a minimal element � p1 +p2, so the triangle inequality follows.
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Let us observe that if the vertices x and y lie in different connected components
of G, then d(x, y) = ∅; this is natural, because ∅ is the greatest element of Sa(M(E)).
If all the edge weights are different, then d(x, y) contains at most one path, and
(M∞(E), +, �) is a commutative Heyting semigroup. Hence, in this case, we can let
d take values in M∞(E). We need to work with Sa(M(E)) only in the degenerate
case, when several edge weights are equal. If all the edge weights are equal (or if
we simply discard ρ), then d(x, y) consists of all x, y-connecting elementary paths.
In general, d(x, y) is characterized by Theorem 3.6, which will be proved using the
following lemma.

LEMMA 3.5. Let p, p′ ∈ P(x, y), x 6= y be two elementary paths. Every edge e of
p not in p′ belongs to a subpath of p with end-vertices connected by a subpath of p′

with no edges in p.
Proof. Write p′ as a concatenation of subpaths p′ = q1q

′
1, . . . , qkq

′
kqk+1, where q′i,

i ∈ [k] are all the maximal subpaths of p′ with no edges in p; note that q1 or qk+1
may contain a single vertex. As p is elementary, every qi is a subpath of p. Let j ∈ [k]
be smallest possible such that qj+1 lies on the subpath of p from e to y. We deduce
that the end-vertices of q′j are connected by a subpath of p containing e.

The proof of Theorem 3.6 is based on Kruskal’s algorithm for the MST of a
weighted connected graph. Recall that this algorithm considers the edges of the
graph in increasing order of weight and selects those which do not form a circuit with
some edges already selected.

THEOREM 3.6. If G is connected then, for x and y distinct, d(x, y) consists of all
paths connecting x and y in an MST of G.

Proof. Let p′ ≺ p be two elementary paths in P(x, y). Let e be an edge of
maximum weight in p \ p′. According to the lemma, e belongs to a subpath q of
p with end-vertices connected by a subpath q′ of p′ with no edges in p. We have
max ρ(q′) < ρ(e). Kruskal’s algorithm is never able to select all the edges of q,
because when edges of weight ρ(e) are considered, a path connecting the end-vertices
of q has already been selected.

Now let p ∈ P(x, y), x 6= y be an elementary path which is not contained in
any MST of G. Apply Kruskal’s algorithm, always choosing an edge of p if possible,
when ties appear. Denote by T the resulting MST and by p′ the elementary x, y-
connecting path in T . Consider a maximal subpath q′ of p′ not containing edges of p
and the subpath q of p with the same end-vertices as q′. Write q as a concatenation
of subpaths q = q′1q1, . . . , q

′
kqkq

′
k+1, where qi, i ∈ [k], are all the maximal subpaths

of q not containing edges of p′ (q1 and qk+1 may contain a single vertex). Each edge
e in one of the subpaths qi has its end-vertices connected by a path in T with edge
weights not greater than ρ(e). Furthermore, according to the algorithm, all the edges
of this path of weight ρ(e) are in p. Now concatenate all these paths, and the paths
q′i, i ∈ [k + 1], to obtain a new path q′′ connecting the end-vertices of q′, and having
all edges in T . Removing all cycles from q′′, we obtain q′. Hence, all edges in q′′

belonging to p (including those from the paths q′i), were removed. We deduce that
max ρ(q′) < max {max ρ(qi) | i ∈ [k]}. As q′ was chosen arbitrarily, we have that
p′ ≺ p.

Proposition 3.9 and the remarks following it address the relation between the
distance d and chain distance δ:V × V → [0,∞], defined for all x, y ∈ V by

δ(x, y) :=
{

0 if x = y,
inf {l(p) | p ∈ P(x, y)} otherwise,(3.7)

where l(p) := max ρ(p) (as usual, inf ∅ =∞). It is well known that δ is an ultrametric.
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Let us note that l takes the same value on all paths in d(x, y). We also address
the relation between the distance d and a certain distance d̃, which we now define.
Consider the Heyting semigroup (M∞(Im ρ),+,≤) of multisets of edge weights; here
≤ is the lexicographic order for multisets of real numbers, with the largest values being
most significant. We define d̃(x, y) to be the unique minimal multiset of edge weights
in {ρ(p) |p ∈ P(x, y)}, provided that P(x, y) is nonempty; if x = y, we set d̃(x, y) = ∅,
and if x and y lie in different connected components, we define d̃(x, y) to be the greatest
element of M∞(Im ρ). The order ≤ defines a preorder on the set of paths in P(x, y)
(assumed to be nonempty), in the sense that p ≤ q if and only if ρ(p) ≤ ρ(q). Let p0

be a minimal element with respect to this preorder; in other words ρ(p0) = d̃(x, y).
We notice an analogy between the minimality of p0 in P(x, y) and the minimality of
an MST in the set of spanning trees (in the latter case, there is a similar preorder, and
it does not matter whether we consider smallest or largest weights most significant
in the definition of the lexicographic order for multisets of weights). However, in the
MST case we have the stronger property of Gale-optimality (see Gale [5] or Lawler
[8, p. 277]), which does not appear to have an analogue for paths.

The proof of Proposition 3.9 is based on the following lemma.
LEMMA 3.8.
1. If p ≺ q are paths in P(x, y), then ρ(p) < ρ(q).
2. Any path p0 in P(x, y) with ρ(p0) = d̃(x, y) lies in d(x, y).

Proof. 1. Indeed, by (3.1), there is a number v (in fact v = sup ρ(q \ p)) such
that the set of edges of p with weights greater or equal to v is strictly contained in
the set of edges of q with weights greater or equal to v; but this implies ρ(p) < ρ(q)
in lexicographic order.

2. If p0 6∈ d(x, y), there is a path p in d(x, y) with p ≺ p0, which contradicts the
minimality of ρ(p0) by the first part of the lemma.

PROPOSITION 3.9. Given x, y, u, v in V , the following hold:
1. If δ(x, y) < δ(u, v), then d(x, y) ≺ d(u, v).
2. If d(x, y) ≺ d(u, v), then d̃(x, y) < d̃(u, v).

Proof. The first part follows from the fact that l takes the same value on all paths
in d(x, y) and d(u, v). For the second part, assume that d(u, v) 6= ∅, and let p0 be a
path in P(u, v) for which ρ(p0) = d̃(u, v). We have p0 ∈ d(u, v) by Lemma 3.8 (2).
According to (2.4), there is a path p in d(x, y) such that p ≺ p0. Hence ρ(p) < ρ(p0),
by Lemma 3.8 (1).

The converses do not hold. Indeed, consider the weighted graphs in Figs. 1 and 2.
For the graph in Fig. 1 we have d(x1, x3) ≺ d(x1, x4), while δ(x1, x3) = δ(x1, x4). For
the graph in Fig. 2 we have d̃(x1, x3) < d̃(x1, x5), while d(x1, x3) and d(x1, x5) are
incomparable. Hence, we could say that the “discriminating power” of d lies between
that of δ and d̃. It turns out that this is exactly what we need for our applications in
the following section.

A property which does not hold for δ, but holds for d (as well as for the minimum
length distance, for which it was first defined), is Bellman’s principle. It says that
every subpath of a minimal path is also minimal (with respect to a certain order, in
the corresponding set P(x, y)). To see that this is not generally true for δ, consider
the weighted graph in Fig. 3; take the path ({x1, x2}, {x2, x4}, {x4, x5}) ∈ P(x1, x5),
minimal with respect to δ, and ({x2, x4}, {x4, x5}) ∈ P(x2, x5), which is not minimal.

PROPOSITION 3.10 (Bellman’s principle). Let p be a path in d(x, y), and let q be
a u, v-connecting subpath of p. Then q lies in d(u, v).

Proof. This statement is immediate using the characterization of d(x, y) given in
Theorem 3.6.
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Fig. 1. A weighted graph with Fig. 2. A weighted graph with
ρ(x2, x3) < ρ(x2, x4) < ρ(x1, x2). ρ(x2, x3) < ρ(x4, x5) < ρ(x1, x2) = ρ(x1, x4).
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FIG. 3. A weighted graph with ρ(x4, x5) < ρ(x2, x3) ≤ ρ(x3, x5) < ρ(x2, x4) < ρ(x1, x2).

In order to give algorithms for the computation of the distance d, we formulate
this problem as a path algebra problem. First, note that Proposition 2.8 implies that
(Sa(M(E)),∧,+) is a commutative semiring (semirings are generalizations of rings
in the sense that subtraction may not be defined, see, e.g., Wongseelashote [14]). We
denote by ⊕ and ⊗ matrix addition and multiplication in the semiring (Sa(M(E)),
∧,+); that is,

B ⊕ C = (bij ∧ cij), B ⊗ C =

(
n∧
k=1

bik + ckj

)
,

where B = (bij) and C = (cij) are n× n matrices. Given a weighted graph (V,E, ρ)
with V = {x1, x2, . . . , xn}, let A = (aij) be the n× n matrix with elements

aij :=

 {∅} if i = j,
{{e}} if e = {xi, xj} ∈ E,
∅ otherwise.

Let X be the row vector of distances from x1, say, to the vertices in V , and I the
vector ({∅}, ∅, . . . , ∅). We claim that the vector X satisfies the well-known fixpoint
equation

X = X ⊗A⊕ I .(3.11)

Indeed, all the entries of X equal to {∅} or ∅ are clearly equal to the corresponding
entries of the right-hand side. Now let xi 6= x1 be a vertex in the same connected
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FIG. 4. A weighted graph with ρ(e1) < ρ(e2) = ρ(e3) < ρ(e4) < ρ(e5).

component as x1. By definition, the ith entry of X ⊗ A ⊕ I consists of the minimal
elements of a certain set of x1, xi-connecting paths containing d(x1, xi); hence, this
entry coincides with d(x1, xi).

According to (3.11), the general algorithms (over semirings) for the single source
shortest path problem given in Gondran and Minoux [6] and Pan and Reif [10] can be
applied. For instance, we can use the generalized Jacobi algorithm (see Gondran and
Minoux [6, p. 105]); recall that this algorithm sets

X1 := ({∅}, a12, . . . , a1n) ,

and at each stage k computes

Xk+1 := Xk ⊗A⊕ I
untilXk+1 = Xk. We can also apply algorithms for the all pairs shortest path problem.

Example 3.12. Consider the weighted graph in Fig. 4. The vector X is determined
in the following three steps using the generalized Jacobi algorithm:

X1 = ( {∅}, {{e2}}, {{e3}}, ∅ )
X2 = ( {∅}, {{e2}, {e3, e1}}, {{e3}, {e2, e1}}, {{e3, e4}} )
X3 = ( {∅}, {{e2}, {e3, e1}}, {{e3}, {e2, e1}}, {{e2, e1, e4}, {e3, e4}} ) .

Similarly to the definition of the distance between two vertices, we can define the
distance between two subsets of V . Given U,W such subsets, we denote by P(U,W )
the set of elementary paths with one end-vertex in U and the other in W . The distance
between U and W is defined by

d(U,W ) :=
{
{∅} if U ∩W 6= ∅,
min P(U,W ) otherwise.(3.13)

The following result is to be expected.
PROPOSITION 3.14. For U,W ⊆ V , we have that

d(U,W ) = ∧{d(x, y) | x ∈ U, y ∈W}.
Proof. If U ∩W = ∅, the relation to be proved may be written

min P(U,W ) = min
⋃

x∈U, y∈W
d(x, y) .

But this is equivalent to

min
⋃

x∈U, y∈W
P(x, y) = min

 ⋃
x∈U, y∈W

min P(x, y)

 ,

which is obvious.
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Having defined the distance d, we can now construct new graph concepts, following
the model of certain concepts defined in terms of classical distances. We give some
examples and problems related to them, which could be of theoretical interest.

Convexity. Given x, y ∈ V , the interval (with respect to d) I(x, y) is defined to
be the set of all vertices z such that d(x, y)∩ (d(x, z)+d(z, y)) 6= ∅ (requiring equality
in the triangle inequality would be too restrictive). Using Theorem 3.6, we deduce
that if x 6= y are in the same connected component, I(x, y) consists of all the vertices
of the x, y-connecting paths in the MSTs of that component; otherwise, I(x, y) = ∅.
A set U ⊆ V is called convex (with respect to d) if I(x, y) ⊆ U for all x, y ∈ U .
Clearly, the distance d in an induced subgraph is the restriction of the distance in the
whole graph if and only if the subgraph is induced by a convex set of vertices. Such
subgraphs could be called isometric (with respect to d). It can be shown, for instance,
that the sets {y | δ(x, y) ≤ r}, x ∈ V, r ≥ 0, (known as single-linkage clusters, see
Rohlf [12]) are convex. Does every weighted graph have all intervals convex?

Distance monotone graphs. The diameter of a set U ⊆ V is defined by D(U)
:= ∨{d(x, y) | x, y ∈ U}. An interval I(x, y) is called closed (with respect to d) if
d(z, z′) � D(I(x, y)) for all z′ ∈ I(x, y) implies z ∈ I(x, y). The interval I(x, y) is
called strictly closed (with respect to d) if for each z ∈ V \ I(x, y) there is z′ ∈ I(x, y)
such that d(z, z′) � D(I(x, y)). Clearly, a strictly closed interval is closed, but not
conversely. A graph is called (strictly) distance monotone (with respect to d) if all its
intervals are (strictly) closed. What can we say about (strictly) distance monotone
graphs? The same problem in the case of the minimum length distance and graphs
with all edges of weight 1 is addressed in Burosch, Havel, and Laborde [2].

Tree metrics. The distance d is called a tree metric if it satisfies the 4-point
condition, i.e., d(x1, x2) + d(x3, x4) � (d(x1, x3) + d(x2, x4)) ∨ (d(x1, x4) + d(x2, x3))
for all x1, x2, x3, x4 ∈ V . In general, d is not a tree metric. Nevertheless, if our
weighted graph has a unique MST, then d is a tree metric; moreover, two of the sums
of distances in the 4-point condition are equal, and � than the third one. Does the
4-point condition (or the stronger statement before) imply uniqueness of the MST?

We conclude this section by suggesting that the results of Jawhari, Pouzet, and
Misane [7] on retraction and fixed-point property for generalized metric spaces, as
well as those of Wongseelashote [14] concerning path spaces, might have useful con-
sequences in our setting.

4. Centered partitions. Let us consider a weighted simple graph G = (V,E, ρ)
with a distinguished set C of vertices, which will be called centers. We assume that
G is connected, that there are no edges between centers, and that ρ does not take the
value 0. Let C = {c1, ..., cn}, and |V \C| = m. We define a centered forest of G to be
a spanning forest with exactly one center in each tree component. A centered forest
which minimizes the sum of weights on its edges will be called a minimum centered
forest (MCF). A partition of V determined by the components of an MCF will be
called a centered partition. We say that a centered partition assigns a vertex x to a
center c if x and c belong to the same block of that partition.

The terminology in the above paragraph is inspired by a clustering problem which
can be modeled by the weighted graph G with the distinguished set C of vertices.
These vertices (centers) represent the cores of some clusters of samples; they were
determined by a previous clustering algorithm (e.g., Fuzzy c-Means, as in Lenart [9],
or morphological transformations, as in Postaire, Zhang, and Lecocq-Botte [11]). The
vertices in V \C represent the samples situated close to the borders of the clusters; they
could not be classified by the previous algorithm. Each pair of vertices, except pairs of
centers, determine an edge. The weights are given by a dissimilarity coefficient, which
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could be Euclidean distance, if the samples are embedded in Rs. Centered partitions
are, in a certain sense, optimal with respect to the objectives of clustering. They are
similar to partitions into single-linkage clusters, which are obtained by removing from
an MST all the edges with weight greater than a certain threshold.

Let G0 be the weighted graph obtained from G by adding all edges between
centers, and assigning to them the weight 0. Clearly, an MST of G0 gives rise to an
MCF of G by removing the edges of weight 0; moreover, all the MCFs of G arise
in this way. Therefore, we can use slight variations of classical algorithms for the
MST in order to determine an MCF. For instance, in Kruskal’s algorithm we must
select the edges of G in the increasing order of their weights, discarding not only those
which form cycles, but also those which form paths connecting two centers. In Prim’s
algorithm, the only step to be modified is initializing the set of vertices incident to
selected edges with C, instead of a single vertex set. This version of Prim’s algorithm,
which will be used in the proof of Lemma 4.2, is described in detail below.

ALGORITHM 4.1.
Step 1. Let k := 1; N1 := V \ C; E1 := ∅; V 1

i := {ci}, for i ∈ [n].
Step 2. Let Lk := Nk × (V \Nk). Search for the minimum weight edge (xk, yk)

in Lk.
Step 3. For i ∈ [n] do : if yk ∈ V ki , then V k+1

i := V ki ∪ {xk}, else V k+1
i := V ki .

Step 4. Let Ek+1 := Ek ∪ {{xk, yk}}; Nk+1 := Nk \ {xk}.
Step 5. Let k := k + 1. If Nk 6= ∅, then go to (2), else STOP.
This algorithm finishes after m interations. The set Nk contains the objects

not yet classified, Lk is the set of edges in which the least weight edge is searched
for, and Ek is the set of selected edges after k − 1 iterations. At the kth iteration,
exactly one object is added to one of the growing clusters V ki , i ∈ [n]. The output
centered partition of V has blocks V m+1

i , i ∈ [n], while Em+1 contains the edges of
the corresponding MCF. When ties appear at step 2, we obtain the family of centered
partitions of V choosing the minimum weight edge in all possible ways.

As we pointed out in the introduction, the analogy between centered partitions
and single-linkage clusters (which are expressed in terms of the chain distance) shows
that it is natural to characterize the former in metrical terms. The main result of this
section (Theorem 4.4) is a characterization of centered partitions using the generalized
distance d. The following lemma contains the essential part of the proof.

LEMMA 4.2. The partition {Vi | i ∈ [n]} of V , satisfying ci ∈ Vi for all i, is a
centered partition if and only if

∀i ∈ [n], ∀x ∈ Vi : d(x, ci) ∩ d

x,⋃
j 6=i

Vj ∪ {ci}

 6= ∅.(4.3)

Proof. (⇒) Let T0 be the MST of G0 which determines the given centered par-
tition, and let F be the corresponding MCF. Consider an arbitrary vertex x in Ci,
and the path p connecting ci and x in F . Note that F is contained in an MST of G,
whence, by Theorem 3.6, p lies in d(x, ci). Now suppose that there is a path q ≺ p
connecting x to a vertex in V \ Vi. We can view the path q as a concatenation of
paths qieqj , where qi has all vertices in Vi, and e = {y, z} is an edge with y ∈ Vi
and z ∈ Vj , j 6= i. Since q ≺ p, then, by (3.1), the edge e′ of maximum weight in
p \ q satisfies ρ(e) < ρ(e′). Let pj be the z, cj-connecting elementary path in F , and
pji the cj , ci-connecting elementary path in T0. Let q′i be the x, y-connecting path
obtained from qi by replacing all edges not lying in F with paths in F connecting their
end-vertices. Using the fact that q ≺ p again, we deduce that the edge e′ appears only
once in the path pq′i, whence it is contained in the elementary path pi obtained from
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pq′i by removing all cycles. We have thus constructed the z, y-connecting elementary
path pjpjipi in T0, which contains e′. But this contradicts the fact that T0 is an MST
of G0, whence p lies in d(x,

⋃
j 6=i Vj ∪ {ci}) .

(⇐) Assume that the given partition satisfies (4.3). We will prove that for each
k ∈ [m], we can select (xk, yk) ∈ Lk at Step 2 of Algorithm 4.1 such that V k+1

i ⊆ Vi for
all i ∈ [n]. Let (x, y) ∈ Lk be a minimum weight edge. If x ∈ Vi and y ∈ V ki for some
i ∈ [n], we set xk := x and yk := y. Otherwise, suppose that x ∈ Vj , y ∈ V ki , i 6= j,
and choose a path p in d(x, cj)∩d(x,

⋃
l 6=j Vl∪{cj}). Since x ∈ Nk and all the vertices

of p lie in Vj (otherwise p has a subpath lying in d(x,
⋃
l 6=j Vl), which contradicts (4.3)),

there is an edge {u, v} of p with u ∈ Nk ∩ Vj and v ∈ V kj . Hence, (u, v) lies in Lk,
whence ρ(u, v) ≥ ρ(x, y). On the other hand, from the minimality of p it follows that
we cannot have {{x, y}} ≺ p. Thus, (u, v) is also of minimum weight in Lk. We now
set xk := u and yk := v, which ensures that V k+1

j ⊆ Vj .
THEOREM 4.4. Consider a partition of the vertices determined by a centered forest

{Vi | i ∈ [n]}, with ci ∈ Vi for all i. This partition is not a centered partition if and
only if the following condition holds:

∃i ∈ [n], ∃x ∈ Vi : d(x, V \ Vi) ≺ d(x, ci).(4.5)

Proof. Consider arbitrary i ∈ [n] and x ∈ Vi. According to the defining relation
(2.4), the condition d(x, V \ Vi) � d(x, ci) is equivalent to

∀p ∈ d(x, ci), ∃q ∈ d(x, V \ Vi) : q � p .

But equalities cannot hold, whence condition (4.5) is equivalent to the negation of
(4.3).

COROLLARY 4.6. There is no centered partition which assigns the vertex x to the
center c if and only if d(x,C \ {c}) ≺ d(x, c).

Proof. The “if” part follows immediately from Theorem 4.4. Now assume that
d(x,C \ {c}) 6≺ d(x, c). According to (2.4) and (3.13), this means that we can find a
path p ∈ d(x, c)∩d(x,C). Apply Kruskal’s algorithm for the MCF, always choosing an
edge of p, if possible, when ties appear. Suppose that x is not assigned to c. Consider
the first iteration in the algorithm when an end-vertex of an edge in p is assigned to
a center c′ different from c. Let y be such a vertex, which is closest to c on the path
p, and let q denote the y, c′-connecting path. Let p1 ∈ P(y, c) and p2 ∈ P(x, y) such
that p = p1 + p2. Obviously, p1 ∩ q = ∅. According to the algorithm, we have that
q ≺ p1, which implies that q + p2 ≺ p1 + p2 = p, but this contradicts the minimality
of p in d(x,C). Hence, x is assigned to c by the algorithm.

It is not possible to reformulate Theorem 4.4 or Corollary 4.6 in terms of the dis-
tances δ or d̃mentioned in section 3. Indeed, consider the weighted graph in Fig. 1, and
take x3 and x4 as centers, obtaining the unique centered partition {{x1, x2, x3}, {x4}};
we have δ(x1, x3) = δ(x1, x4), which means that we cannot specify that x1 should be
assigned to x3 in terms of δ. Consider the weighted graph in Fig. 2, and take x3
and x5 as centers; the partition {{x2, x3}, {x1, x4, x5}} is a centered partition, but
d̃(x1, {x2, x3}) < d̃(x1, x3) < d̃(x1, x5).

As we mentioned in the introduction, the metrical characterization of centered
partitions (Theorem 4.4) is useful for studying certain properties of these partitions.
One of these properties is concerned with their split, a concept which we now define.
The cocycle generated by a set U ⊆ V , denoted by c(U), is the set of all edges with
one end-vertex in U and the other in V \U . The split of U , denoted by s(U), is defined
by s(U) := inf {ρ(e) |e ∈ c(U)}, where, as usual, inf ∅ =∞. The split of the partition
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π = {V1, ..., Vn} of V , denoted s(π), is defined by s(π) := min {s(Vi) | i ∈ [n]}. In
Delattre and Hansen [4], it is shown that a partition of the vertices into single-linkage
clusters has the maximum split among all partitions with the same number of blocks.
We will prove a similar result for centered partitions, using Theorem 4.4.

COROLLARY 4.7. Centered partitions maximize the split among all partitions
determined by centered forests.

Proof. Consider a centered partition π = {V1, ..., Vn}. Choose an edge e = {x, y}
with x ∈ Vi, y ∈ Vj , i 6= j, such that ρ(e) = s(π). We clearly have d(x, V \ Vi) � {e},
but we cannot have {e} ≺ d(x, ci), because this would imply d(x, V \ Vi) ≺ d(x, ci),
which contradicts the fact that π is a centered partition, by Theorem 4.4. Therefore,
according to the defining relation (2.4), there is a path pi ∈ P(x, ci) with all edge
weights (if any) less than or equal to ρ(e). We can find a path pj ∈ P(y, cj) with the
same property. Hence, the concatenation piepj is a path connecting ci and cj with all
edge weights less than or equal to ρ(e). But a partition of V determined by a centered
forest separates at least a pair of consecutive vertices on this path. The conclusion
now follows.

Acknowledgments. The author is grateful to the referees for suggesting sim-
plifications in the proof of (2.5), and of the “⇒” part of Lemma 4.2.
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Abstract. A construction of Cayley digraphs associated to arc-colored regular digraphs is
presented. The resulting Cayley digraphs, which we call Cayley regular covers, can be seen as a
symmetrization of the original digraph. This construction is applied to the de Bruijn digraphs.
By using the fact that they are iterated line digraphs of complete symmetric digraphs, valuable
information about their Cayley regular covers regarding routings, diameter, hamiltonicity, fault-
tolerance properties and degree of symmetry is obtained. In particular, a shortest-path, self-routing
algorithm is given for a family of Cayley digraphs which includes the well known butterfly network.

These results can be applied to the design of permutation networks. The Cayley regular covers
represent sets of permutations in the original digraph which can be performed without conflict.
In particular, a sharply 2-transitive group of permutations on the de Bruijn network is presented
which admits a simple shortest-path self-routing algorithm. By using the same construction, a Cayley
digraph on the symmetric group on the nodes of the de Bruijn digraph of degree two is obtained. The
techniques introduced in this paper can also be extended to other families of iterated line digraphs.
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1. Introduction. The performance of massive parallel computers relies heav-
ily on the properties of the interconnection network that connects processors and
memories or processors among themselves. Several authors have emphasized the im-
portance of symmetry properties of the network for both algorithmic efficiency and
good fault-tolerance (see, for instance, [2, 3, 8, 12, 17]). Actually, most of the symmet-
ric networks proposed in the literature and used in commercial machines are based on
Cayley graphs. This is the case of the hypercube [25], butterfly [3, 19], cube-connected
cycles [23], and star graphs [1] among others. Besides, there are a number of networks
which have been proposed as possible alternatives to the symmetric ones, such as
the shuffle-exchange network [27], the de Bruijn and Kautz networks [5], and their
variants.

In [3], Annexstein, Baumslag, and Rosenberg introduced the group action graphs
which provide a connection between nonsymmetric networks and Cayley graphs. In
particular, they showed that the shuffle-exchange and de Bruijn networks can be seen
as group action graphs of cube-connected cycles and butterfly networks, respectively.
This approach provides efficient emulation of many communication algorithms in these
Cayley graphs through the smaller group action graphs associated with them. Similar
ideas have been used in [7, 11] to study permutation networks. By using arc-colorings
(or 1-factorizations), each regular digraph Γ is associated to a number of Cayley
digraphs. The digraph Γ is a group action graph associated to each of these Cayley
graphs, which we will call Cayley regular covers of Γ. The formal definitions are given
in section 2.
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In this paper, we analyze the Cayley digraphs associated in this way to the
de Bruijn digraphs. As it has been shown in [3], one of them corresponds to the butter-
fly network. One of the many ways of describing the de Bruijn digraphs is as an iter-
ated line digraph of a complete graph [10]. Using this fact, it can be seen that any Cay-
ley regular cover of a de Bruijn digraph is also an iterated line digraph. This result is
proved in section 3. For a wide family of arc-colorings of the de Bruijn digraphs which
can be described in an algebraic way, the corresponding Cayley regular covers turn out
to be iterated line digraphs of simple well-known digraphs, as it is shown in section 4.
Actually, they correspond to the digraphs studied by Praeger in [22]. This knowledge
enables us to determine their diameter, to describe simple shortest-path, self-routing
algorithms, and yields a simple way to study many of their properties, such as hamil-
tonicity, fault-tolerance, girth, and automorphism group. These results can be applied
in particular to butterfly networks. In addition, several kinds of Cayley digraphs with
simple routing algorithms and similar properties can be obtained in this way.

The knowledge of the routing in the Cayley covers mentioned above can also be
used to generate specific sets of permutations by using de Bruijn networks. All the arc-
colorings produce transitive permutation groups. In section 5 we show that one of the
Cayley covers obtained in this way is doubly transitive. Unfortunately, not all Cayley
regular covers of the de Bruijn digraphs can be easily handled. Nevertheless, we show
that there is always an arc-coloring of the de Bruijn digraph whose Cayley regular
cover is a Cayley digraph on the whole symmetric group. This fact provides a simple
proof of the rearrangeability of the shuffle network. However, the determination of its
diameter and routing algorithms seems to be a difficult task.

In order to keep the paper as self-contained as possible, we include some of the
terminology and basic results in section 2. Graph theoretical terms used but not
defined there can be found in [30]. For group theoretical terms see, for instance,
[24, 28].

2. Basic terminology and preliminary results. Let G be a group of per-
mutations on a finite set V . The product of permutations σ, τ ∈ G is written from
right to left; that is, (στ)(x) = σ(τ(x)). The group of all permutations on V is the
symmetric group Sn on n symbols, n = |V |, which has cardinality n!.

Let G be a group. An affine transformation of G is a bijective map of the form
f(x) = gh(x), where h is an automorphism of the group and g is a fixed element.
When dealing with affine transformations of G, the notion of semidirect product arises
naturally. If H is a group of automorphisms of G, the semidirect product G×ι H is
the group of pairs (g, h) ∈ G×H where the product is defined as

(g, h)(g′, h′) = (gh(g′), hh′).

The semidirect product G ×ι H can be thought of as a group of permutations (or
affinities) acting on G as (g, h)(x) = gh(x). Then the product just defined corresponds
to the composition of permutations. A slightly more general notion of semidirect
product is obtained when we allow H to be any group and π : H → Aut(G) a group
homomorphism. Then the product in the semidirect product G×π H is defined as

(g, h)(g′, h′) = (gπ(h)(g′), hh′).

Let us briefly introduce some terminology of graph theory. Throughout the paper,
we consider finite directed graphs (digraphs for short) Γ = (V,E), where V is the set
of vertices and E ⊂ V × V is the set of arcs. The existence of (x, x) arcs called loops



CAYLEY DIGRAPHS BASED ON THE DE BRUIJN NETWORKS 307

is allowed and there are no multiple arcs. Given a vertex x, we denote by Γj(x) the set
of vertices reachable from x by a path of length j (we omit the superscript when j = 1.)
All digraphs are supposed to be d-regular and (strongly)connected, that is, both the
indegree and outdegree of every vertex are d and there is a path from x to y for all
x, y ∈ V . The diameter of Γ is the minimum k such that ∪j≤kΓj(x) = V for all x ∈ V .
The length of the shortest cycle is the girth of Γ. The connectivity of the digraph
is the cardinal of the smallest set of vertices whose deletion yields a nonconnected
digraph and it is denoted by κ(Γ). For a d-regular digraph, we clearly have κ(Γ) ≤
d. A permutation of the vertices of Γ which preserves (directed) adjacencies is an
automorphism of the digraph. The digraph Γ is vertex transitive when, for each pair
x, y of vertices, there is a digraph automorphism f such that f(x) = y.

Let G be a finite group and S a generating subset of G with cardinality d. The
(left) Cayley digraph Cay(G,S) has G as set of vertices, and (x, y) is an arc whenever
y = sx for some s ∈ S. The Cayley digraph Cay(G,S) is a vertex-transitive, strongly
connected d-regular digraph.

Each arc (x, y) of the Cayley digraph Cay(G,S) can be labeled with the element
s ∈ S such that y = sx. This is the first example of an arc-coloring. Given a digraph
Γ and a set C = {c1, . . . , cd} of colors, an arc-coloring of Γ with the set C is an
assignment of a color in C to each arc of Γ in such a way that, for any vertex x, the
arcs which are incident to x have different colors and the arcs which are incident from
x have different colors as well. The couple (Γ, C) is said to be an arc-colored digraph.

It is well known that, as a consequence of Hall’s matching theorem, every d-regular
digraph admits an arc-coloring with d colors.

Given an arc-coloring of a d-regular digraph Γ with the set C = {c1, . . . , cd}, the
set of arcs of color ci can be identified with the permutation of V , also denoted by ci,
such that ci(x) = y if and only if (x, y) is an arc with color ci. In this way, C is a set
of permutations of V such that (x, c(x)) ∈ E for all x ∈ V, c ∈ C and if c(x) = c′(x)
for any x ∈ V , then c = c′. We say that C is a decomposition into permutations of
Γ. The permutation group of (Γ, C) is the subgroup P (Γ, C) of Sym(V ) generated
by C. In what follows we will refer to the set C as both a set of colors and a set of
permutations. We also refer to colorings to mean arc-colorings.

The line digraph LΓ of a d-regular digraph Γ = (V,E) has E as vertex set, and
(x, y) ∈ E is adjacent to (y′, z) ∈ E if and only if y = y′. Hence, LΓ is also d-regular
and has order d|V |. We recursively define LkΓ = L(Lk−1Γ) for k ≥ 1 and L0Γ = Γ.
Note that the vertices of LkΓ correspond to the paths of length k of Γ. In the next
propositions we give the Heuchene’s characterization of line digraphs [15] and some
basic results related to them.

THEOREM 2.1 (see [15]). A d-regular digraph Γ = (V,E) is a k-iterated line
digraph of another digraph Γ′ if and only if the following conditions hold: (i) for every
two vertices x, y and every 1 ≤ i ≤ k, either Γi(x) = Γi(y) or Γi(x) ∩ Γi(y) = ∅;
(ii) for every vertex x, |Γk(x)| = dk.

THEOREM 2.2 (see [4, 10]). Let Γ be a connected d-regular digraph, d ≥ 2. Then
(i) κ(LΓ) ≥ κ(Γ); (ii) diam(LΓ) =diam(Γ) + 1; (iii) LΓ is a Hamiltonian digraph;
(iv) Aut(LΓ) ' Aut(Γ); (v) LΓ has the same girth as Γ.

The above proposition is the basis for the use of the line digraph technique to
provide infinite families of digraphs with nice properties concerning diameter and
connectivity.

The existence of routings is also preserved by the line digraph operation. A
shortest-path, self-routing in a digraph is a map ρ : V × V → V such that, for x 6= y,
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ρ(x, y) ∈ Γ(x) and d(ρ(x, y), y) = d(x, y) − 1, (and ρ(y, y) = y). In other words,
given a destination vertex y, such a routing provides a path of minimum length to y
in such a way that each step of the path can be computed with the only knowledge
of the current position and the destination vertex y. From the algorithmic point of
view, the efficiency of such routings relies on the existence of a simple local procedure
to perform this computation rather than having a space consuming table of ρ stored
at each node. The self-routing schemes we consider are equipped with such a local
procedure.

If ρ is a shortest-path, self-routing in a digraph Γ, the induced routing ρL in its line
digraph LΓ is the map ρL : E × E → E defined as ρL((x, y), (u, v)) = (y, ρ(y, u)) for
y 6= u, (x, y) 6= (u, v), and ρL((x, u), (u, v)) = (u, v) (and ρL((u, v), (u, v)) = (u, v)).
The following result is straightforward.

PROPOSITION 2.3. If ρ is a shortest-path, self-routing in a digraph Γ, then the
induced routing ρL in its line digraph LΓ is also a shortest-path, self-routing.

The de Bruijn digraphs, denoted by B(d, k), introduced in [6], have proved to be
worthwhile because of their good behavior in many applications. The vertex set is
the set of dk words x0x1, . . . , xk−1 of length k, on an alphabet ∆ of d symbols, and
every word x0x1, . . . , xk−1 is adjacent to the d words x1, . . . , xk−1xk, with xk ∈ ∆. It
has been shown in [10] that the de Bruijn digraphs are iterated line digraphs of the
complete symmetric digraphs with loops

B(d, k) = Lk−1K+
d .

Then, by Theorem 2.2, it easily follows that B(d, k) has connectivity d− 1, diameter
k, is hamiltonian and Aut (B(d, k)) ' Sd. Moreover, the trivial shortest-path, self-
routing in K+

d gives rise to a shortest-path, self-routing in each of the B(d, k), k > 1.

3. Regular Cayley covers of arc-colored digraphs. Let Γ be a d-regular
connected digraph, d ≥ 2, and let C = {c1, . . . , cd} be a coloring of Γ. Let P = P (Γ, C)
be the permutation group on the set of vertices of Γ generated by the permutations
in C. The Cayley regular cover of (Γ, C) is the Cayley digraph Cay(P,C).

As it has been pointed out in [3], Γ is a quotient digraph of each of its Cayley
regular covers. Indeed, let Px be the stabilizer in P of a vertex x ∈ V (i.e., the set of
permutations in P for which x is a fixed point). Then the map f : Cay(P,C) → Γ,
defined such that f(σ) = σ(x) for every σ ∈ P , is a graph homomorphism onto Γ.
Moreover, for every y ∈ V , f−1(y) has the cardinality of Px and, if x is adjacent to y
in Γ, then there is a perfect matching from f−1(x) to f−1(y) in Cay(P,C). This fact
is illustrated in Figure 1 which shows a coloring of the digraph B(2, 2) together with
its Cayley regular cover.

We are interested in a particular property of Γ which stands in any of its Cayley
regular covers.

THEOREM 3.1. Let Γ be a k-iterated line digraph of a d-regular digraph Γ′, and let
C be an arc-coloring of Γ. Then the Cayley regular cover of (Γ, C) is also a k-iterated
line digraph of a d-regular digraph.

Proof. We use the characterization of Theorem 2.1. Let X = Cay(P,C) be
the Cayley regular cover of (Γ, C) and let σ, σ′ be two permutations in P such that
ΓiX(σ) ∩ ΓiX(σ′) 6= ∅, i ≤ k. By symmetry, we can suppose that σ′ = ι, the identity
permutation. Then σ = τ−1τ ′ for some τ, τ ′ ∈ Ci. For each vertex x of Γ, τ ′(x) =
τσ(x) ∈ Γi(x)∩Γi(σ(x)). Since Γ is a k-iterated line digraph, it follows that Ci(x) =
Γi(x) = Γi(σ(x)) = Ci(σ(x)). As the choice of x is arbitrary, we get ΓiX(ι) = Ci =
Ciσ = ΓiX(σ), which is condition (i) of Theorem 2.1 for X. On the other hand,
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FIG. 1. An arc-coloring of B(2, 2) and its Cayley regular cover.

suppose that |Ck| < dk. Then we would have two paths of length k starting at each
vertex x of Γ with a common endpoint, which contradicts the fact that |Γk(x)| = dk.
Therefore, X is a k-iterated line digraph.

According to the above theorem, for each coloring C of Γ = LkΓ′, there exists a
d-regular digraph X ′ such that LkX ′ = X, where X is the Cayley regular cover of
(Γ, C). We put Γ′ = L−kΓ and X ′ = L−kX. It is also worth noting that, since X is
vertex transitive, X ′ has an automorphism group which is transitive on the paths of
length k. In particular, X ′ is arc-transitive and therefore has maximum connectivity;
see [13]. As a consequence of Theorem 2.2, we can state the following corollary.

COROLLARY 3.2. Let C be a coloring of Γ = LkΓ′, let X be the Cayley regular
cover of (Γ, C) and let X ′ = L−kX. Then (i) X has maximum connectivity; (ii),
diam(X)=diam(X ′) + k.

As a matter of fact, Theorem 2.2 provides much more information on a Cayley
regular cover X through the knowledge of X ′ = L−kX, such as the determination of
its automorphism group and the existence of routings. In the next sections we use
those facts for the study of certain regular Cayley covers of the de Bruijn digraphs.

4. Cayley covers of the de Bruijn digraphs. In this section, we study some
particular colorings of the de Bruijn digraphs which can be described in an algebraic
way. Let us identify the set of vertices of the de Bruijn digraph B(d, k) with the
elements of the group (Zd)k = Zd × · · · × Zd︸ ︷︷ ︸

k

. The following lemma is straightforward.

LEMMA 4.1. For any map λ : (Zd)k−1 → Zd, the set Cλ = {λ0, . . . , λd−1} of
maps on (Zd)k defined as

λi(y,x) = (x, λ(x) + y + i), x ∈ (Zd)k−1, i, y ∈ Zd,

is an arc-coloring of B(d, k).
We call linear colorings those obtained as in the above lemma when λ is a group

homomorphism. Figure 2 shows the four linear colorings of B(2, 3).
It is worth noting that the two permutations in the linear coloring associated with

the null map λ ≡ 0 are the shuffle and shuffle-exchange permutations on 2k symbols
(see [27]).
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FIG. 2. Linear colorings of B(2, 3).

The permutation group generated by each of the linear colorings of the de Bruijn
digraphs was computed in [26]. Notice that, for any linear coloring Cλ, the permuta-
tion λ0 is actually a group automorphism of (Zd)k.

PROPOSITION 4.2 (see [26]). The permutation group generated by the linear col-
oring Cλ of B(d, k) is isomorphic to the semidirect product (Zd)k ×π Zm, where m is
the order of the permutation λ0 and π : Zm → Aut(Zd)k is defined as π(i) = λi0.

The different groups obtained from the linear colorings of B(2, 3) are also depicted
in Figure 2. It is easy to see each element of the group (Zd)k×π Zm as a permutation
of the vertices of B(d, k) if we define the action of the group on (Zd)k as

(a, i)(x) = a + λi0(x), x ∈ (Zd)k, (a, i) ∈ (Zd)k ×π Zm.

For positive integers d and k, the butterfly digraph But(d, k) is defined as hav-
ing the set (Zd)k × Zk as vertices. Following the notation in [3, 19], each subset
(Zd)k × {i} is referred to as the ith level of the digraph, and each vertex v =
(x0, . . . , xi−1, xi, xi+1, . . . , xk−1; i) of the ith level is adjacent to the d vertices wj =
(x0, . . . , xi−1, xi + j, xi+1, . . . , xk−1; i + 1), j = 1, . . . , d in the level i + 1. Figure 3
shows the digraph But(2, 3). By using the null map λ ≡ 0 we obtain the following
characterization of the butterfly networks.

PROPOSITION 4.3. For all positive integers d and k, the butterfly network But(d, k)
is isomorphic to the Cayley regular cover of the de Bruijn digraph B(d, k) with the
linear coloring C0.

Proof. When λ is the null map, λ0 consists simply of a cyclic shift of the coordi-
nates of every element in (Zd)k. Therefore, the order of λ0 is k. Then, by Proposition
4.2,

P (B(d, k), C0) ' (Zd)k ×π Zk.
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FIG. 3. The butterfly digraph But(2, 3).

Let us now identify the vertices of the Cayley regular cover Cay(B(d, k), C0), with
the vertices of the butterfly But(d, k), by performing a cyclic shift of i positions to
the right on the coordinates of each node in the ith level:

(x0, . . . , xk−1; i)↔ (xk−i, . . . , xk−1, x0, . . . , xk−i−1; i).

Note that the permutation λj of the arc-coloring C0 corresponds to the element
(0, . . . , 0, j; 1) in P (B(d, k), C0) so that the vertex (x0, . . . , xk−1; i) is adjacent to the
vertices

(0, . . . , 0, j; 1)(x0, . . . , xk−1; i) = (x1, . . . , xk−1, x0 + j; i+ 1)

in the Cayley regular cover. Therefore, the former identification is actually a digraph
isomorphism.

Figure 4 shows But(2, 3) as a Cayley cover of B(2, 3). In addition to the butterfly
networks, the linear colorings provide a whole family of Cayley digraphs associated
with the de Bruijn digraphs which have interesting structural properties. Recall that
the de Bruijn digraph B(d, k) can be seen as the (k − 1)-iterated line digraph of the
complete symmetric digraph with loops K+

d . Furthermore, by Theorem 3.1 each of
the Cayley regular covers of B(d, k) is also a (k − 1)-iterated line digraph. We next
show that for Cayley regular covers Xλ(d, k) associated to linear colorings, the digraph
L−(k−1)Xλ(d, k) turns out to be a very simple digraph.

For positive integers d and m, the complete generalized cycle C(d,m) is the Cayley
digraph Cay(Zd×Zm, {(0, 1), . . . , (d−1, 1)}). The complete generalized cycle C(2, k)
is shown in Figure 5.

THEOREM 4.4. Let Cλ be a linear coloring of the de Bruijn digraph B(d, k).
Then the Cayley regular cover of (B(d, k), Cλ) is the (k − 1)-iterated line digraph of
the complete generalized cycle C(d,m), where m is the order of the permutation λ0.
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FIG. 4. The arc-colored digraph (B(2, 3), C0) and its Cayley regular cover But(2, 3).

FIG. 5. The complete generalized cycle C(2, k).

Proof. Let C(d,m, k) denote the (k − 1)-iterated line digraph of the complete
generalized cycle C(d,m). Each vertex of C(d,m, k) corresponds to a path of length
k− 1 in C(d,m). Let us identify the path (x0, i), (x1, i+ 1), . . . , (xk−1, i+ k− 1) with
the element (x0, x1, . . . , xk−1; i) ∈ (Zd)k ×Zm. By Proposition 4.2, this identification
provides a bijection between the vertices of the digraph C(d,m, k) and the vertices
of the Cayley regular cover of (B(d, k), Cλ). It is straightforward to check that it
is also a digraph isomorphism. Indeed, given x = (x0, . . . , xk−1; i) the set Γ(x) =
{(x1, . . . , xk−1, y; i+ 1), y ∈ Zd} in C(d,m, k) coincides with

Γ(x) = {(x1, . . . , xk−1, λ(x1, . . . , xk−1) + x0 + y; i+ 1), y ∈ Zd}

in Cay((Zd)k ×π Zm, Cλ).
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As a consequence of the characterization in the above theorem, many of the
properties of the Cayley regular covers of the de Bruijn digraphs can be easily deduced
via Theorem 2.2 and Proposition 2.3.

THEOREM 4.5. Let Xλ(d, k) be the Cayley regular cover of the de Bruijn digraph
B(d, k) with the linear coloring Cλ, and let m be the order of the permutation λ0 ∈ Cλ.
Then (i) Xλ(d, k) is maximally connected; (ii) Xλ(d, k) is hamiltonian; (iii) Xλ(d, k)
has diameter m + k − 1; (iv) the automorphism group of Xλ(d, k) is isomorphic to
(Sd)k×πZm, where Sd is the symmetric group on d symbols and π(i) is the cyclic shift
of i positions on (σ1, . . . , σd) ∈ (Sd)k; (v) Xλ(d, k) has girth m; and (vi) Xλ(d, k) has
shortest-path self-routings.

In fact, it is straightforward to check that the complete generalized cycle C(d,m)
is maximally connected and has diameter m. It was proved by Praeger in [22] that
C(d,m) has the automorphism group described in part (iv) of the above theorem. It is
also easy to check that the map ρ : (Zd×Zm)2 → Zd×Zm, defined as ρ((x, i), (y, j)) =
(y, i + 1) whenever (x, i) 6= (y, j), is one of the many shortest-path routings which
can be defined in C(d,m), thus providing in a constructive way the shortest-path
self-routing of Xλ(d, k) via Proposition 2.3.

Actually, there is a broader collection of results concerning the line digraph than
those described in section 2. We would like to mention at least one of them which
is relevant to the applications in the context of networks. A maximally connected
digraph is said to be superconnected when the only minimal disconnecting sets are
the set of vertices adjacent to or adjacent from a vertex of the digraph. It has been
proven in [9] that if a digraph is superconnected, then all its iterated line digraphs
have the same property. On the other hand, the superconnected Cayley graphs on
abelian groups were characterized in [14], from which it follows that the digraphs
C(d,m) are superconnected. Therefore, we have the following.

PROPOSITION 4.6. For each λ, the Cayley regular cover Xλ(d, k) is supercon-
nected.

Some of the results stated in Theorem 4.5 have been obtained in different ways
for the case of the butterfly network; see for instance [3, 19]. One of the properties
mentioned in [3] which can also be extended to the whole family of Cayley digraphs
considered here is the existence of a disjoint family of complete d-ary trees, which
follows from the fact that the de Bruijn digraph B(d, k) contains a complete d-ary
tree of depth k − 1.

PROPOSITION 4.7. For each λ, the Cayley regular cover Xλ(d, k) contains m
disjoint copies of the complete d-ary tree of depth k − 1.

5. Permutation networks. Not only are the Cayley regular covers interesting
in themselves as network topologies with suitable properties, but they can also be
seen as a model for different groups of permutations which can be performed without
conflict in the original digraph. This approach is useful in the design of permutation
networks. A permutation network is modeled as a digraph in which, at each time
unit, the contents of every node can be transferred to one of its neighbors in such
a way that no conflicts occur, that is, no two contents are sent to the same node.
Therefore, at each unit time a permutation of the contents of the nodes is performed.
Thus, the control of the network requires the knowledge of all permutations available
and an algorithm to produce each of them in as few unit times as possible.

Colored digraphs provide a natural setting for the modeling of permutation net-
works. Given a colored digraph (Γ, C), every element σ of the permutation group
P (Γ, C) corresponds to a permutation of the vertices of Γ which can be performed as
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a sequence of permutations in C, thus using the arcs of the digraph with no conflicts.
In addition, a shortest-path routing in the Cayley regular cover Cay(Γ, C) provides
an algorithm to generate every such permutation, and its diameter gives a bound on
the worst case time to generate them.

In this section we consider two examples of Cayley regular covers of the de Bruijn
digraphs which are useful in this context. For simplicity we restrict ourselves to the
case of degree two.

A permutation group P acting on a set V of n elements is said to be k-transitive
if, for any pair (x1, . . . , xk), (y1, . . . , yk) ∈ V k of k-tuples of (different) elements of
V , there is a permutation σ ∈ P such that σ(xi) = yi, i = 1, . . . , k. If such a
permutation is unique for each pair of k-tuples, P is said to be sharply k-transitive. A
k-transitive group P is sharply k-transitive if and only if it has n!/(n− k)! elements.
The symmetric group is the only (sharply) n-transitive group, and 2-transitive groups
are usually referred to as doubly transitive groups.

The first example we consider consists of a linear coloring of the de Bruijn digraph
B(2, k) whose permutation group is sharply 2-transitive.

THEOREM 5.1. Let f(x) = xk − ak−1x
k−1 − · · · − a1x − a0 be a primitive poly-

nomial of the Galois field GF (2k). Let the map λ : (Z2)k−1 → Z2 be defined as
λ(x1, . . . , xk−1) = ak−1xk−1 + · · · + a1x1. Then the permutation group of the de
Bruijn digraph B(2, k), k ≥ 2, with the coloring Cλ, is sharply 2-transitive.

Proof. The order of the permutation λ0 of (Z2)k defined as

λ0(x0,x) = (x, x0 + λ(x)), x ∈ (Z2)k−1

is the minimum common period of the recurrence whose characteristic polynomial
is f . Therefore λ0 has order 2k − 1 (see [21] for details). Hence, the 1-factor of
B(d, k) corresponding to λ0 consists of a loop on the vertex 0 = (0, . . . , 0) and a
hypohamiltonian cycle. Therefore, by Proposition 4.2, the permutation group of Cλ
is P = P (B(2, k), Cλ) = (Z2)k ×π Z2k−1.

Let us denote by 0 = (0, . . . , 0) and 1 = (1, . . . , 1) ∈ (Z2)k the vertices of B(2, k)
in which the two loops of B(2, k) are located. Let φ be the only nontrivial automor-
phism of the digraph B(2, k), namely, φ(x0, . . . , xk−1) = (x0 + 1, . . . , xk−1 + 1), where
the addition is modulo 2. Let us show that φλ0φ = λ1. Since f is a primitive poly-
nomial, then

∑k−1
i=0 ai = 0 mod 2 (otherwise f would have 1 as a root) and a0 = 1.

Therefore, a simple calculation gives

φλ0φ(x0, . . . , xk−1) =

(
x1, . . . , xk−1, x0 −

k−1∑
i=1

aixi −
k−1∑
i=1

ai

)
= λ1(x0, . . . , xk−1).

As a consequence, the permutation λ1 has the same cyclic structure as λ0, so it
contains the loop in 1 and a cycle of length 2k − 1.

Let x,y be any pair of vertices of B(2, k). For the 2-transitivity of the permutation
group P , it suffices to show that there exists a permutation which sends x to 0 and
y to 1. Let r be the length of the path from x to 0 through the long cycle of λ1
(put r = 0 if x = 0), and let s be the length of the path from λr1(y) to 1 through
the long cycle of λ0 (or s = 0 if λr1(y) = 1). Then the permutation σ = λs0λ

r
1 sends x

to 0 and y to 1. Moreover, since P has order 2k(2k−1), the group is sharply 2-transi-
tive.

In the above proof, a factorization of length at most 2k − 2 is obtained for every
element in the permutation group. Actually, by Theorem 4.5, the corresponding
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Cayley regular cover has diameter 2k−1 +k−1. In addition, the simple shortest-path,
self-routing algorithm described in the paragraph below Theorem 4.5 can be used to
explicitly obtain a factorization of minimum length of any given permutation in the
group.

The problem of characterizing those permutation networks in which every per-
mutation between its nodes can be performed has lead to some attempts to find a
simple and unifying technique to establish the rearrangeability of a permutation net-
work [18, 20, 29, 31]. If the permutation network is modeled by a colored digraph,
this purpose is then translated into the problem of determining whether the associ-
ated permutation group is the whole symmetric group. In this context, we say that a
coloring of a digraph is a complete coloring when the associated permutation group is
the symmetric group of degree the order of the digraph. For instance, it is straightfor-
ward to check that the complete digraph admits a complete coloring. We next show
that the de Bruijn digraphs of degree two admit complete colorings, with the only
exception being B(2, 2).

THEOREM 5.2. The de Bruijn digraph B(2, k), k > 2 admits a complete coloring
C so that P (B(2, k), C) = S2k .

Proof. Let us consider the digraph B(2, k − 1) with the coloring Cλ = {λ0, λ1},
where λ is the map in Theorem 5.1. Let us identify the vertices of B(2, k) with the
couples (x, λi), where x is a vertex of B(2, k − 1) and λi ∈ Cλ. Let C ′ = {c′0, c′1} be
the coloring of B(2, k) defined as c′0(x, λi) = (λi(x), λi) and c′1(x, λi) = (λi(x), λi+1),
where the subscripts are taken modulo 2. In other words, two consecutive arcs with
the same color in (B(2, k− 1), Cλ) induce an arc of color c′0 in B(2, k) (it is said that
C ′ is the coloring uniformly induced by Cλ). Hence, the permutation c′0 consists of
two cycles of length 2k−1 − 1 and two loops.

We next show that c′1 determines one cycle of length 2k − 2 and a swap, which
corresponds to the digon of B(2, k). Let us consider the cycle h of c′1 containing the
vertex (0, λ0). By the definition of c′1, h must have even length, say 2r. Then

(c′1)2r(0, λ0) = ((λ1λ0)r(0), λ0) = ((λ1φ)2r(0), λ0) = (((λ1φ)2)r(0), λ0),

where, as in the proof of Theorem 5.1, φ is the nontrivial automorphism of B(2, k)
and φλ0φ = λ1. As shown in the proof of Theorem 5.1, λ1, and hence λ1φ, consists
of a cycle of (odd) length 2k−1− 1 and a fixed point. Thus (λ1φ)2 also has this cyclic
structure. Therefore r must be 2k−1 − 1 and the cycle h has length 2k − 2. The
remaining cycles of c′1 must then be either a swap or two loops. Since h contains the
vertex (0, λ0), in which there is a loop of B(2, k), our claim is proved.

Let us consider the coloring C = {c0, c1} obtained by exchanging the colors
in C ′ of the set of arcs which are incident to and from the vertex 0 and the arc
((1, 0, . . . , 0), (0, . . . , 0, 1)). Thus, c0 contains a cycle of length 2k−1, a cycle of length
2k−1− 1, and a loop in vertex 1, and c1 contains a cycle of length 2k− 3, a swap, and
a loop in vertex 0 (see Figure 6.)

We next show that the permutation group P = P (B(2, k), C) is doubly transitive.
Let us denote by d0 = (0101, . . .) and d1 = (1010, . . .) the vertices of the digon of
B(2, k). Let x,y be any pair of vertices in B(2, k). Then there exists a permutation
σ in P such that σ(x) = d0 and σ(y) = d1. Indeed, let c10 denote the cycle of c0 of
length 2k−1 − 1 and let c00 denote the cycle of length 2k−1. First, let us suppose that
x,y belong to different cycles in c0 and x,y 6= 1. Then there exists an integer r such
that cr0(x) = di and cr0(y) = di+1, since the cycles in c0 have relatively prime lengths
and each of them contains one vertex of the digon. We may also need to apply c1 to
get the proper position of the vertices x,y in the digon.
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FIG. 6. The construction of the complete coloring of B(2, 3).

Secondly, if both vertices x,y belong to the cycle c00, then there exists an integer
r such that cr0(x) = 0. By applying the permutation c1, which fixes x, since the
digraph is strongly connected the vertex y can be placed in the cycle c10 and the
former situation applies. Finally, in the remaining cases, by applying successively the
permutation c1 the vertices x,y are located in one of the preceding situations.

As it is well known, a doubly transitive permutation group which contains a trans-
position is the symmetric group; see for instance [28, Thms. 9.6 and 13.3]. There-
fore, since P is doubly transitive and contains the swap c2

k−3
1 = (d0,d1), we get

P = S2k .
Clearly, the proof of the above theorem is not valid for B(2, 2). Actually, it can

be easily checked that the only two colorings of B(2, 2) are both linear so that none
of them is complete.

Unfortunately, the problem of determining the diameter and routings of the Cay-
ley cover of the complete coloring of B(2, k) does not seem to be easy to handle. For
k = 3, there is only one complete coloring which is shown in Figure 6 and corresponds
to the one described in the above proof. The diameter of the corresponding Cayley
cover, computed experimentally, turns out to be 22.

As a final remark, we would like to mention that the techniques used in this
paper to obtain and analyze Cayley digraphs can also be applied to other families
of iterated line digraphs. In addition to the de Bruijn digraphs, the iterated line
digraphs of the complete symmetric digraphs without loops, also known as Kautz
digraphs [16], have often been considered as models for networks. In many respects,
Kautz digraphs enjoy even better properties regarding the diameter or fault-tolerance
than their companions, the de Bruijn digraphs. Again, the use of Cayley regular
covers may allow us to overcome their main drawback, namely, lack of symmetry.
The study of some of the Cayley regular covers of Kautz digraphs is the object of a
forthcoming paper by the authors.

Acknowledgments. The authors would like to thank the referees for their valu-
able remarks.
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Abstract. The behavior of a greedy algorithm which estimates the height of a random, labelled
rooted tree is studied. A self-similarity argument is used to characterize the limit distribution of the
length H of the path found by such an algorithm in a random rooted tree as the unique solution of
an integral equation. Furthermore, it is shown that

lim
n→∞

EH
√
n

=

√
2π

2
√

2− ln(3 + 2
√

2)
= 2.352139... ,

i.e., the expected length of the path constructed by the algorithm is roughly 93.8% of the expected
height of a random rooted tree.

Key words. random trees, greedy algorithms
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1. Introduction. Let Tn be a random, labelled rooted tree on the vertex set
[n] = {1, 2, . . . , n} with the root v0 ∈ [n]. (Here and below we assume for convenience
that the root is always the vertex number 1.) The limit distribution of the height
H̃ = H̃(n) of Tn was determined by Rényi and Szekeres [5] who proved the following
result.

THEOREM 0. For every constant β > 0,

lim
n→∞

(H̃ = b
√

2n/βc) = 2

√
2π
n
β2
∞∑
i=1

(
2i4π4β − 3i2π2) exp(−βπ2i2)(1)

=
√

8
nβ

∞∑
i=1

(
2i4

β
− 3i2

)
exp

(
− i

2

β

)
,

where the convergence is uniform for β ∈ (c, C), for every constant C > c > 0.
Furthermore, they proved that the sth moment of H̃/

√
2n tends to 2Γ(s/2 +

1)(s− 1)
∑∞
i=1 i

−s. In particular, for the expectation and the variance of H̃, they got

lim
n→∞

E H̃√
n

=
√

2π = 2.50663...(2)

and

lim
n→∞

Var H̃
n

=
2π(π − 3)

3
= 0.29655... .

(see Flajolet et al. [2] for the generalization of these results to other simply generated
families of trees).
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For a tree T with the root v0, let F(T ) be the forest of rooted trees obtained
from T by removing v0 where, as the root of a tree T ′ ∈ F(T ) we take the vertex
adjacent to v0 in T . The height of a tree T can be estimated using the following simple
algorithm GREEDY, which constructs a long path starting at the root. In the first
step, the algorithm removes the root v0 of T (0) = T , chooses the largest tree T (1) from
F(T (0)) (if there are more than one of them it picks one with the lexicographically
first root), and appends its root to the path. This procedure is repeated until for
some h the tree T (h) consists of a single vertex.

The purpose of this note is to apply a simple self-similarity idea to study the
length H = H(n) of the path found in a random tree by the above procedure. We
characterize the limit distribution of H as the solution of some integral equation and
show that the expected value of H/

√
n tends to a constant a, where

a =
√

2π
2
√

2− ln(3 + 2
√

2)
= 2.353139... .

Thus, in average, GREEDY generates a path whose length is roughly 93.8% of the
expected height of the tree. We should remark that similar results can be derived
from Aldous’ “continuum” approach to random trees; we comment on it further in
the last section.

The structure of the note is the following. In the next section, we prove some
purely combinatorial facts on so-called (k, l,m)-decompositions. Based on these re-
sults, we characterize the limit distribution of H as the solution of some integral
equation (see section 3) and find the asymptotic value of the expectation of H (see
section 4). We conclude with a few comments on the self-similarity method we applied.

2. (k, l,m)-decompositions. A (k, l,m)-decomposition (P, F, S,R) of [n] =
{1, 2, . . . , n} is a quadruple of graphs, such that

1. P is a path v0v1, . . . , vk−1 starting at v0 = 1;
2. F is a forest of k trees on n− l−m vertices such that vertices v0, v1, . . . , vk−1

belong to different trees;
3. S is a rooted tree with l vertices and root vk;
4. R is a tree on m vertices rooted at vk+1; and
5. [n] = V (F ) ∪ V (S) ∪ V (R) is a partition of [n].

We say that a (k, l,m)-decomposition (P, F, S,R) is contained in T if T is the tree
rooted at v0 with vertices 1, 2, . . . , n and edges E(T ) = E(P )∪E(F )∪E(S)∪E(R)∪
{{vk−1, vk}, {vk, vk+1}}. A (k, l,m)-decomposition (P, F, S,R) is a subdecomposition
of a (k′, l′,m′)-decomposition if both (P, F, S,R) and (P ′, F ′, S′, R′) are contained in
the same tree and P ⊆ P ′. We call a (k, l,m)-decomposition (P, F, S,R) bad if F(S)
contains a tree with more than m vertices (or a tree with precisely m vertices with the
label of the root smaller than the label of the root of R) and good otherwise. Finally,
we say that a decomposition is proper if all its subdecompositions are good.

It is easy to see that the notion of decomposition emerges naturally in the analysis
of the algorithm GREEDY described above. Indeed, suppose that the algorithm finds
a path Ph = v0v1, . . . , vh in a tree T = T (0). Then, for every k < h, deleting from T
edges {vk−1, vk} {vk, vk+1} splits the tree into three parts, Fk, Sk, and Rk, which,
together with the path Pk = v0v1, . . . , vk−1, form a proper decomposition contained
in T . On the other hand, if a (k, l,m)-proper decomposition (P, F, S,R) is contained
in T , the algorithm finds the path P in T by the (k−1)th step. Thus, |T (k)| = m if and
only if T = T (0) contains some proper (k, l,m)-decomposition, and, since for a given
k (or a given m) every tree contains at most one proper (k, l,m)-decomposition, to
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study the behavior of the algorithm on random rooted trees one needs to estimate the
probability that a random tree contains some proper (k, l,m)-decomposition of [n].

Let a(n; k, l,m) be the number of all (k, l,m)-decompositions of [n], and let
â(n; k, l,m) denote the probability that a random rooted tree contains a (k, l,m)-
decomposition, i.e., â(n; k, l,m) = a(n; k, l,m)/nn−2.

FACT 1. For k ≥ 1 we have

â(n; k, l,m) =
n!
nn−1

ll−1

l!
mm−1

m!
k

(n− l −m)n−l−m−k−1

(n−m− l − k)!

=
1

2π
n3/2

l3/2m3/2

k

(n−m− l)3/2 exp
(
− k2

2(n−m− l)

)
× exp

(
O

(
k3

(n−m− l)2 +
k

n−m− l +
1
k

+
1
l

+
1
m

))
,

whereas

â(n; 0, l,m) =


n!
nn−1

ll−1

l!
(n− l)n−l−1

(n− l)! if l +m = n,

0 if l +m 6= n.

Proof. To build a (k, l,m)-decomposition we must divide the set {2, 3, . . . , n} into
four parts of k−1, n−m− l−k, l, and m elements, respectively, arrange the vertices
of the first set in a path P in one of (k − 1)! ways, construct a rooted forest on the
first two sets and vertex v0 = 1 in one of k(n − l − m)n−l−m−k−1 ways, and build
rooted trees on each from the remaining two sets. Thus, using Stirling’s formula, we
get

â(n; k, l,m) =
(n− 1)!

(k − 1)! (n−m− l − k)! l!m!
(k − 1)!

× k(n− l −m)n−l−m−k−1 l
l−1mm−1

nn−2

=
n!
nn−1

ll−1

l!
mm−1

m!
k

(n− l −m)n−l−m−k−1

(n−m− l − k)!

=
1

2π
kn3/2

l3/2m3/2

(n− l −m)n−l−m−k−1

(n−m− l − k)n−m−l−k+1/2

× exp(k − l +O(1/(n−m− l) + 1/k + 1/l + 1/m))

=
1

2π
n3/2

l3/2m3/2

k

(n−m− l)3/2 exp
(
− k2

2(n−m− l)

)
× exp

(
O

(
k3

(n−m− l)2 +
k

n−m− l +
1
k

+
1
l

+
1
m

))
.

Similarly, for l +m = n we have

â(n; 0, l,m) =
(
n− 1
l − 1

)
ll−2(n− l)n−l−1

nn−2 =
n!
nn−1

ll−1

l!
(n− l)n−l−1

(n− l)! .

For a given k and m, where m < n/2, we set

pn(k,m) = Prob(|T (k)
n | ≥ n/2 ∧ |T (k+1)

n | = m) .(3)
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Thus, pn(k,m) tells us about the joint distribution of k and |T (k+1)
n |, when the size

of T (k+1)
n first drops under n/2. The limit value of pn(k,m) is given by the following

result, crucial for our further considerations.
LEMMA 2. Let f be the function defined as

f(x, y) =
1

2π

∫ y

1/2−y

x

t3/2y3/2(1− t− y)3/2 exp
(
− x2

2(1− y − t)

)
dt,(4)

where x > 0 and y ∈ (1/4, 1/2). Then, for y ∈ (1/4, 1/2),

pn(bx
√
nc, bync) =

1 + o(1)
n3/2 f(x, y) ,

where for every ε > 0 the quantity o(1) tends to 0 uniformly for x > ε and 1/4 + ε <
y < 1/2− ε.

Furthermore, there exists a constant C such that for every x > 0 and m ≤
n/4 +

√
n we have

pn(bx
√
nc,m) ≤ Cn−5/3.

Proof. Let k denote the minimum value of k such that |T (k+1)
n | ≤ n/2, and let

m = |T (k+1)
n | < n/2, r = |T (k)

n | ≥ n/2, and l = r − m. Since, as we have already
observed, for a given k each tree contains at most one proper (k, l,m)-decomposition,
we have

pn(k,m) =
n−m−k∑
l=n/2−m

b̂(n; k, l,m) ,(5)

where b̂(n; k, l,m) denote the probability that a random tree Tn contains a proper
(k, l,m)-decomposition.

Let us look first at the terms of the sum (5) for which l ≥ m log2 n > n/4. Since
no tree of the forest F (T (k)

n ) is larger than |T (k+1)
n | = m, and T

(k)
n has r = l + m

vertices, the root of T (k)
n must have degree at least r/m ≥ log2 n. Note now that

if the algorithm GREEDY is applied to a random tree Tn, each tree on r = l + m

vertices is equally likely to appear as T (k)
n . Furthermore, the probability that such a

random tree on r vertices, where n/2 < r < n, has the root of degree at least log2 n
is bounded from above by

r−1∑
i=dlog2 ne

(
r − 1
i

)
i(r − 1)r−i−2

rr−2 ≤
r−1∑

i=dlog2 ne

i
(e
i

)i
≤ exp(− log2 n) .

Thus, for l ≥ m log2 n, we have

b̂(n; k, l,m) ≤ n exp(− log2 n),

and for n large enough

n−m−k∑
l=m log2 n

b̂(n; k, l,m) ≤ n2 exp(− log2 n) ≤ n−3 .(6)
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Now let n/4 < m +
√
n ≤ l ≤ m log2 n. Then, the largest tree in the forest

F (T (k+1)
n ) has at most m ≤ r − m −

√
n vertices. Consequently, there exists s,√

n ≤ s ≤ l/3, such that some components of F (T (k)
n ) have s vertices combined.

Thus, for such a choice of l and m, from Stirling’s formula we get

b̂(n; k, l,m)
â(n; k, l,m)

=
bl/3c∑

s=d
√
ne

(
l − 1
s− 1

)
ss−2(l − s− 1)l−s−2

ll−2

≤ 3
bl/3c∑

s=d
√
ne

(l − 1)l−1/2

(s− 1)s−1/2(l − s)l−s+1/2

ss−2(l − s− 1)l−s−2

ll−2

≤ 4
bl/3c∑

s=d
√
ne

(
l

l − s

)5/2 1
s3/2 ≤ 30n−1/4 .

Note also that Fact 1 implies that, for some absolute constant C ′ and for each k
and each l,m ≥ n/4 log2 n, we have

a(n; k, l,m) ≤ C ′n−5/2 log3 n .(7)

Hence, for some constant C ′′,

m log2 n∑
l=m+

√
n

b̂(n; k, l,m) ≤ 30n−1/4
m log2 n∑
l=m+

√
n

â(n; k, l,m) ≤ C ′′n−5/3 .(8)

Moreover, (7) implies that for n large enough

m+2
√
n∑

l=m−
√
n

b̂(n; k, l,m) ≤
m+2

√
n∑

l=m−
√
n

â(n; k, l,m) ≤ 3
√
nC ′n−5/2 log3 n ≤ n−5/3 .(9)

Finally, let l ≤ m + 2
√
n. Recall that l + m = r ≥ n/2, so in this case we have

m ≥ n/4 +
√
n. Furthermore, since l + m ≥ n/2 and m ≥ l, for such a choice of l

and m each (k, l,m)-decomposition must be proper, i.e., b̂(n; k, l,m) = â(n; k, l,m).
Consequently, using Fact 1, for k = bx

√
nc, m = bync, and y ∈ (1/4, 1/2), we arrive

at

m−
√
n∑

l=n/2−m
b̂(n; k, l,m) =

m−
√
n∑

l=n/2−m
â(n; k, l,m) =

1 + o(1)
n3/2 f(x, y) ,(10)

where f(x, y) is defined as in (4). Now the assertion follows from (5), (6), (8), (9),
and (10).

3. The limit distribution of H. In this section we shall use a certain type
of self-similarity argument to find the limit distribution of H, the length of the path
constructed by the algorithm GREEDY in a random tree Tn. Let us introduce first
two sequences of auxiliary random variables {Ĥi} and {Wi}. We define Hi and Wi

recursively, setting Ĥ0 = minj{|T (j)
n | ≤ n/2}, W0 = |T (Ĥ0)

n |, while for i ≥ 1,

Ĥi = min
j
{|T (j)

n | ≤Wi−1/2}
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and Wi = |T (Ĥi)
n |. Furthermore, we put H0 = Ĥ0 and Hi = Ĥi − Ĥi−1 for 1 ≤ r ≤

n − 1. Thus, Wi denotes the size of the tree T (k)
n when it first drops under Wi−1/2,

and Hi is the number of steps of the algorithm between two such moments. Note that
for every i ≥ 0, we have Wi ≤ 2−i−1n.

Since the length of the path found by the algorithm can be written as a sum of
Hi’s, we have

Prob(H > k) = Prob

(∑
i≥0

Hi > k

)
(11)

= Prob(H0 > k) +
∑
j≥1

Prob

(
j∑
i=0

Hi > k ∧
j−1∑
i=0

Hi ≤ k
)
.

In order to characterize the behavior of the probabilities Prob(
∑j
i=0Hi >

k ∧
∑j−1
i=0 Hi ≤ k), we introduce an integral operator A, setting

(Ag)(x) =
∫ x

0

∫ 1/2

1/4
f(z, y)g((x− z)/√y)dydz ,

where f is the function defined by (4). Furthermore, for x ≥ 0 let

g0(x) =
∫ ∞
x

∫ 1/2

1/4
f(z, y)dydz,(12)

and for j ≥ 1,

gj = Agj−1 = Ajg0 .(13)

It is not hard to check that the integrals which appear in the definition of gj
converge. As a matter of fact, our next result provides an explicit upper bound for
the value of gj .

FACT 3. For every j ≥ 0, gj is a nonnegative function, bounded from above by 1,
such that ∫ ∞

0
gj(x)dx ≤

(∫ ∞
0

∫ 1/2

1/4

√
yf(x, y)dydx

)j
< 2−j/2 .

Proof. Note first that f(x, y) is related to the density of a random variable, so∫ ∞
0

∫ 1/2

1/4
f(x, y)dydx = 1 .(14)

Thus, g0(x) ≤ 1 for every x ≥ 0. Furthermore, elementary computations show that∫ ∞
0

g0(x)dx =
∫ ∞

0

∫ 1/2

1/4
zf(z, y)dydz =

√
2/π < 1 .(15)

Now assume that the assertion holds for gj−1, where j ≥ 1. Then

gj(x) =
∫ x

0

∫ 1/2

1/4
f(z, y)gj−1((x− z)/√y)dydz ≤

∫ x

0

∫ 1/2

1/4
f(z, y)dydz < 1 .
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Moreover, we have∫ ∞
0

∫ 1/2

1/4

√
yf(z, y)dydz = 1− 2

√
2 + ln(3 + 2

√
2)

π
<

√
2

2
.(16)

Thus, ∫ ∞
0

gj(x)dx =
∫ ∞

0

∫ x

0

∫ 1/2

1/4
f(z, y)gj−1((x− z)/√y)dydzdx

=
∫ ∞

0

∫ ∞
0

∫ 1/2

1/4

√
yf(z, y)gj−1(u)dydudz

=
∫ ∞

0

∫ 1/2

1/4

√
yf(z, y)dydz

∫ ∞
0

gj−1(u)du

<
√

2/2
∫ ∞

0
gj−1(u)du ≤ 2−j/2 .

Our next result shows that the functions gj are closely related to our problem.
Lemma 4. For every x > 0, we have

Prob(H0 > bx
√
nc) = (1 + o(1))g0,

and for j ≥ 1,

Prob

(
j∑
i=0

Hi > bx
√
nc ∧

j−1∑
i=0

Hi ≤ bx
√
nc
)

= (1 + o(1))gi(x) ,

where, for given positive constants c, C, the quantity o(1) tends to 0 uniformly for
x ∈ (c, C).

Proof. We shall use the induction on j. The estimate for Prob(H0 > bx
√
nc)

follows immediately from Lemma 2 and (12). Moreover, for every k and j ≥ 1,

Prob

(
j∑
i=0

H i > k ∧
j−1∑
i=0

Hi ≤ k
)

=
k−j∑
l=1

Prob

(
H0 = l ∧

j∑
i=1

Hi > k − l ∧
j−1∑
i=1

Hi ≤ k − l
)

(17)

=
∑
m

∑
l

Prob

(
j∑
i=1

Hi > k − l ∧
j−1∑
i=1

Hi ≤ k − l|H0 = l ∧W0 = m

)
×Prob(H0 = l ∧W0 = m).

Now we use a simple “rescaling” idea. As we have already noticed in the proof of
Lemma 2, in the first k steps the algorithm GREEDY employs no information about
the tree T (k), except for its size. Thus, when the algorithm is run on a random
tree, in each step we can treat T (k)

n as a random tree on |T (k)
n | vertices. Hence,

Prob(
∑j
i=1Hi > k − l ∧

∑j−1
i=0 Hi ≤ k − l|H0 = l ∧W0 = m) is precisely the proba-

bility that, if we apply the algorithm to a random rooted tree with m vertices, then∑j−1
i=0 Hi > k − l and

∑j−2
i=0 Hi ≤ k − l. Since, due to Lemma 2, the function f(x, y)
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determines the joint distribution of (H0,W0), the assertion follows from (17) and the
definition of A.

As a straightforward consequence of Lemma 4 we obtain the following character-
ization of the limit distribution of H.

THEOREM 5. For every constant x ≥ 0,

lim
n→∞

Prob(H > x
√
n) = h(x),

where

h(x) =
∞∑
j=0

gj(x) =
∞∑
j=0

(Ajg0)(x),(18)

and functions gj are defined by (12) and (13). Equivalently, the function h is the only
continuous solution of the integral equation

h(x) = g0(x) + (Ah)(x)(19)

=
∫ ∞
x

∫ 1/2

1/4
f(z, y)dydz +

∫ x

0

∫ 1/2

1/4
f(z, y)h((x− z)/√y)dydz ,

where the function f is given by (4).
Proof. Let us show first that equation (19) has a unique continuous solution. In-

deed, due to Fact 3, the series
∑
j gj converges in the L1-norm, and thus the function h

defined by (18) is determined up to a set of measure zero. Clearly, for such a function,
(19) holds, and since the kernel of this integral equation is absolutely continuous in
the whole range of the integration, h can be chosen to be continuous.

Now let ε > 0 be any positive constant. Choose δ > 0 such that h(x − δ) ≤
h(x) + ε/3, and pick J and N large enough so that the probability that the height of
a random tree with less than 2−J−1n vertices is larger than δ

√
n is smaller than ε/3

for every n ≥ N (the existence of such constants follows from Theorem 0). Hence,
since WJ = |T (J)

n | ≤ 2−J−1n, the probability P (
∑
j≥J Hj ≥ δ

√
n) that the algorithm

will find a path of length larger than δ
√
n in T (J)

n is smaller than ε/3. Moreover, from
Lemma 4 and (11) it follows that one can uniformly approximate the probability
Prob(

∑J−1
j=0 Hj ≥ x

√
n) by

∑J−1
j=0 gj(x). Thus, for every ε > 0 and n large enough,

h(x)− ε ≤ Prob

J−1∑
j=0

Hj > x
√
n

 ≤ Prob(H > x
√
n)

≤ Prob

J−1∑
j=0

Hj > (x− δ)
√
n

+ ε/3 ≤ h(x− δ) + 2ε/3 ≤ h(x) + ε ,

and the assertion follows.
Remark. Let us note that once we know that the limit limn→∞ Prob(H > x

√
n)

exists for each x ≥ 0, the fact that h fulfills the integral equation h = g0 +Ah is quite
natural and follows immediately from equation H = H0 +λH, where λ is an operator
which plays the role of a “scaling factor.”

4. The expectation of H. Once we have found the distribution of H, it is
not hard to guess the value of its mean. Clearly, EH/

√
n should converge to the
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expected value of the random variable Z, where P (Z > x) = h(x) and h(x) is given
by Theorem 5. But xh(x) → 0 as x → ∞ (in fact, Theorem 0 states that the
probability that the height of a random tree is larger than x decreases exponentially
with x), so

µ = EZ =
∫ ∞

0
h(x)dx.

Now if we integrate both sides of (19), after elementary calculations we arrive at

µ =
∫ ∞

0

∫ 1/2

1/4
xf(x, y)dydx+ µ

∫ ∞
0

∫ 1/2

1/4

√
yf(x, y)dydx ,(20)

so, consequently,

µ =

∫∞
0

∫ 1/2
1/4 xf(x, y)dydx

1−
∫∞

0

∫ 1/2
1/4
√
yf(x, y)dydx

.

Note also that, similarly to (19), equation (20) can easily be deduced from the “scal-
ing” relation H = H0 + λH, once we know that the expectation of H/

√
n exists.

Unfortunately, the existence of the limit limn→∞ EH/
√
n is not implied by the ex-

istence of the limit distribution h(x) (even if one can prove that the convergence is
uniform for every x ∈ (0,∞) which indeed is the case—see section 5). Hence, we shall
deduce (20) from Lemma 2, following the way which led us to Theorem 5.

We find first the limit distributions of random variables Hi. Not surprisingly, we
shall do it recursively using an appropriate integral operator.

Thus, let B be the operator which maps an integrable function r into the function
Br such that

(Br)(x) =
∫ ∞

0

∫ 1/2

1/4

f(z, y)
√
y

r

(
x
√
y

)
dydz ,

where the function f is defined in (4).
Let us note two simple properties of B.
FACT 6. For every nonnegative, integrable function r,∫ ∞

0
(Br)(x)dx =

∫ ∞
0

r(x)dx .

Furthermore, if m =
∫∞

0 xr(x)dx <∞, then∫ ∞
0

x(Br)(x)dx = m

∫ ∞
0

∫ 1/2

1/4

√
yf(z, y)dydz <

√
2

2
m <∞ .(21)

Proof. Both equalities follows easily from the definition of B and (16).
Now, for x ≥ 0, let

r0(x) =
∫ 1/2

1/4
f(x, y)dy,

while for j ≥ 1,

rj = Brj−1 .

Then the distribution of Hj is characterized by the following local limit theorem.
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LEMMA 7. For every j ≥ 0 and x > 0,

lim
n→∞

√
nProb(Hj = bxnc) = (1 + o(1))rj(x) ,(22)

where for given positive constants c, C the quantity o(1) tends to 0 uniformly for
x ∈ (c, C).

Proof. In the case when j = 0, (22) is an immediate consequence of Lemma 2.
Now note that for j ≥ 1 we have

Prob(Hj = kj) =
∑
k

∑
m

Prob(Hj = kj |H0 = k ∧W0 = m) Prob(H0 = k ∧W0 = m) .

But, similarly as in the proof of Lemma 4, Prob(Hj = kj |H0 = k ∧W0 = m) is just
the probability that, for a random tree on m vertices, we have Hj−1 = kj . Thus, the
assertion follows from Lemma 2.

THEOREM 8.

lim
n→∞

EH√
n

= µ ,

where

µ =
∞∑
j=0

∫ ∞
0

xrj(x)dx =

∫∞
0

∫ 1/2
1/4 xf(x, y)dydx

1−
∫∞

0

∫ 1/2
1/4
√
yf(x, y)dydx

(23)

=
√

2π
2
√

2− ln(3 + 2
√

2)
= 2.352139 . . . .

Proof. Fix ε > 0. Note first that, since
∑
j≥J Hj is the length of the path found

by the algorithm in a random tree of size Wj ≤ 2−J−1, we can choose J such that the
expectation of

∑
j≥J Hj is smaller than 0.1ε

√
n for large n (by (2) we can take any J

for which
√

2π2−J/2−1/2 ≤ 0.1ε). Furthermore, due to Fact 6, we can assume that J
is large enough to have

∑
j≥J

∫∞
0 xrj(x)dx ≤ 0.1ε.

Now, for j ≥ 0 and b > a ≥ 0 define a random variable Hj(a, b), setting

Hj(a, b) =

{
Hj if a

√
n < Hj < b

√
n,

0 otherwise.

Choose a constant C such that for all j, 0 ≤ j ≤ J , and n large enough,

EHj(C,∞)/
√
n ≤ 0.1ε/J,

and ∫ ∞
C

xrj(x)dx ≤ 0.1ε/J .

Note that such a constant C exists since, by (2),

EHj/
√
n ≤ EH/

√
n ≤ 3 ,

and Fact 6 implies that
∫∞

0 xrj(x)dx < ∞. Lemma 7 states that the function rj
approximates uniformly the distribution of Hj in every finite interval, so, for every j,
0 ≤ j ≤ J , and n large enough we have∣∣∣∣∣EHj(0.1ε/J, C)/

√
n−

∫ C

0.1ε/J
xrj(x)dx

∣∣∣∣∣ ≤ 0.3ε/J .
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Hence∣∣∣∣∣EH /√n−∑
j≥0

∫ ∞
0

xrj(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣∑
j≥0

EHj

/√
n−

∑
j≥0

∫ ∞
0

xrj(x)dx

∣∣∣∣∣
≤
∣∣∣∣∣
J∑
j=0

EHj

/√
n−

J∑
j=0

∫ ∞
0

xrj(x)dx

∣∣∣∣∣+ 0.2ε

≤
J∑
j=0

∣∣∣∣∣EHj(0.1ε/J, C)
/√

n−
∫ C

0.1ε/J
xrj(x)dx

∣∣∣∣∣+
J∑
j=0

EH(0, 0.1ε/J)
/√

n

+
J∑
j=0

(
EH(C,∞)

/√
n+

∫ 0.1ε/J

0
xrj(x)dx+

∫ ∞
C

xrj(x)dx

)
+ 0.2ε < ε.

Thus, we have shown that the limit µ = limn→∞(EH/
√
n) exists and is equal to∑

j≥0

∫∞
0 xrj(x)dx. Moreover, from (21) we get

µ =
∫ ∞

0
xr0(x)dx+

∞∑
j=0

∫ ∞
0

x(Brj)(x)dx

=
∫ ∞

0

∫ 1/2

1/4
xf(x, y)dydx+ µ

∫ ∞
0

∫ 1/2

1/4

√
yf(x, y)dydx .

Finally, the numerical values of two integrals which appear in the formula for µ
are given by (15) and (16).

5. Final remarks and comments. The main purpose of this note was to
present a simple rescaling idea which allows us to “guess” and verify the asymp-
totic behavior of the algorithm without invoking generating functions. Thus, for the
sake of simplicity, we have not stated our results in the strongest possible form. For
instance, one can show that the local limit distribution of H, defined as

ĥ(x) = lim
n→∞

√
nProb(H = bx

√
nc) ,

is the unique continuous solution of the integral equation

ĥ(x) =
∫ 1/2

1/4
f(x, y)dy +

∫ x

0

∫ 1/2

1/4

f(z, y)
√
y

ĥ

(
x− z
√
y

)
dydz ,

but the proof of the existence of ĥ is slightly more involved than that for h(x). It is
also not hard to see that the convergence of Prob(H > x

√
n) is uniform for x ∈ (0,∞),

and that
√
nProb(H = bx

√
nc) tends to ĥ uniformly for x ∈ (c,∞), for every c > 0.

We should also mention that many distribution results similar to Theorem 5
have been obtained by David Aldous, who ingeniously noticed that an appropriately
scaled family of random trees converges to some compact stochastic object, the contin-
uum random tree, whose properties can be studied using probabilistic tools (see [1]).
Furthermore, because such a continuum approximation of a family of random trees
implicitly takes care of all self-similarities inside it, all results which involve any type
of rescaling arguments are typically easier to prove in this setting. Nonetheless, the
combinatorial approach we have described, although probably not so elegant and com-
pact, also has some advantages. First, it is rather elementary and obviates the use
of stochastic processes. More importantly, one can apply it to compute moments of
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some random variables, as well as to find local limit theorems for them, while in the
“continuum” approach we lose the “local” information on a random tree when we
approximate it by the stochastic continuum.

Let us also comment shortly on the performance of the algorithm GREEDY.
Theorem 8 states that the expectation of the length H of the path found by GREEDY
is only about 6.2% smaller than the expectation of the height H̃ of a random tree. The
GREEDY procedure is also quite quick; if a random tree is given in, say, preordered
form, it finds a path of length H in the expected time O(H). However, we should
keep in mind that the height of a vertex chosen at random from a random tree is∑n
j=2(n)j/nj (see Meir and Moon [4]), which for large n, is just half of the expectation

of the height of the tree H̃. Note also that the ratio EH/E H̃ is a rather crude measure
of the efficiency of the algorithm; it would be much more informative to study directly
the behavior of the random variable H/H̃. More specifically, we can ask what is the
length of the path found by the algorithm in a tree Tn,h, chosen at random from the
family of all rooted trees of n vertices and height h = h(n). For large h, i.e., for
h/
√
n → ∞, the structure of Tn,h was studied in [3]; we can show that then, with

probability tending to 1 as n→∞, the algorithm constructs a path of length at least
h−O(n/h). However, the most interesting case, when h is of the order

√
n, seems to

be much harder to handle.
Finally, let us mention that an analogous rescaling argument can be used to study

the behavior of the algorithm GREEDY for different models of random trees as, for
example, trees chosen uniformly at random from a simply generated family of trees.
As a matter of fact, such an approach can be applied to any family of trees provided
that

• every branch of a random tree of size m can be treated as a random tree of
size m (so the self-similarity argument can be used);

• the formula for the number of forests which consist of such trees is known (so
the scaling function f can be effectively computed).
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Abstract. A graph G is stable if its normalized chromatic difference sequence is equal to the
normalized chromatic difference sequence of G×G, the Cartesian product of G with itself. Let α be
the independence number of G and let ω be its clique number. Suppose that G has n vertices. We
show that the first ω terms of the normalized chromatic difference sequence of a stable graph G must
be α/n and further show that if G has odd girth 2k + 1, then the first three terms of its normalized
chromatic difference sequence are α/n, α/n, β/n, where β ≥ α/k. We derive from this sequence an
upper bound on the independence ratio of G, which agrees with the lower bound of Häggkvist for
k = 2 and of Albertson, Chan, and Haas for k ≥ 3 [Ann. Discrete Math., 13 (1982), pp. 89–100;
J. Graph Theory, 17 (1993), pp. 581–588].

Zhou has shown that circulants and finite abelian Cayley graphs are stable. Let G be a circulant
with symbol set S and n vertices [Discrete Math., 90 (1991), pp. 297–311; Discrete Appl. Math., 41
(1993), pp. 263–267]. We say that S = {a1, a2, . . . , as} is reversible if a1 + as = a2 + as−1 = · · · =
ab s2 c

+ ad s2 c
. We show that the independence ratio µ(G) ≤ µ(S) and that if S is reversible, then

limn→∞ µ(G) = µ(S). We conjecture that µ(G) = µ(S) for a reversible circulant with sufficiently
many vertices.

Key words. Cayley graph, chromatic difference sequence, circulant, graph homomorphism,
independence ratio, no-homomorphism lemma, partitionable graph
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1. Introduction. Let G be a graph. The chromatic difference sequence of G,
cds(G), is the sequence of positive integers of length equal to the chromatic number of
G, with the ith term equal to the maximum number of vertices that can be additionally
colored by using i instead of i− 1 colors; see Albertson and Berman [1, 2]. The first
appearance of this idea is Greene’s and Kleitman’s proof that comparability graphs
have monotonically decreasing sequences (see [10, 11]); proofs from other perspectives
and related works appear in [8, 9, 22, 24, 25]. In another direction, Stanley has
developed a symmetric function generalization of the chromatic polynomial which
contains the chromatic difference sequence; see [26, 27].

Let G have n vertices. The normalized chromatic difference sequence of G,
ncds(G), is cds(G) with each term divided by n. This idea allows the chromatic
sequences of graphs with different number of vertices to be fairly compared. For in-
stance, the No-Homomorphism lemma in [4] proves that if G 7→ H homomorphically
and H is vertex transitive, then ncds(G) dominates ncds(H). Hell and Nesetril there-
fore think about the graph homomorphism of G to H as coloring G with H [15]; see
also [16, 17, 18, 20, 21]. Another generalization of the ncds is Zhou’s work in [30].

The first term of ncds(G) is called the independence ratio, µ(G). See also [5,
13, 19, 31] for other connections with graph homomorphism. Häggkvist uses the No-
Homomorphism lemma to prove that a graph G with odd girth at least 5 and minimum
degree at least (3/8)n maps homomorphically to the 5-cycle; hence µ(G) ≥ 2/5 [12].
Albertson, Chan, and Haas generalize this theorem to get that if G is a graph with
odd girth 2k+ 1 and minimum degree at least (k/(2k+ 1))n, then µ(G) ≥ k/(2k+ 1)
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†Department of Mathematics, Wesleyan University, Middletown, CT 06459-0128 (kcollins@

wesleyan.edu).

330



CIRCULANTS AND SEQUENCES 331

[3]. We show that if ncds(G) = ncds(G × G), then equality holds for each of these
theorems. We also make a generalization to graphs with larger clique size.

A circulantG with n vertices is a vertex transitive graph with rotational symmetry
such that two vertices are adjacent if their difference appears in a fixed set S. Define
the size of S, |S|, to be the sum of the first and last elements of S, and µ(S) to be the
independence ratio of any consecutive set of |S| vertices in G. We show that µ(S) ≥
µ(G). Let a set T be reversible if T = |T | − T . Then we show limn→∞ µ(G) ≥ µ(T )
whenever S ⊆ T . We also conjecture that the independence number of G with edges
given by reversible T equals bn · µ(T )c when n is sufficiently large. In light of Zhou’s
recent work [28, 29], it seems likely that these results may generalize to Cayley graphs
of finite abelian groups. See also Larose, Laviolette, and Tardif [23].

Section 2 makes some useful definitions. In section 3 we prove an upper bound
that we use throughout the paper, and describe some examples. Section 4 proves the
independence ratio results that coincide with those of Häggkvist, and of Albertson,
Chan, and Haas. Section 5 proves the further results on the independence ratio of
circulants. We make some conjectures in section 6.

2. Definitions. All graphs will be simple and undirected. A circulant is a
graph G with n vertices labeled 0, 1, 2, . . . , n − 1 and edges determined by set S ⊆
{1, 2, . . . , bn2 c}. Vertex i is adjacent to j if |i − j| ∈ S or n − |i − j| ∈ S. Circulant
graphs are necessarily vertex transitive.

Let G and H be two graphs. Define the Cartesian product G × H to be the
graph with vertex set V (G) × V (H). Two vertices (g1, h1) and (g2, h2) are adjacent
if g1 = g2, and h1 is adjacent to h2 in H, or g1 is adjacent to g2 in G, and h1 = h2.

Define the chromatic number of graph G, called χ(G), to be the smallest integer
n such that the vertices in G can be colored with n colors so that if two vertices are
adjacent, then they receive different colors. Let χ(G) = m. Define the chromatic
sequence of G to be ∆1,∆2, . . . ,∆m, where ∆i is equal to the number of vertices in
the largest i-colorable vertex induced subgraph of G.

Let G be a graph. We define the chromatic difference sequence of G, cds(G) to
be α1, α2, . . . , αm, where α1 = ∆1 and αi = ∆i − ∆i−1 for 2 ≤ i ≤ m. Note that
α1 is the independence number of G. We will abbreviate α1(G) as α(G). Define the
independence ratio of G to be µ(G) = α(G)/n, where n is the number of vertices of G.

Let the number of vertices of G be n. Define the normalized chromatic difference
sequence of G, ncds(G), to be α1/n, α2/n, . . . , αm/n. Then G is said to be stable
if ncds(G) = ncds(G2). Define the ultimate chromatic difference sequence to be
NCDS(G) = limk→∞ ncds(Gk) [13, 30].

Note that the chromatic number of Gk is greater than or equal to the chromatic
number of G, since Gk contains G as an induced subgraph. Conversely, χ(G) ≥ χ(Gk)
by an easy argument. We let f : V (G)→ {1, 2, . . . , χ(G)} be a coloring of G and

f(v1, v2, . . . , vk) =
n∑
i=1

f(vi) (modulo n).

If two vertices inGk are adjacent, then they differ in only one position of their k-tuples,
and hence must receive different colors modulo n.

3. An upper bound. A graph G is said to be stable if the normalized chromatic
difference sequence of G is equal to the normalized chromatic difference sequence of
G × G, the Cartesian product of G with itself. Zhou has shown that circulants and
Cayley graphs of finite abelian groups are stable; see [28, 29]. Siran has demonstrated
the existence of Cayley graphs which are not stable [14]. See also Conjecture 1.
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The generalized Petersen graph P (7, 3) in Figure 3.1(c) is a graph which is stable
but neither a circulant nor the Cayley graph of a finite abelian group. We obtain an
upper bound on α(G×H) by using a clique cover of H and cds(G). This proves that
a graph G cannot be stable unless the first ω(G) terms of the ncds(G) are equal.

Let A = a1 ≥ a2 ≥ · · · ≥ as be a partition of n. Define its conjugate partition,
A∗, by a∗i equals the number of elements of A which are at least i, for 1 ≤ i ≤ a1.

THEOREM 3.1. Let H be a graph, and let C = c1, c2, . . . , cs be the sizes of a
disjoint clique cover of H, where c1 ≥ c2 ≥ · · · ≥ cs. Let C∗ be the conjugate partition
of C. For any graph G,

α1(G×H) ≤
χ(G)∑
i=1

c∗i (H)αi(G).

Proof. Let I be a maximum independent set in G ×H and let Ih be the subset
of I whose first entries are equal to h for each vertex h of H. Then Ih is isomorphic
to an independent set in G. Clearly, if h1 is adjacent to h2 in H, Ih1 ∩ Ih2 = ∅.
Hence, if h1, h2, . . . , ht form a clique in H, then Ih1 , Ih2 , . . . , Iht are t pairwise disjoint
independent sets of G; hence |Ih1∪Ih2∪· · ·∪Iht | ≤ ∆t = α1(G)+α2(G)+ · · ·+αt(G),
where αj = 0 if j > χ(G).

Thus |I| ≤
∑s
i=1
∑ci(H)
j=1 αj(G). Each αj(G) appears in the sum the same num-

ber of times as the number of cliques which have size at least j. This number is
c∗j (H).

COROLLARY 3.2. Let H be a graph with |H| vertices that contains at least one
edge. Let G be a graph such that α1(G) > αi(G) for some 2 ≤ i ≤ ω(H). Then
α(G×H) < |H|α(G).

Proof. Let C1, C2, . . . , Ct be any disjoint clique covering of H that contains a
clique of size ω(H). Since H contains an edge, c∗2 > 0. Note that

∑s
i=1 ci = |H| =∑c1

j=1 c
∗
j . Therefore

∑l
i=1 c

∗
i (H)αi(G) < |H|α1(G).

COROLLARY 3.3. Let G be a stable graph. Then

α1(G) = α2(G) = · · · = αω(G)(G).

The following is a direct proof that circulants satisfy Corollary 3.3.
THEOREM 3.4. Let G be a circulant. Then α1(G) = α2(G) = · · · = αω(G)(G).
Proof (direct). Let the vertices of G be numbered from 0 to n − 1. Let I be

a maximum independent set of G, and let W be a maximum clique of G. All ad-
dition is modulo n. Then {I + w|w ∈ W} is a collection of ω disjoint maximum
independent sets of G. Similarly, {W + i|i ∈ I} is a collection of α disjoint maximum
cliques.

The Petersen graph (Figure 3.1(a)) is not a circulant, since cds(P ) = 4, 3, 3. The
NCDS(P k) = 1/3, 1/3, 1/3; see [4]. The tree T in Figure 3.1(b) has cds(T ) = 4, 2 and
ncds(T 2) = 1/2, 1/2. It is easy to check that P (7, 3) in Figure 3.1(c) is not a circulant
or the Cayley graph of a finite abelian group, and that cds(G) = 5, 5, 4. Label the
outside vertices counterclockwise from the top as 1, 2, 3, 4, 5, 6, 7, and label the vertex
on the inside 7-cycle which is adjacent to i as i′. Let T1 = {1, 3, 5}, T2 = {2, 4},
U1 = {2, 4}, and U2 = {5, 6, 7}. All arithmetic is modulo 7. Then a maximum
independent set in G2 with 70 vertices is

{(i, j)|j ∈ (T1 + i− 1)} ∪ {(i, j′)|j ∈ (T2 + i− 1)}
∪ {(i′, j)|j ∈ (U1 + i− 1)} ∪ {(i′, j′)|j ∈ (U2 + i− 1)}.
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FIG. 3.1. The Petersen graph in (a) is not stable; hence it is not a circulant. The tree T in (b)
is not stable, but T 2 is stable. The generalized Petersen graph P (7, 3) in (c) is stable but is neither
a circulant nor a finite abelian Cayley graph.

A second maximum independent set is given by

{(i, j)|j ∈ (T1 + i)}∪{(i, j′)|j ∈ (T2 + i)}∪{(i′, j)|j ∈ (U1 + i)}∪{(i′, j′)|j ∈ (U2 + i)}.
The graph G2 is 3-colorable since G is, hence ncds(G2) = 5/14, 5/14, 2/7 = ncds(G),
and G is stable.

4. Independence ratio of stable graphs. The cds of a stable graph G has
its first ω terms equal to α. We prove that if G contains a partitionable graph H
with independence number β and with the same clique size as G, then the next term
in cds(G) is at least α/β. Since odd cycles are partitionable, we apply this result to
graphs with large odd girth. This gives an upper bound on the independence ratio
which is the same number as the lower bounds of Häggkvist, and of Albertson, Chan,
and Haas, when the minimum degree is bounded from below.

Define a graph G to be partitionable (or an (α, ω)-graph) if (i) n = αω + 1; (ii)
every vertex v is in exactly α independent sets of size α and ω cliques of size ω;
(iii) the n independent sets of size α, say S1, S2, . . . , Sn and the n cliques of size ω,
say C1, C2, . . . , Cn, can be ordered so that Si ∩ Ci = ∅ and Si ∩ Cj 6= ∅ whenever
i 6= j. Odd cycles and their complements are partitionable. Partitionable graphs are
therefore related to the Strong Perfect Graph conjecture. See [6].

THEOREM 4.1. Let G be a graph, and let H be a partitionable graph such that
ω(G) = ω(H) = ω. Then α(G×H) ≤ α(H)

∑ω+1
i=1 αi(G).

Proof. Let α(H) = β, α(G) = α. Then consider an independent set I in G×H,
where each vertex of H is replaced by a copy of G. Whenever two vertices in H are
adjacent, then there is a matching between corresponding copies of G which joins
isomorphic vertices of G. For every vertex v of H, let I(v) be the intersection of I
and the copy of G at v.

Thus if v1 is adjacent to v2 in H, then I(v1) ∩ I(v2) = ∅, where I(v1), I(v2)
are considered as subsets of the vertices of G. If v1, v2, . . . , vt is a clique in H, then
I(v1), I(v2), . . . , I(vt) is a collection of disjoint independent sets of G, that is, a partial
coloring of G. Thus | ∪tj=1 I(vj)| ≤

∑t
j=1 αj(G).

Label the vertices of H with 0 to β ·ω so that in (H−0) the β disjoint ω-cliques are
C1, C2, . . . , Cβ , where m ∈ Ci exactly when (i− 1)ω+ 1 ≤ m ≤ i · ω. Let J(0) = I(0)
and J(k) =

⋃
(I(0)∩I(j1)∩I(j2)∩. . . I(jk)) where (i−1)ω+1 ≤ ji ≤ i·ω for 1 ≤ i ≤ k.

Each term in the union is nonempty if and only if the vertices 0, j1, j2, . . . , jk form an
independent set in H. Notice that J(k) ⊆ J(k − 1).
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Then we partition the vertices of I into β disjoint (ω + 1)-colorable subgraphs
of G. Let Gi = (J(i − 1) − J(i)) ∪

⋃ω
r=1 I((i − 1) · ω + r). Notice that J(i) =⋃ω

r=1 (I((i− 1)ω + r) ∩ J(i− 1)); hence when J(i) is subtracted from J(i−1), we have
removed J(i−1)∩

⋃ω
r=1 I((i−1)ω+r) from J(i−1). Also, (i−1)ω+1, (i−1)ω+2, . . . , i·ω

forms a clique in H; hence Gi is the union of ω + 1 disjoint independent sets of G.
Thus |Gi| ≤

∑ω+1
s=1 αs(G).

Now the question remains of whether we have included every vertex of I(0) in our
partition. At each step i we include J(i− 1)− J(i) so that what we have remaining
to include is J(i). Thus after partitioning β times, one for each of the ω-cliques of
H, we have remaining J(β) =

⋃
(I(0) ∩ I(j1) ∩ I(j2) ∩ . . . I(jβ)). But J(β) must be

empty, since 0, j1, j2, . . . , jβ is a set of size β + 1 and hence cannot be independent in
H. Hence |I| ≤

∑β
i=1 |Gi| ≤ β(

∑ω+1
i=1 αi(G)).

For example, if H is the 5-cycle, then α(G×H) ≤ 2(α1(G) + α2(G) + α3(G)).
The argument above can be applied separately to disjoint subgraphs of H to

bound α(G×H) further.
THEOREM 4.2. Let G be a stable graph, and let H be an induced subgraph of G

which is partitionable, and ω(G) = ω(H). Let α(H) = β, α(G) = α. Then

αω(G)+1(G) ≥ α/β and β/(βω + 1) ≥ µ(G).

Proof. Suppose that I is a maximum independent set in G2. Since G is stable,
α(G2) = |G|α(G); hence if we consider G2 as replacing each vertex of G with a
copy of G, we must have that a maximum independent set in G2 intersects each of
the |G| copies of G in α(G) vertices. Let I(H) be I restricted to H × G. Thus
|I(H)| = |H|α(G). Now by Corollary 3.3, α = α1(G) = α2(G) = · · · = αω(G). By
the previous lemma, |I(H)| = (βω + 1)α ≤ β(ωα+ αω+1), so α/β ≤ αω+1(G).

Let n be the number of vertices of G. Then n ≥
∑ω+1
i=1 αi(G) ≥ α(ω + 1/β), so

we get µ ≤ β/(βω + 1).
Define σ(G) to be the size of the smallest chordless odd cycle of G. Let σ(G) = 0

if G has no chordless odd cycle, i.e., G is bipartite.
COROLLARY 4.3. Let G be a stable graph with n vertices, and let σ(G) ≥ 2l + 1.

Then α(G)/l ≤ α3(G) and µ(G) ≤ l/(2l + 1).
Proof. The first half of the proof follows from Theorem 4.2 and the fact that a

2l + 1 cycle is partitionable and has independence number l.
This lower bound on µ(G) can be combined with the following results. Let δ(G)

be equal to the minimum vertex degree of G.
THEOREM 4.4 (see Häggkvist [12]). Let G be a graph with n vertices, σ(G) ≥ 5,

and δ > (3n)/8. Then µ(G) ≥ 2/5.
THEOREM 4.5 (see Albertson, Chan, and Haas [3]). Let l > 2. Let G be a graph

with n vertices, σ(G) ≥ 2l + 1, and δ > n/(l + 1). Then µ(G) ≥ l/(2l + 1).
COROLLARY 4.6. Let G be a stable graph with σ(G) ≥ 5 and δ(G) > 3n/8. Then

µ(G) = 2/5.
COROLLARY 4.7. Let l > 2 and let G be a stable graph with σ(G) ≥ 2l + 1 and

δ(G) > n/(l + 1). Then µ(G) = l/(2l + 1).
In particular, any circulant G with n vertices and δ(G) > n/(l + 1) satisfies

α(G)/n = l/(2l + 1). Since gcd(l, 2l + 1) = 1, 2l + 1 must divide n. Thus if 2l + 1
does not divide n, G must have σ(G) ≤ 2l − 1. If G is a circulant with δ(G) > 3n/8
and 5 does not divide n, then G has a triangle.

Theorem 4.1 still holds if the graph H is replaced by the kth power of a cycle
where the clique size does not divide the number of vertices. These circulants appear
in Seymour’s conjecture; see [7]. Let W (m, l) be the circulant with m vertices and
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S = {1, 2, 3, . . . , l} such that m = j(l+ 1) + r and r 6= 0. Then W (m, l) has ω = l+ 1,
α = j, and χ = l + 2. When r = 1, W (m, l) is partitionable.

THEOREM 4.8. Let G be a graph. Let m = j(l + 1) + r, where r 6= 0. Then
α(W (m, l)) = j and α(G×W (m, l)) ≤ j

∑l+2
i=1 αi(G) +

∑r−1
i=1 αi(G).

Proof. The proof is an easy generalization of the proof of Theorem 4.1.
COROLLARY 4.9. Let G be a stable graph that contains W (m, l) such that l + 1

does not divide m. Then αl+2(G) ≥ α(G)/α(W (m, l)) and µ(G) ≤ α(W (m, l))/((l +
1)j + 1).

5. Independence ratio of circulants. We prove that the independence ratio
of circulant G with edge set given by S is less than or equal to the independence ratio
of a graph U(S) that depends only on S. This upper bound is therefore independent
of the number of vertices in G. We then show that the limit of the independence
ratio of a reversible circulant as the number of vertices goes to infinity equals the
independence ratio of U(S). We show two methods to embed a circulant which is not
reversible into a circulant which is reversible, thus getting lower bounds for the limit
of the independence ratio of any circulant.

Let l ≥ 2. Let S = {a1, a2, . . . , al} be the edge set of circulant G. Let |S| = a1+al.
Let U(S) be the graph with vertices labeled 0, 1, 2, . . . , (|S|−1) such that i is adjacent
to j if |i− j| ∈ S. Then U(S) is not a circulant because we are not including as edges
the vertices i and j where |i− j| ∈ |S| − S. We abbreviate α(U(S)) and ω(U(S)) as
α(S) and ω(S), respectively. Let µ(S) = α(S)/|S|. Then we get the following upper
bound on the independence ratio. See also Conjecture 2.

THEOREM 5.1. Let G be a circulant with n vertices and edge set given by S. Then
µ(S) ≥ µ(G).

Proof. Let n = q|S| + r with 0 ≤ r ≤ |S| − 1. Let I be a fixed maximum
independent set of G and let Hj,k = {j, j + 1, j + 2, . . . , j + k − 1} with arithmetic
modulo n. Let i be the minimum of |H(j, r)∩ I| over 0 ≤ j ≤ n−1. If i/r ≤ µ(S), we
show µ(G) ≤ µ(S). Observe that any consecutive |S| vertices of the circulant intersect
with I in at most α(S) vertices. Therefore we can break up the circulant into q groups
of |S| and one group of r vertices, choosing the r vertices so that we achieve i as the
minimum intersection with I. Then α(G) ≤ qα(S) + i ≤ qα(S) + rα(S)/|S| =
α(S)
|S| (q|S|+ r) = nα(S)

|S| . Hence µ(G) ≤ µ(S).
Suppose that i/r > α(S)/|S|. Define |S| = r0 and r = r1. Let rl+2 = rl+1(b rl

rl+1
c+

1) − rl for nonnegative integer l. Let il+2 be the minimum of |H(j, rl+2 ∩ I|. Then
we prove that µ(S) < i/r < i2/r2 < · · · < iL/rL, where rL is the greatest common
divisor of n and |S|. This gives the following contradiction: iL|S|/rL > α(S) ≥
|H(j, |S|) ∩ I| ≥ iL(|S|/rL).

Now gcd(n, |S|) = gcd(|S|, r) by the Euclidean algorithm. Since rl+2 is an in-
teger linear combination of rl+1 and rl, we have gcd(rl, rl+1) = gcd(rl+1, rl+2) for
all nonnegative integers l. Let rl = q · rl+1 + m with 0 ≤ m ≤ rl+1 − 1. Then
rl+2 = rl+1(q + 1)− rl = rl+1 −m. Clearly rl+2 = rl+1 −m < rl+1 unless m = 0, in
which case rl+1 divides rl and rl+1 = gcd(n, |S|). Therefore the sequence r0, r1, r2, . . .
is a strictly decreasing sequence of positive integers with the same greatest common
divisor, which must end in rL = gcd(n, |S|).

Assume by induction that il/rl < il+1/rl+1. Let rl = q · rl+1 + m. Fix j. Let
k1 = |H(j + q · rl+1,m) ∩ I| and k2 = |H(j + rl, rl+2) ∩ I|. Then il ≥ |H(j, rl) ∩ I| ≥
q ·il+1 +k1. Also, k1 +k2 ≥ il+1. Hence il−q ·il+1 ≥ il+1 +k2. Since il/rl < il+1/rl+1,
we get il+1rl − il+1q · rl+1 > il+1rl+1 − k2rl+1. Simplifying, k2rl+1 > il+1(rl+1 −
m), but rl+2 = rl+1 − m. Therefore, k2/rl+2 > il+1/rl+1. This inequality must
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hold for any value of j; hence it holds when k2 is the minimum value, so il+2/rl+2
> il+1/rl+1.

THEOREM 5.2. Let G be a circulant with n vertices and edge set given by S. Then
1/ω(S) ≥ µ(G).

Proof. For any circulant G, n ≥ α(G)ω(G) by Theorem 3.4; hence 1/ω(G) ≥
µ(G). Let S = {a1, a2, . . . , al}. Then n ≥ 2al by our definition of S. Thus U(S) has
a1 + al vertices and G has at least that many. We argue that ω(G) ≥ ω(S); hence
1/ω(S) ≥ 1/ω(G) ≥ µ(G). Let the vertices of G be labeled 0, 1, 2, . . . , n− 1. Then a
copy of U(S) is embedded in the subgraph of G induced by 0, 1, 2, . . . , (a1 + al − 1).
Thus ω(G) ≥ ω(S).

For any integer k, let k − S = {k − a1, k − a2, . . . , k − al}. Define a set S to
be reversible if |S| − S = S. Note that this means S is reversible if and only if
ai + al+1−i = |S| for all 1 ≤ i ≤ l. We show that a circulant G with n vertices and
reversible set S maps homomorphically to the circulant H with n − |S| vertices and
the same set S.

LEMMA 5.3. Let H be a reversible circulant with n vertices and with edge set
given by S. Let n > |S|. Let G be the circulant with n + |S| vertices and edge set
given by S. Then G maps homomorphically to H.

Proof. Let the vertices of H be {0, 1, 2, . . . , n − 1} and the vertices of G be
{0, 1, 2, . . . , n + |S| − 1}. We define a homomorphism f : G → H by f(i) = i if
0 ≤ i ≤ n− 1 and by f(i+ n) = i if 0 ≤ i ≤ |S| − 1. Then we show that if v and u in
G are adjacent, then f(v) and f(u) are adjacent in H.

Case 1. Suppose that 0 ≤ v, u ≤ n− 1. Then if v, u are adjacent in G, |v − u| is
in S or n+ |S| − S. Every member of n+ |S| − S is at least n; hence |v − u| is in S
and, since f(v) = v, f(u) = u, we have that f(v), f(u) are adjacent in H.

Case 2. Suppose that 0 ≤ v, u ≤ |S| − 1. Then if v + n, u+ n are adjacent in G,
|(v + n) − (u + n)| is in S or n + |S| − S. But |v − u| ≤ |S| − 1, hence (v + n) and
(u+ n) are adjacent in H.

Case 3. Suppose that 0 ≤ v ≤ n − 1 and n ≤ u + n ≤ n + |S| − 1, and v, u + n
are adjacent in G. Then |u+ n− v| is in S or n+ |S| − S. If u+ n− v = aj for some
j, then v − u = n − aj , so v − u is in n − S. If u + n − v = n + |S| − aj for some j,
then u− v = |S| − aj , and since S is reversible, u− v = al+1−j .

For any two graphs G and H for which G maps homomorphically to H, an
i-colorable subgraph of H pulls back to an i-colorable subgraph of G. The No-
Homomorphism lemma [4] is a special case of this fact. In the lemma below we show
that in a reversible circulant, we can find a large independent set, which is based on
a fixed small circulant with the same set of edges, by folding the large circulant onto
the small one.

LEMMA 5.4. Let H be a reversible circulant with n vertices and with edge set
given by S. Let al be the largest element of S and let n > |S| + al. Let G(k) be the
circulant with n + (k − 1) · |S| vertices and edge set given by S. Then α(G(k)) ≥
α(H) + (k − 1)α(S). Further, limk→∞ µ(G(k)) ≥ µ(S).

Proof. Note that G(1) = H. By Lemma 5.3, G(k + 1) maps homomorphically to
G(k) for each positive integer k, and hence we have a homomorphism from G(k + 1)
to H for every k. This map is fk : G(k) → H by fk(i) = i for 0 ≤ i ≤ n − 1 and
by fk(i + jn) = i for 0 ≤ i ≤ |S| − 1 and 1 ≤ j ≤ k − 2. Any independent set in
H can be pulled back to form an independent set in G(k) since the preimage of a
vertex in H is an independent set of vertices in G(k). In particular we choose an
independent set with as many vertices as possible chosen from 0, 1, 2, . . . , |S| − 1 in
H. Since n > |S|+al, n−al > |S| and there are no edges whose difference is in n−S
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in the range of vertices 0, 1, 2, . . . , |S| − 1. Then α(G(k)) ≥ α(H) + (k − 1) · α(S) ≥
kα(S). Hence the limk→∞ µ(G(k)) ≥ limk→∞ kα(S)/(n+ (k− 1) · |S|) ≥ µ(S). Thus
we get

lim
k→∞

µ(G(k)) ≥ lim
k→∞

kα(S)
(n+ (k − 1) · |S|) = µ(S) lim

k→∞

k

(n/|S|+ k − 1)
= µ(S).

Let S = {a1, a2, . . . , al} be a set which is not reversible. Then S can be embedded
in a larger set which is reversible. This will add edges to the circulant which has S as
its edge set, which may make the largest independent set smaller. Let al−1 + al = D
and a1 + al = E. Let Ŝ = S ∪ (D− S) and S̃ = S ∪ (E − S). Then it is easy to check
that Ŝ, S̃ are reversible and contain S. If S is reversible, define Ŝ, S̃ = S. Note that
α(Ŝ) ≥ α(S), since we have added only larger terms to S.

COROLLARY 5.5. Let G be a circulant with n vertices and edge set given by
S = {a1, a2, . . . , al}. Define L(S) = limn→∞ µ(G). Then µ(S), 1/ω(G) ≥ L(S) ≥
µ(Ŝ), µ(S̃). If G is reversible, then L(S) = µ(S).

We apply these bounds to two special cases: a circulant with every element of S
odd, and a circulant with S containing just two elements.

COROLLARY 5.6. Let G be a circulant with n vertices and edge set given by S
which contains only odd numbers. Then L(S) = 1/2.

Proof. Since G is a circulant and ω(G) ≥ 2, α1(G) = α2(G), hence n ≥ 2α1(G)
and µ(G) ≤ 1/2. If n is even, then G is bipartite; hence ncds(G) = 1/2, 1/2. If n is
odd, then G is not bipartite, but either S or Ŝ contains only odd numbers. Therefore
α(Ŝ) = |Ŝ|/2 by taking all vertices whose labels are even and less than |Ŝ|. Thus
µ(Ŝ) = 1/2 and Corollary 5.5 finishes the proof.

COROLLARY 5.7. Let G be a circulant with n vertices and edge set given by
S = {a, b}. Let n > 2(a+ b). Let q, r satisfy b = qa+ r with 0 ≤ r ≤ a− 1. Then

L(S) =


b+ r

2(a+ b)
q even,

b+ (a− r)
2(a+ b)

q odd.

Proof. We apply Corollary 5.5. Suppose that q is even. Then {i + 2ja|0 ≤ i ≤
a−1, 0 ≤ j ≤ (q−2)/2}∪{qa, qa+1, qa+2, . . . , qa+r−1} is an independent set in U(S)
and we can take α(S) ≥ aq/2+r = (b+r)/2. If q is odd, then {i+2ja|0 ≤ i ≤ a−1, 0 ≤
j ≤ (q−1)/2} is an independent set in U(S) and α(S) ≥ a(q+ 1)/2 = (b+ (a− r))/2.
Dividing by |S| = a+ b gives the result.

For example, L({1, 2k}) = k/(2k + 1). We provide some examples in Figure 5.1
below.

6. Conjectures. A circulant (or Cayley graph) G is not only stable, but all of
its Cartesian powers Gk are stable. The graph in Figure 3.1(c) is not a circulant, but
it is stable, which leads to the following conjecture.

CONJECTURE 1. If G is stable, then Gk is stable for all positive integers k.
Let G,H be reversible with edge set given by S as described in Lemma 5.4, and n

is the number of vertices of H. Then µ(S) ≥ µ(G) ≥ (α(H) + (k− 1)α(S))/(n+ (k−
1)|S|). Hence n · µ(S) + α(S)(k − 1) ≥ α(G) ≥ α(H) + α(S)(k − 1). We conjecture
that for n as large as in Lemma 5.4, α(G) is always as large as possible. It is necessary
that n be large; if H is the circulant with S = {1, 5} and n = 11, then µ(S) = 1/2,
but µ(H) = 3/11, and 11/2 is much greater than 3.
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S Best lower bound Best upper bound
1, 2, 4 1/ω(S) = 1/3 µ(Ŝ) = 1/3
1, 2, 5 1/ω(S) = 1/3 µ(S̃) = 1/3
1, 2, 6 µ(S) = 2/7 µ(S̃) = 2/7
1, 2, 7 1/ω(S) = 1/3 µ(Ŝ) = 1/3
1, 3, 4 1/ω(S) = 1/3 µ(Ŝ) = 2/7
1, 3, 6 1/ω(S) = 1/3 µ(Ŝ) = 1/3
1, 4, 5 1/ω(S) = 1/3 µ(Ŝ) = 1/3
1, 4, 6 µ(S) = 3/7 µ(Ŝ) = 2/5
1, 4, 7 µ(S) = 3/8 µ(Ŝ) = 3/8
1, 5, 6 1/ω(S) = 1/3 µ(S̃) = 2/7
1, 6, 7 1/ω(S) = 1/3 µ(Ŝ) = 4/13

FIG. 5.1. These are the best upper and lower bounds for L(S) for some small values of S. See
also Conjecture 3.

CONJECTURE 2. Let G be a reversible circulant with n vertices and edge set given
by S = {a1, a2, . . . , al}. If n > |S|+ al, then α(G) = bn · µ(S)c.

By Corollary 5.5, we have L(S) ≥ µ(Ŝ), µ(S̃); Figure 5.1 shows that L({1, 2, 4}) =
µ(Ŝ), and L({1, 2, 5}) = µ(S̃).

CONJECTURE 3. L(S) = max{µ(Ŝ), µ(S̃)}.
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Paul Erdős is Eighty, Bolyai Society Mathematical Studies, vol. 2, János Bolyai Math.
Soc., Budapest, 1996, pp. 271–282.

[19] P. HELL, X. YU, AND H. ZHOU, Independence of graph powers, Discrete Math., 127 (1994),
pp. 213–220.

[20] P. HELL AND X. ZHU, The existence of homomorphisms to oriented cycles, SIAM J. Discrete
Math., 8 (1995), pp. 208–222.

[21] P. HELL AND X. ZHU, Homomorphisms to oriented paths, Discrete Math., 132 (1994) pp. 107–
114.

[22] A. HOFFMAN AND D. SCHWARTZ, On partitions of a partially ordered set, J. Combin. Theory
Ser. B, 23 (1977), pp. 3–13.

[23] B. LAROSE, F. LAVIOLETTE, AND C. TARDIF, On normal Cayley graphs and hom-idempotent
graphs, European J. Combin., to appear.

[24] M. SAKS, A short proof of the existence of k-saturated partitions of a partially ordered set,
Adv. Math., 33 (1979), pp. 207–211.

[25] M. SAKS, Some sequences associated with combinatorial structures, Discrete Math., 59 (1986),
pp. 135–166.

[26] R. STANLEY, A symmetric function generalization of the chromatic polynomial of a graph,
Adv. Math., 111 (1995), pp. 166–194.

[27] R. STANLEY, Graph colorings and related symmetric functions: Ideas and applications, Discrete
Math., to appear.

[28] H. ZHOU, The chromatic difference sequence of the Cartesian product of graphs, Discrete Math.,
90 (1991), pp. 297–311.

[29] H. ZHOU, The chromatic difference sequence of the Cartesian product of graphs, Part II, Dis-
crete Appl. Math., 41 (1993), pp. 263–267.

[30] H. ZHOU, On the ultimate normalized chromatic difference sequences of graphs, Discrete Math.,
148 (1996), pp. 287–297.

[31] X. ZHU, On the bounds for the ultimate independence ratio of a graph, Discrete Math., 156
(1996), pp. 229–236.



SEMIKERNELS AND (k, l)-KERNELS IN DIGRAPHS∗
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Abstract. Let D be a digraph with minimum indegree at least one. The following results
are proved: a digraph D has a semikernel if and only if its line digraph L(D) does; the number of
(k, 1)-kernels in L(D) is less than or equal to that in D; if the number of (k, l)-kernels in D is less
than or equal to the number of (2, l)-kernels in L(D), and if L(D) has a (k, l)-kernel, then D has a
(k′, l′)-kernel for k′ + l ≤ k, l ≤ l′. As a consequence, it obtains previous results about kernels and
quasikernels in the line digraph.

It is also proved that any digraph has a (k, l)-kernel with l ≥ 2k − 2, k ≥ 1, generalizing a
previous result on the existence of quasikernels in digraphs.

Key words. kernel, (k, l)-kernels, line digraph, semikernels
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1. Introduction. For general concepts we refer the reader to [1].
DEFINITION 1.1. Let D = (V (D), A(D)) be a digraph. The line digraph L(D) of

D is the digraph L(D) = (V (L(D)), A(L(D))) with set of vertices the set of arcs of
D, and for any h, k ∈ A(D) there is (h, k) ∈ A(L(D)) if and only if the corresponding
arcs h, k induce a directed walk in D, i.e., the terminal endpoint of h is the initial
endpoint of k. In what follows we denote the arc h = (u, v) ∈ A(D) and the vertex
h ∈ V (L(D)) by the same symbol. If H is a set of arcs in D, it is also a set of vertices
of L(D). When we want to emphasize our interest in H ⊆ A(D) as a set of vertices
of L(D), we use the symbol HL instead of H.

DEFINITION 1.2. A set K ⊆ V (D) is said to be a kernel if it is both independent (a
vertex in K has no successor in K) and absorbing (a vertex not in K has a successor
in K).

This concept was introduced by Von Neumann [11] and it has found many ap-
plications [1], [2]. Several authors have been investigating sufficient conditions for
the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [11] ,
Richardson [13], Duchet and Meyniel [4], [5], and Galeana-Sánchez and Neumann-
Lara [7]. In [9], Harminc considered the existence of kernels in the line digraph of a
given digraph D and he proved the following result.

THEOREM 1.1 (see [8]). The number of kernels of a digraph D is equal to the
number of kernels in its line digraph L(D).

DEFINITION 1.3 (see [12]). A semikernel S of D is an independent set of vertices
such that, for every z ∈ (V (D) \ S) for which there exists an Sz-arc, there also exists
a zS-arc.

The concept of semikernel is nearly related to that of kernel, and is very useful
to find kernels in digraphs, where every induced subdigraph of a digraph D has a
semikernel then D has a kernel (see [12]). In [8] it was proved that the number of
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semikernels of a digraph D is less than or equal to the number of semikernels of L(D).
In this paper we prove that a digraph D has a semikernel if and only if L(D) does.

DEFINITION 1.4. A quasikernel Q of a digraph D is an independent set of vertices
such that V (D) = Q ∪ Γ−(Q) ∪ Γ−(Γ−(Q)) (where for any A ⊆ X, Γ−(A) = {x ∈
X|x has a successor in A}).

In [3], Chvátal and Lovász proved that any digraph has a quasikernel; a general-
ization of this result was obtained by Duchet, Hamidoune, and Meyniel [6]. In [8] the
following result was proved.

THEOREM 1.2 (see [8]). If D is a digraph such that every vertex has indegree at
least one, then the number of quasikernels of D is less than or equal to the number of
quasikernels of its line digraph L(D).

DEFINITION 1.5. Let D be a digraph. By the directed distance dD(x, y) from the
vertex x to the vertex y in D we mean the length of a shortest directed path from x to
y in D.

DEFINITION 1.6 (see [10]). Let k and l be natural numbers with k ≥ 2, l ≥ 1. A
set J ⊆ V (D) will be called a (k, l)-kernel of the digraph D if

(1) for each x′ 6= x, {x, x′} ⊆ J we have dD(x, x′) ≥ k,
(2) for each y ∈ (V (D) \ J), there exists x ∈ J such that dD(y, x) ≤ l.
Notice that, for k = 2, l = 1, we have that a (k, l)-kernel is a kernel and that for

k = 2, l = 2, a (k, l)-kernel is a quasikernel.

2. Semikernels and (k, l)-kernels in the line digraph.
DEFINITION 2.1 (see [9]). Let D = (V (D), A(D)) be a digraph. We denote by

P(X) the set of all the subsets of the set X, and f : P(V (D))→ P(A(D)) will denote
the function defined as follows: for each Z ⊆ V (D), f(Z) = {(u, x) ∈ A(D)|x ∈ Z}.
Also, we denote by f̄ : P(A(D))→ P(V (D)) the function defined as follows: for each
A ⊆ A(D), f̄(A) = {x ∈ V (D)|(u, x) ∈ A}.

LEMMA 2.1 (see [9]). If Z ⊆ V (D) is an independent set of D, then f(Z)L is an
independent set in L(D).

THEOREM 2.1. If D is a digraph such that every vertex has indegree at least one,
then D has a semikernel if and only if L(D) has a semikernel.

Proof. If D has a semikernel S, then from the proof of Theorem 2.1 [8], we know
that f(S)L is a semikernel of L(D).

Conversely, if L(D) has a semikernelA, then we will show that f̄(A) is a semikernel
of D.

First we prove that f̄(A) is independent. By contradiction, if f̄(A) is not indepen-
dent, then there are two vertices x, y ∈ f̄(A) such that (x, y) ∈ A(D). Since x ∈ f̄(A),
there exists a vertex u ∈ V (D) such that (u, x) ∈ A. Since ((u, x), (x, y)) is an A(x, y)-
arc in L(D) and A is a semikernel of L(D), there must be an arc (y, v) ∈ A(D) such
that (y, v) ∈ A and ((x, y), (y, v)) ∈ A(L(D)). Since y ∈ f̄(A), there is a t ∈ V (D)
such that (t, y) ∈ A. Then we have {(t, y), (y, v)} ⊆ A, with ((t, y), (y, v)) ∈ A(L(D)),
which contradicts the independence of A. We conclude that f̄(A) is independent.

Now, let y ∈ V (D) such that there is a f̄(A)y-arc; there exists x ∈ f̄(A) with
(x, y) ∈ A(D). Since x ∈ f̄(A), there is an arc (z, x) ∈ A. Thus ((z, x), (x, y)) is an
A(x, y)-arc in L(D). Since A is a semikernel of L(D), there exists an (x, y)A-arc in
L(D). Let that arc be ((x, y), (y, u)) so that (y, u) ∈ A and then u ∈ f̄(A). We have
proved that there is a yf̄(A)-arc in D. Hence f̄(A) is a semikernel of D.

THEOREM 2.2. Let D be a digraph such that each vertex has indegree at least
one. Then the number of (k, 1)-kernels in L(D) is less than or equal to the number
of (k, 1)-kernels in D.
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Proof. First we will prove that if K̄ is a (k, 1)-kernel of L(D), then f̄(K̄) is a
(k, 1)-kernel of D.

Let K̄ be a (k, 1)-kernel of L(D).
(a) If x 6= x′, {x, x′} ⊆ f̄(K̄), then dD(x, x′) ≥ k.
By contradiction, suppose that dD(x, x′) = n < k. Take α = (x = x0, x1, . . . , xn =

x′), a shortest directed path from x to x′ contained in D. Since x ∈ f̄(K̄), there exists
u ∈ V (D) such that (u, x) ∈ K̄. Denote by ai = (xi−1, xi) ∈ A(D), 1 ≤ i ≤ n, and
consider the following two possibilities:

If an = (xn−1, xn) ∈ K̄, consider that ((u, x), a1, a2, . . . , an) is a directed path
from (u, x) to an contained in L(D) of length n < k with {(u, x), an} ⊆ K̄; this
contradicts part (1) of Definition 1.6, as K̄ is a (k, 1)-kernel of L(D).

If an = (xn−1, xn) /∈ K̄, then it follows from part (2) of Definition 1.6 that there
exists (xn, z) ∈ K̄ such that ((xn−1, xn), (xn, z)) ∈ A(L(D)) (as K̄ is a (k, 1)-kernel of
L(D)). On the other hand, x′ = xn ∈ f̄(K̄), so there exists v ∈ V (D) with (v, xn) ∈ K̄
and then ((v, xn), (xn, z)) ∈ A(L(D)) with {(v, xn), (xn, z)} ⊆ K̄, contradicting part
(1) of Definition 1.6 as K̄ is a (k, 1)-kernel of L(D), k ≥ 2.

(b) If y ∈ V (D) \ f̄(K̄), then there exists x ∈ f̄(K̄) such that (y, x) ∈ A(D).
Since y ∈ V (D), it follows from the hypothesis of Theorem 2.1 that there exists

u ∈ V (D) with (u, y) ∈ A(D). Now y ∈ V (D) \ f̄(K̄) implies (u, y) ∈ V (L(D)) \
K̄; it follows from part (2) of Definition 1.6 that there exists (y, x) ∈ K̄ such that
((u, y), (y, x)) ∈ A(L(D)) (because K̄ is a (k, 1)-kernel of L(D)). Since (y, x) ∈ K̄, we
have x ∈ f̄(K̄) and (b) is proved.

Let K1 be the set of all (k, 1)-kernels of L(D) and K the set of all (k, 1)-kernels
of D. We will prove that f̄ ′ : K1 → K, where f̄ ′ is the restriction of f̄ to K1, is an
injective function.

(c) If K̄1, K̄2 ∈ K1, K̄1 6= K̄2, then f̄ ′(K̄1) 6= f̄ ′(K̄2).
Suppose, without loss of generality, that K̄1 \ K̄2 6= ∅ and take (u, v) ∈ K̄1 \ K̄2.

Clearly, from Definition 2.1 v ∈ f̄ ′(K̄1) and we will show that v /∈ f̄ ′(K̄2). By con-
tradiction, assume v ∈ f̄ ′(K̄2); hence there exists (z, v) ∈ K̄2. Since (u, v) /∈ K̄2,
it follows from part (2) of Definition 1.6 that there exists (v, y) ∈ K̄2. Hence
((z, v), (v, y)) ∈ A(L(D)) with {(z, v), (v, y)} ⊆ K̄2, contradicting part (1) of Defi-
nition 1.6, because K̄2 is a (k, 1)-kernel of L(D). We conclude that v /∈ f̄ ′(K̄2), and
so f̄ ′(K̄1) 6= f̄ ′(K̄2) and f̄ ′ is injective.

Remark 2.1. The hypothesis that each vertex has indegree at least one can-
not be omitted in Theorem 2.2 for k ≥ 3. It suffices to consider D with V (D) =
{u1, u2, u3, u4, u5, u6} and A(D) = {(u1, u2), (u2, u3), (u4, u5), (u5, u6)}. Here D has
no (k, 1)-kernel but L(D) has one (k, 1)-kernel for any k ≥ 3.

Remark 2.2. The inequality announced in Theorem 2.2 can be strict for k ≥
3. Consider D with V (D) = {u1, u2, u3} and A(D) = {(u1, u2), (u2, u3), (u3, u1),
(u1, u3)}. Then D has a (k, 1)-kernel and L(D) does not have any (k, 1)-kernel for
k ≥ 3.

THEOREM 2.3. Let D be a digraph such that every vertex has indegree at least
one. Then the number of (k, l)-kernels in D is less than or equal to the number of
(2, l)-kernels in L(D).

Proof. First we will prove that if K is a (k, l)-kernel of D, k ≥ 2, then f(K) is a
(2, l)-kernel of L(D).

Let K be a (k, l)-kernel of D.
(a) If a 6= a′, {a, a′} ⊆ f(K), then dL(D)(a, a′) ≥ 2.
By contradiction, suppose that dL(D)(a, a′) ≤ 1, as a 6= a′, then dL(D)(a, a′) = 1;

it follows from Definition 1.1 that the terminal endpoint of a is the initial endpoint
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of a′. Denoting a = (x, y), a′ = (y, z), it follows from Definition 2.1 and the fact
{a, a′} ⊆ f(K) that {y, z} ⊆ K, so (y, z) ∈ A(D) with {y, z} ⊆ K, contradicting part
(1) of Definition 1.6 as K is a (k, l)-kernel of D.

(b) If b ∈ V (L(D)) \ f(K), then there exists a ∈ f(K) such that dL(D)(b, a) ≤ l.
Denoting b = (u, v) we have from Definition 2.1 and the fact b /∈ f(K) that

v /∈ K; now part (2) of Definition 1.6 implies that there exists w ∈ K such that
dD(v, w) = n ≤ l. Let (v = x0, x1, . . . , xn = w) be a shortest directed path from v to
w in D and denote ai = (xi−1, xi) ∈ A(D). Then (b, a1, a2, . . . , an) is a directed path
in L(D) of length n from b to an, and since w ∈ K we have an ∈ f(K), so taking
a = an, (b) is proved.

Let K be the set of all (k, l)-kernels of D, k ≥ 2, and let K2 be the set of all
(2, l)-kernels of L(D). We will prove that f ′ : K → K2, where f ′ is the restriction of
f to K, is an injective function.

(c) If K1,K2 ∈ K, K1 6= K2, then f ′(K1) 6= f ′(K2).
Suppose, without loss of generality, that K1 \K2 6= ∅ and take v ∈ K1 \K2. It

follows from the hypothesis of Theorem 2.3 that there exists (u, v) ∈ A(D); it follows
from Definition 2.1 that (u, v) ∈ f ′(K1) \ f ′(K2) and so f ′(K1) 6= f ′(K2).

Remark 2.3. The hypothesis that each vertex has indegree at least one cannot
be omitted in Theorem 2.3 for l ≥ 2. Consider that D ∼= T2 is the directed path of
length two; L(D) ∼= T1 is the directed path of length one, D has two (2, l)-kernels for
any l ≥ 2, and L(D) has just one (2, l)-kernel for any l ≥ 2.

Remark 2.4. The inequality announced in Theorem 2.3 can be strict for l ≥ 2.
Consider any k, k > l + 1 and Tk−1 has no (k, l)-kernel but that L(D) ∼= Tk−2 has a
kernel, and hence a (k, l)-kernel, for any l ≥ 2.

Remark 2.5. As a direct consequence of Theorems 2.2 and 2.3 we obtain Theorem
1.1 in the case that each vertex has indegree at least one, as a kernel is a (2, 1)-kernel.
In addition, Theorem 1.2 is a direct consequence of Theorem 2.3, as a quasikernel is
a (2, 2)-kernel.

COROLLARY 2.1. If D is a digraph such that each vertex has indegree at least
one, then the number of (2, l)-kernels in D is less than or equal to the number of
(2, l)-kernels in L(D).

The proof is a direct consequence of Theorem 2.3.
THEOREM 2.4. Let D be a digraph such that every vertex has indegree at least

one. If L(D) has a (k, l)-kernel, then D has a (k′, l′)-kernel, for k′+ l ≤ k and l ≤ l′.
Proof. Let D be a digraph as in the hypothesis, K̄ a (k, l)-kernel of L(D), k′+ l ≤

k, and l ≤ l′. We will prove that f̄(K̄) is a (k′, l′)-kernel of D.
(a) If {x, y} ⊆ f̄(K̄), then dD(x, y) ≥ k′.
By contradiction, suppose that dD(x, y) = n < k′, and let (x = x0, x1, . . . ,

xn = y) be a shortest directed path from x to y in D. Since x ∈ f̄(K̄), there exists
an arc a = (u, x) ∈ K̄. Denoting ai = (xi−1, xi) ∈ A(D), 1 ≤ i ≤ n, we have from
Definition 1.1 that (a, a1, . . . , an) is a directed path in L(D) of length n. Now consider
two possible cases.

If an ∈ K̄, then dL(D)(a, an) ≤ n < k′ < k with {a, an} ⊆ K̄, contradicting part
(1) of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).

If an /∈ K̄, then it follows from part (2) of Definition 1.6 that there exists b ∈ K̄
such that dL(D)(an, b) ≤ l; let (an = b0, b1, . . . , bm = b) be a shortest directed path in
L(D) from an to b. On the other hand, since y = xn ∈ f̄(K̄), there exists c = (v, y) ∈
K̄. Now consider two possibilities.

If c 6= b, then it follows from Definition 1.1 that (c, b1, b2, . . . , bm = b) is a directed
path in L(D) from c to b in L(D) of length m ≤ l < k with {c, b} ⊆ K̄, contradicting
part (1) of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).
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If c = b, then (a, a1, a2, . . . , an = b0, b1, . . . , bm = b) is a directed walk from a
to b in L(D) of length n + m; hence there exists in L(D) a directed path from a
to b of length at most n + m and n + m < k′ + l ≤ k. So dL(D)(a, b) < k, a 6= n
(because x 6= y, a = (u, x),b = c = (v, y)), and {a, b} ⊆ K̄. This contradicts part (1)
of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).

(b) If x /∈ f̄(K̄), then there exists y ∈ f̄(K̄) such that dD(x, y) ≤ l′.
Let x ∈ V (D) \ f̄(K̄). It follows from the hypothesis of Theorem 2.4 that there

exists a = (u, x) ∈ A(D), and Definition 2.1 implies a /∈ K̄. Since a /∈ K̄ and K̄
is a (k, l)-kernel of L(D), it follows from part (2) of Definition 1.6 that there exists
b ∈ K̄ such that dL(D)(a, b) ≤ l; let b = (v, y). Clearly y ∈ f̄(K̄) and dD(x, y) ≤ l
≤ l′.

THEOREM 2.5. Let D be a digraph such that each vertex has indegree at least one.
If L(D) has a (k, l)-kernel Ā with the properties that l < k and, for each arc a ∈ Ā,
there is an arc b 6= a in Ā such that the terminal endpoints of a and b are the same,
then f̄(Ā) is a (k, l)-kernel of D.

Proof. Let D be a digraph and Ā a (k, l)-kernel of L(D) as in the hypothesis of
Theorem 2.5. We will prove that f̄(Ā) is a (k, l)-kernel of D.

(a) If {x, y} ⊆ f̄(Ā), x 6= y, then dD(x, y) ≥ k.
By contradiction, suppose that dD(x, y) = n < k and let (x = x0, x1, . . . , xn = y)

be a shortest directed path from x to y in D. Since x ∈ f̄(Ā), there exists a = (u, x) ∈
Ā. Denote by ai = (xi−1, xi), 1 ≤ i ≤ n and consider the following two possible cases.

If an = (xn−1, y) ∈ Ā, then (a, a1, a2, . . . , an) is a directed path of length n < k
contained in L(D) from a to an with a 6= an and {a, an} ⊆ Ā. This contradicts part
(1) of Definition 1.6, as Ā is a (k, l)-kernel of L(D).

If an = (xn−1, y) /∈ Ā, it follows from part (2) of Definition 1.6 that there exists
b ∈ Ā such that dL(D)(an, b) ≤ l < k. On the other hand, since y ∈ f̄(Ā), there exists
c = (v, y) ∈ Ā. Now consider two possibilities.

If b 6= c, we consider a shortest directed path from an to b, say (an = b0, b1, . . . , bn =
b), contained in L(D); then it follows from Definition 2.1 that (c, b1, b2, . . . , bn = b) is
also a directed path in L(D) of length n < k from c to b with c 6= b and {c, b} ⊆ Ā,
contradicting part (1) of Definition 1.6, as Ā is a (k, l)-kernel of L(D).

If b = c, we consider an arc d ∈ Ā, d 6= b such that d and b have the same terminal
endpoint (this is from the hypothesis of Theorem 2.5). It follows from Definition 2.1
that (d, b1, b2, . . . , bn = b) is a directed path contained in L(D) from d to b of length
n < k with d 6= b, {d, b} ⊆ Ā, contradicting part (1) of Definition 1.6.

(b) If x /∈ f̄(Ā), then there exists y ∈ f̄(Ā) such that dD(x, y) ≤ l.
It follows from the hypothesis of Theorem 2.5 that there exists an arc a = (u, x) ∈

A(D); since x /∈ f̄(Ā), we have a /∈ Ā. Now a /∈ Ā and Ā is a (k, l)-kernel of L(D), so
there exists b ∈ Ā such that dL(D)(a, b) ≤ l. Let (a = a0, a1, . . . , an = b) be a shortest
directed path in L(D) from a to b, and ai = (xi−1, xi) for 1 ≤ i ≤ n, b = (xn−1, xn);
then (x, x1, . . . , xn−1, xn) is a directed walk in D of length n ≤ l from x to xn; clearly
Definition 2.1 implies xn ∈ f̄(Ā). So, taking y = xn, (b) is thus proved.

COROLLARY 2.2. Let D be a digraph such that each vertex has indegree at least
one and let 1 ≤ l < k. If each (k, l)-kernel Ā of L(D) satisfies that, for each arc
a ∈ Ā, there is an arc b ∈ Ā such that the terminal endpoints of a and b are the
same, then the number of (k, l)-kernels of L(D) is less than or equal to the number of
(k, l)-kernels of D.

Proof. Let 1 ≤ l < k, K1 be the set of all (k, l)-kernels of L(D), let K be the set
of all (k, l)-kernels of D, and let f̄ ′ : K1 → K be the restriction of f̄ to K1. From
Theorem 2.5 it suffices to prove that f̄ ′ is an injective function.

(c) If K̄1 6= K̄2 and {K̄1, K̄2} ⊆ K1, then f̄ ′(K̄1) 6= f̄ ′(K̄2).
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Since K̄1 6= K̄2, we can assume, without loss of generality, that K̄1 \ K̄2 6= ∅. Let
a = (u, x) ∈ K̄1 \ K̄2. It follows from Definition 2.1 that x ∈ f̄ ′(K̄1), and we will show
that x /∈ f̄ ′(K̄2).

By contradiction, suppose that x ∈ f̄ ′(K̄2). Hence there exists b = (v, x) ∈ K̄2.
Since a = (u, x) /∈ K̄2 and K̄2 is a (k, l)-kernel of L(D), there exists c ∈ K̄2 such that
dL(D)(a, c) ≤ l < k. Let (a = a0, a1, . . . , an = c) be a shortest directed path in L(D)
from a to c and consider the following two possibilities:

If b 6= c, then it follows from Definition 2.1 that (b, a1, a2, . . . , an = c) is a directed
path in L(D) from b to c of length n ≤ l < k with {b, c} ⊆ K̄2, b 6= c. This contradicts
part (1) of Definition 1.6, as K̄2 is a (k, l)-kernel of L(D).

If b = c, we have from the hypothesis of Corollary 2.2 that there exists an arc
d ∈ K̄2 such that d 6= b and that d and b have the same terminal endpoint x. Then it
follows from Definition 2.1 that (d, a1, a2, . . . , an = c = b) is a directed path in L(D)
of length n ≤ k < l from d to b with d 6= b, {d, b} ⊆ K̄2, contradicting part (1) of
Definition 1.6, as K̄2 is a (k, l)-kernel of L(D).

THEOREM 2.6. Every digraph has a (k, 2k − 2)-kernel.
Proof. We proceed by induction on |V (D)|.
For D with |V (D)| = 1 it is obvious. Suppose that if D′ is a digraph with

|V (D′)| < n, then D′ has a (k, 2k−2)-kernel, and let D be a digraph with |V (D)| = n.
Let x0 ∈ V (D) and D∗ = D[V (D) \ {x ∈ V (D)|dD(x, x0) ≤ k − 1}]. Clearly

|V (D∗)| < n, and hence D∗ has a (k, 2k−2)-kernel, namely S∗. Consider the following
two possibilities.

If there exists a directed path in D of length less than or equal to k − 1, then S∗

is a (k, 2k − 2)-kernel of D.
If there is no directed path in D from x0 to some point of S∗ of length less than

or equal to k − 1, then S∗ ∪ {x0} is a (k, 2k − 2)-kernel of D.
COROLLARY 2.3. Every digraph has a (k, l)-kernel for l ≥ 2k − 2.
The proof is a direct consequence of Theorem 2.6 and Definition 1.6, as a (k, l)-

kernel of a digraph D is also a (k, l′)-kernel for every l′ ≥ l.
Remark 2.6. The hypothesis l ≥ 2k − 2 cannot be omitted in Corollary 2.3.

Consider C2k−1 to be the directed cycle of length 2k − 1; for any l < 2k − 1, the
digraph C2k−1 has no (k, l)-kernel.

COROLLARY 2.4 (see [3]). Every digraph has a quasikernel.
The proof is a direct consequence of Theorem 2.6 by taking k = 2, as a quasikernel

is a (2, 2)-kernel.
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[7] H. GALEANA-SÁNCHEZ AND V. NEUMANN-LARA, On kernels and semikernels of digraphs,

Discrete Math., 48 (1984), pp. 67–76.



346 H. GALEANA-SÁNCHEZ AND X. LI
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Abstract. Given a set of n nuts of distinct widths and a set of n bolts such that each nut
corresponds to a unique bolt of the same width, how should we match every nut with its corresponding
bolt by comparing nuts with bolts? (No comparison is allowed between two nuts or two bolts.) The
problem can be naturally viewed as a variant of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permutation of the other, how should we sort the lists
by comparisons only between numbers in different lists? We give an O(n logn)-time deterministic
algorithm for the problem. This is optimal up to a constant factor and answers an open question posed
by Alon et al. [Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1994,
pp. 690–696]. Moreover, when copies of nuts and bolts are allowed, our algorithm runs in optimal
O(logn) time on n processors in Valiant’s parallel comparison tree model. Our algorithm is based
on the AKS sorting algorithm with substantial modifications.

Key words. sorting, matching, selection, parallel computation, AKS sorting algorithm, random
graphs
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1. Introduction. Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same width, how should we
match every nut with its corresponding bolt by comparing nuts with bolts? (No
comparison is allowed between two nuts or two bolts.)

This problem can be naturally viewed as a variant of the classic sorting problem
as follows. Given two lists of n numbers each such that one list is a permutation
of the other, how should we sort the lists by comparisons only between numbers in
different lists? In fact, the following simple reasoning illustrates that the problem of
matching nuts and bolts and the problem of sorting them have the same complexity,
up to a constant factor. On one hand, if the nuts and bolts are sorted, then a nut
and a bolt at the same position in the sorted order certainly match each other. On
the other hand, if the nuts and bolts are matched, we can sort them by any optimal
sorting algorithm in O(n log n) time. Hence, the complexity equivalence of sorting
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and matching them follows from the simple information lower bound of Ω(n log n)
on the matching problem, which can be easily derived from the fact that there are
n! possible ways to match the nuts and bolts. So in this paper we will consider the
problem of how to sort the nuts and bolts instead of the problem of matching them.

The problem of sorting nuts and bolts has a simple randomized algorithm (e.g.,
a simple variant of the QuickSort algorithm) that runs in the optimal O(n log n)
expected time [10]. However, finding a nontrivial (say, o(n2)-time) deterministic algo-
rithm has appeared to be highly nontrivial. Alon et al. [3] designed anO(n log4 n)-time
deterministic algorithm based on expander graphs, and they posed the open question
of designing an optimal deterministic algorithm to the problem. Recently, Bradford
and Fleischer [8] improved the running time to O(n log2 n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been intensively studied, it is natural to ask
if any existing O(n log n)-time deterministic sorting algorithm can be easily adapted
to sort nuts and bolts. In a certain sense, most of the existing O(n log n)-time sorting
algorithms use a divide-and-conquer approach. In particular, they require recursive
solutions to subproblems of smaller sizes. For the classic sorting problem, solving the
subproblems is simple. However, in the context of sorting nuts and bolts, solving a
subproblem can raise many problems. In particular, the fact that we can sort the nuts
and bolts at all relies on the fact that there is a match between them.1 For example,
if all of the nuts happen to be smaller than all of the bolts, then we will not be able
to learn anything about the order of the nuts or the order of the bolts by comparing
nuts against bolts only. As a consequence, if we want to make use of existing sorting
algorithms, it is essential to make arrangements so that, when we work on a smaller
set of nuts and a smaller set of bolts, we may obtain useful information in an efficient
way. Unfortunately, no existing deterministic sorting algorithm of O(n log n) time
seems readily adaptable to make such arrangements.

Faced with such difficulty, the algorithm of Alon et al. [3] uses an O(n log3 n)-
time algorithm for selecting a median nut and a median bolt, which, in turn, is
based on expander graphs. However, as pointed out by Alon et al. [3], this particular
method cannot be adapted to select a median in O(n) time, and a possible O(n log n)
algorithm needs to come from a different means. Similarly, the O(n log2 n)-time al-
gorithm of Bradford and Fleischer [8] is based on an O(n log n)-time algorithm for
selecting a median nut and a median bolt. In fact, we have discovered a (fairly)
simple O(n(log log n)2)-time algorithm for selecting a median nut and a median bolt,
thereby giving an O(n log n (log log n)2)-time algorithm for sorting nuts and bolts. We
will not give any details of this algorithm, however, since it appears that we need to
do something very different to achieve an optimal O(n log n) time.

The main contribution of this paper is an O(n log n)-time algorithm for sorting
nuts and bolts, which is based on the AKS sorting algorithm [2] with substantial
modifications.2 As a by-product of our AKS-based approach, our algorithm can
be executed in O(log n) time on n processors in Valiant’s parallel comparison tree
model [11] when copying of nuts and bolts is allowed. In Valiant’s model, only com-

1Such a condition can be slightly relaxed, as to be discussed in section 4.
2The AKS sorting algorithm was designed to be implemented in an oblivious fashion on a com-

parator network, and it also has an optimal parallel running time of O(logn) on n processors [2]. In
this paper, our main focus is the sequential algorithm model, and we will refer to the work of [2] as
the AKS sorting algorithm, as opposed to the AKS sorting network.
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parisons are counted toward the running time, and bookkeeping is free. We remark
that our algorithm is not fully constructive, and some of its gadgets depend on some
random graph properties. The existence of such graphs is easily proven by a random
construction, but we do not know how to construct them explicitly. However, all
other parts of our algorithm are constructive, and once explicit constructions of the
desired graphs are discovered, our algorithm will be constructive as well.

The rationale of using an AKS-based approach for sorting nuts and bolts lies
behind some special properties of the AKS sorting algorithm. Roughly, as described by
Paterson [9], the AKS sorting algorithm proceeds as follows. It arranges the numbers
being sorted in a complete binary tree, which will be referred to as the AKS tree. Each
node of the AKS tree contains a set of numbers. Most of the numbers in the same
node have ranks within a certain interval. At each stage of the algorithm, a certain
sorting-related device (with O(1) parallel time) is used to approximately partition
the numbers at each node of the AKS tree. In a way, the AKS sorting algorithm
proceeds by partitioning in a weak sense: it approximately partitions numbers into
almost correct halves and has an intricate error-correcting mechanism. In particular,
unlike most other known O(n log n)-time deterministic sorting algorithms, the AKS
sorting algorithm does not proceed in a rigorous divide-and-conquer fashion. These
special properties will appear to be advantageous in sorting nuts and bolts.

Although there are good reasons why the AKS sorting algorithm may be a good
tool for sorting nuts and bolts, a direct modification of the AKS sorting algorithm
does not solve our problem. For example, one naive approach is as follows. Keep
two AKS trees, one for the nuts and the other for the bolts; at each stage of the
algorithm, compare nuts and bolts in corresponding AKS tree nodes according to
an expander graph, and reallocate the nuts and bolts according to the results of the
comparisons. Such an approach proceeds well at a few initial stages, but it has serious
troubles in future stages. The problem arises since we cannot keep a match between
the nuts and bolts in corresponding AKS tree nodes. For example, when the roots
contain only a constant number of nuts and bolts, it is possible that all of the nuts
contained in the root of one AKS tree are smaller than all of the bolts contained in
the root of the other AKS tree, in which case we cannot obtain any information, by
comparisons between the nuts and bolts in the roots, about the order of the nuts or
the order of the bolts that are located in the roots. In fact, such observations may
even lead one to question whether the AKS-based approach is helpful at all for sorting
nuts and bolts. The novelty of our work in adapting the AKS sorting algorithm is
in introducing certain mechanisms that allow efficient approximate-partitioning at an
AKS tree node even if the nuts and bolts in the corresponding AKS tree nodes do not
form a match.

The remainder of the paper is organized into sections as follows. In section 2,
we present our algorithm for sorting nuts and bolts. In section 3, we prove the
correctness of the algorithm and analyze its running time. We conclude in section 4
with discussions on some extensions and open problems.

2. An O(n logn)-time algorithm for sorting nuts and bolts. This section
contains the description of our O(n log n)-time algorithm for sorting nuts and bolts.
As pointed out in the introduction, our algorithm depends on some random graphs,
which we do not know how to construct explicitly. Also, we will be content with
an algorithm of O(n log n) running time and will not attempt to keep the involved
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constants small. In particular, a large constant (much larger than the best previously
known constant for the AKS sorting algorithm) is hidden behind the “O” notation.

2.1. An overview of the algorithm. In this subsection, we give a high-level
description of our AKS-based algorithm. This algorithm proceeds much like the AKS
sorting algorithm, except that we use a completely different method to partition nuts
(bolts) in an AKS tree node. The partition method is fairly complicated and will be
the subject of the next subsection. In this subsection, we will assume such a partition
can be done and focus on other simpler issues. In the rest of the paper, we will
assume without loss of generality that n is an integer power of 2, since otherwise we
may include some dummy nuts and bolts that are larger than all of the nuts and bolts
in the original problem.

We first need a complete understanding of the AKS sorting algorithm. However,
since the AKS sorting algorithm is fairly complicated, we will only sketch the AKS
sorting algorithm at a high level, and we refer the readers to [9] for a complete and
rigorous description of the AKS sorting algorithm.

As described in [9], the AKS sorting algorithm arranges all the numbers being
sorted within a complete binary tree, with the root at the top. A rigorous treatment
of the tree structure can be found in [9]. We will refer to such a tree as an AKS tree
and refer to a node in the tree as an AKS tree node. The numbers being sorted are
located within the AKS tree nodes. Each AKS tree node X has a capacity, denoted
by cap(X), that specifies the maximum number of numbers that can be contained
in X. Let |X| denote the number of numbers that are indeed contained in X; X is
called empty, full, or partially full if |X| = 0, |X| = cap(X), or 0 < |X| < cap(X),
respectively. The AKS sorting algorithm works in stages, starting from stage one.
Within each stage there is a sorting-related device that partitions each AKS tree
node, X, into four parts, FL, CL, CR, and FR, which stand for “far-left,” “center-
left,” “center-right,” and “far-right,” respectively. (To be rigorous, we partition the
list of numbers in X, as opposed to X itself. But we will not distinguish X from the
list of numbers contained in X when no confusion can arise.) By doing so, we hope
to move most of the numbers in X into the correct halves, FL ∪ CL and CR ∪ FR,
and to move most of the “extreme” numbers to the extreme positions in FL and FR.
At the end of a stage, numbers in FL and FR are sent to the parent of X, and CL
and CR are sent to the left and right children of X, respectively. This will have the
effect of moving most of the correctly located numbers downward in the AKS tree and
moving most of the incorrectly located numbers upward in the AKS tree. Overall,
most numbers in the lower part of the AKS tree are near their correct positions, and
numbers far away from their correct positions tend to move upward in the AKS tree
so that they will be processed further. The AKS tree can be viewed to be infinite,
but we make the convention that a leaf of an AKS tree is a lowest nonempty AKS
tree node. At odd stages, all nodes at odd levels and all nodes below the leaf level
are empty, and all nodes at even levels above the leaf level are full except that nodes
at the leaf level can be full or partially full.3 (The root is assumed to be at level 0.)
The opposite holds at even stages. This completes our brief description of the AKS
sorting algorithm.

At a high level, our algorithm differs from the original AKS sorting algorithm in

3To be more rigorous, when we say that a node is full or empty during a stage, we mean it is full
or empty at the beginning of the stage. Note that numbers in a full or partially full node X will be
moved to the parent or children of X at the end of the stage.
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two ways: (1) we need to keep two separate AKS trees: (TN for the set of nuts N ,
and TB for the set of bolts B); (2) we need a completely different method to partition
elements (which refer to nuts or bolts) in an AKS tree node.

Other than these two differences, our algorithm for sorting nuts and bolts works
exactly as the AKS sorting algorithm does. In particular, the structures of the two
AKS trees are identical (except one contains nuts and the other contains bolts): TN
and TB are each specified by the same set of parameters as in the AKS sorting al-
gorithm. To describe explicitly how our algorithm works, we need to specify some
parameters associated with the AKS sorting algorithm. For simplicity, we will explic-
itly follow the parameter choices of [9] whenever possible. In particular, we will use
the same letters to denote the same quantities as in [9] unless specified otherwise.

We choose the same parameters associated with our AKS trees as in [9]:

A = 3, ν =
43

48
, and λ =

1

8
.

As in [9], the choices of these parameters completely determine how the nuts and
bolts move within TN and TB . In particular,

• the capacity of an AKS tree node X immediately after stage t at level d is
determined by cap(X) = νtAdN(1− 1

4A2 );
• at each stage, the elements at X are partitioned into four parts, FL, CL, CR,

and FR, such that (1) |FL| = |FR| = min{λ2 cap(X), |X|2 }, |CL| = |CR| =
|X|
2 − |FL| and (2) at the end of the stage, FL and FR are moved to the

parent of X, and CL and CR are moved to the left and right children of X,
respectively.

Also, we choose

µ =
1

36
and δ =

1

40
,

the same as in [9]. Note that µ and δ have nothing to do with the description of the
algorithm and will be used only in the analysis of the algorithm.

Another parameter ε was used in [9] to specify the functionality of the so-called
separator , which corresponds to the so-called near-sorting network of [2]. In [9], a
separator is used to partition an AKS tree node X into four parts: FL, CL, CR, and
FR. In our algorithm, however, we cannot use a separator or near-sorting network
since, as we have explained in the introduction, we cannot enforce a match between
nuts and bolts in corresponding AKS tree nodes. Nevertheless, we need a sorting-
related device for such a partition. The partition scheme is fairly intricate and will be
the subject of the next subsection. In any event, following the notation of [9], we will
use parameter ε to measure the accuracy of our partition method. We do not specify
how to choose ε explicitly. Instead, we will be content with proving that a sufficiently
small ε suffices for our purposes.

Finally, as in [9], we also need to deal with the so-called boundary conditions and
integer rounding. These can be easily handled in the same way as in [9], and we will
not address these particular technical problems hereafter.

2.2. Partitioning nuts or bolts at an AKS tree node. In this subsection,
we describe an algorithm to partition elements in an AKS tree node X into four
parts: FL, CL, CR, and FR. We will accomplish the partition of X by comparing
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nuts (or bolts) in X with bolts (or nuts) in a set S(X), which is to be defined in
subsection 2.2.2. On one hand, S(X) should be large enough so that a proper partition
of X is possible; i.e., S(X) should contain enough bolts (or nuts) to separate some
of the nuts (or bolts) in X from the others. On the other hand, S(X) should be
small enough so that the number of necessary comparisons between X and S(X) for
partitioning X is not prohibitively large.

The remainder of the subsection is organized as follows. In subsection 2.2.1, we
prove a lemma on random graphs and describe how to use the graphs to construct a
comparison algorithm. In subsection 2.2.2, we construct S(X). In subsection 2.2.3, we
describe how to partition X by applying the comparison algorithm of subsection 2.2.1
to X and S(X).

2.2.1. Random graphs and a comparison algorithm. In this subsection,
we first prove a useful lemma on random bipartite graphs. Then, we describe how to
use such graphs in a comparison algorithm, which is an important building block in
our O(n log n)-time algorithm for sorting nuts and bolts. Although a random graph
will yield a desired graph with high probability, we do not know how to construct
such graphs explicitly.

The graphs considered in this paper are allowed to be multigraphs, and we use
e(X,Y ) to denote the number of edges between X and Y for arbitrary vertex subsets
X and Y . In particular, if there are m edges between a vertex u ∈ X and a vertex
v ∈ Y , then each of the m multiple edges between u and v is counted exactly once
in e(X,Y ). Also, we use “e” to denote the natural number and “ln” to denote the
logarithm with base e. We remark that the parameter ε in the next lemma should be
distinguished from ε, which is alluded to near the end of subsection 2.1 and will be
made more explicit in Property 3.2.

Lemma 2.1. Let ε and θ be two arbitrary constants in (0, 1), and let U and V
be two sets such that |U | ≤ |V |. If d ≥ 2ε−3 ln

(
(e2/ε2)(|V |/|U |)), then there exists a

bipartite graph G = (U, V,E), E ⊆ U×V with the following properties: (1) deg(v) = d
for all v ∈ V ; (2) e(X,Y ) ≥ (1 − ε)d |X| |Y |/|U | for any sets X ⊆ U, Y ⊆ V such
that |X| ≥ ε|U | and |Y | ≥ ε|U |; and (3) if |U | = |V | and d ≥ (8/θ) ln(16/θ), then any
Y ⊆ V of size |Y | ≤ 2 e−4θ |U |/d is directly connected (i.e., connected by an edge, as
opposed to by a path) to at least θd|Y |/2 vertices in U , even after an arbitrary set of
up to (1− θ)d edges are removed from each vertex in Y .

Proof. We prove the lemma by giving a random construction that yields a desired
graph with high probability. We construct our random graph G ⊆ U ×V in d rounds.
In each of the d rounds, for every v ∈ V , choose a vertex u ∈ U uniformly at random
and include edge (u, v) in E. That is, each u in U is chosen with probability 1

|U | ,
independently of the choices of vertices of any previous rounds and the choices of
vertices within the same round for other vertices in V . Thus, an edge between a fixed
pair of vertices u and v may be selected more than once (i.e., G may be a multigraph),
and the degree of a vertex in U can be anything between 0 and d|V |. However, the
degree of each vertex in V is exactly d, meaning that G satisfies property (1) of the
lemma.

We next need to show that G satisfies properties (2) and (3) with nonzero prob-
ability. Thus, it suffices to show

Pr (G does not satisfy property (2)) ≤ 1

2π
(1)
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and

Pr (G does not satisfy property (3)) ≤ 1

2π
.(2)

We first prove inequality (1). Consider an arbitrary pair of vertex subsets X ⊆ U
and Y ⊆ V such that |X| ≥ ε|U | and |Y | ≥ ε|U |. According to our construction, there
are exactly d|Y | edges associated with nodes in Y . Each of these edges has its other

node in X with probability |X||U | . Hence, by the Chernoff bound [4, Theorem A.13,

p. 238],

Pr

(
e(X,Y ) < (1− ε) d |X||U | |Y |

)
≤ e− ε

2d |X| |Y |
2 |U| ≤ e− ε

3d |Y |
2 ,(3)

where the last inequality follows from the assumption |X| ≥ ε|U |. On the other
hand, it is easy to see that if there are two disjoint vertex sets A, B with “edge
density” e(A,B)/(|A||B|) between them and if a, b are integers such that a ≤ |A| and
b ≤ |B|, then there are two sets X ⊆ A and Y ⊆ B such that |X| = a, |Y | = b, and
e(X,Y )/(|X||Y |) ≤ e(A,B)/(|A||B|). Thus, writing ` = dε|U |e, we have

Pr

(
∃X,Y subject to (s.t.) X ⊆ U, Y ⊆ V, |X| ≥ ε|U |, |Y | ≥ ε|U |,

and e(X,Y ) < (1− ε) d |X||U | |Y |
)

≤ Pr

(
∃X,Y s.t. X ⊆ U, Y ⊆ V, |X| = dε|U |e, |Y | = dε|U |e,

and e(X,Y ) < (1− ε) d |X||U | |Y |
)

≤
(|U |
`

)(|V |
`

)
e−

ε3d `
2

≤ 1

2π

(
e|U |
`

e|V |
`

e−
ε3d
2

)`
,

where the first inequality is indeed an equality (although we do not need this fact),
the second inequality follows from inequality (3), and the last inequality follows from
the inequality (

x

y

)
≤ 1√

2π

(
ex

y

)y
for y ≥ 1,(4)

which may be verified by Stirling’s formula. Now, inequality (1) follows since our
assumption d ≥ 2ε−3 ln

(
(e2/ε2)(|V |/|U |)) implies

e|U |
`

e|V |
`

e−ε
3d/2 ≤ 1.

We next prove inequality (2). Let

y =
2e−4θ

d
.(5)
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If G does not satisfy property (3), then there exists a set Y ⊆ V of size |Y | = k ≤ y|U |
such that after the removal of b(1− θ)dc edges from each vertex in Y , the set Y is only
directly connected to vertices in a set X ⊆ U with |X| = `(k) = bθdk/2c. Writing
r = dθde, we know that the probability that such a set Y exists is at most

y|U |∑
k=1

(|V |
k

)( |U |
`(k)

)(
d

r

)k (
`(k)

|U |
)rk
≤ (2π)−3/2

y|U |∑
k=1

(
e|V |
k

)k (
e|U |
`(k)

)`(k)(
ed`(k)

r|U |
)rk

,

(6)

where the inequality follows from inequality (4). By equality (5) and the definition
of k, it is easy to verify `(k) ≤ θ d k/2 ≤ |U | and r ≥ θd ≥ d`(k)/|U |. Thus, since the
function (eA/x)x is increasing for x ≤ A and decreasing for x ≥ A, the right-hand
side of inequality (6) is at most

(2π)−3/2

y|U |∑
k=1

(
e|V |
k

)k (
e|U |
θdk/2

)θdk/2(
ed`(k)

θd|U |
)θdk

≤ (2π)−3/2

y|U |∑
k=1

[(
e|V |
k

) (
e|U |
θdk/2

)θd/2(
edk/2

|U |
)θd]k (

since `(k) ≤ θdk

2

)

= (2π)−3/2

y|U |∑
k=1

[(
e|V |
k

) (
e4dk

2θ|U |
)θd/2

e−θd/2
]k
.

It suffices to show that, for any k in the range of the summation, the expression in
the last square bracket is at most 1/2 (so that we can upper bound the sum by a
geometric series). Since θd/2 ≥ 1, this reduces to show

e4dk

2θ|U | ≤ 1 and
e5d

2θ

|V |
|U | e

−θd/2 ≤ 1

2
.

The first inequality follows from k ≤ y|U | and equality (5). Since we assume |U | = |V |
and d ≥ 8

θ ln 16
θ for property (3), the second inequality reduces to verify f(d) =

− e5dθ + e
dθ
2 ≥ 0 for d ≥ 8

θ ln 16
θ . This inequality holds since f ′(d) ≥ 0 for d ≥ 8

θ ln 16
θ

and

f

(
8

θ
ln

16

θ

)
=

(
16

θ

)4

− e5

θ

8

θ
ln

16

θ
≥
(

16

θ

)((
16

θ

)3

− 8 e5

θ2

)
≥ 0.

Roughly, Lemma 2.1 says that the number of edges between two sets of vertices
cannot be much smaller than the average number of edges between two sets of their
sizes. In a certain sense, this also means that the edges between U and V are evenly
distributed, and so the number of edges between two sets of vertices cannot be much
larger than the average. Formally, we have the following corollary.

Corollary 2.2. In a graph that satisfies properties (1) and (2) of Lemma 2.1,
for any sets X ⊆ U and Y ⊆ V such that |Y | ≥ ε|U |, e(X,Y ) ≤ d |X||Y |/|U |+ε d |Y |.

Proof. If |X| > (1 − ε)|U |, then the right-hand side of the desired inequality is
clearly larger than d |Y |, which, in turn, is greater than or equal to the left-hand side
of the desired inequality. Hence, we will assume |X| ≤ (1−ε)|U |. Applying the second
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statement of Lemma 2.1 to the sets U −X and Y , we obtain

e(U −X,Y ) ≥ (1− ε) d |U −X| |Y |/|U |
= (1− ε) d |Y | − (1− ε) d |X||Y |/|U |.

On the other hand, the first statement of Lemma 2.1 implies e(U, Y ) = d |Y |. Hence,

e(X,Y ) = d |Y | − e(U −X,Y )

≤ ε d |Y |+ (1− ε) d |X||Y |/|U |
≤ d |X||Y |/|U |+ ε d |Y |.

We now describe how to apply the graph of Lemma 2.1 to construct a comparison
algorithm in a way similar to that of [2] and [9]. We will use some adaptive methods,
such as counting, in some future applications of the algorithm, whereas [2] and [9] deal
with comparator networks and can only use oblivious methods. Given an arbitrary
set of nuts (bolts) U , an arbitrary set of bolts (nuts) V with |V | ≥ |U |, and a bipartite
graph G ⊆ U × V , Algorithm Compare(U, V,G) works as follows.

Algorithm Compare(U, V,G).
Step 1. Set Small(v) = Large(v) = 0 for each v ∈ V .
Step 2. For each edge (u, v) in graph G, compare u and v. Then, increment

Small(v) by 1 if v < u; increment Large(v) by 1 if v > u; increment Small(v) and
Large(v) each by 1/2 if v = u.

In the above algorithm, Small(v) (resp., Large(v)) denotes the number of com-
parisons in Algorithm Compare where v is strictly smaller than (respectively, strictly
larger than) its opponent plus half of the number of comparisons in Algorithm Com-
pare where v is equal to (respectively, equal to) its opponent. In particular, we
increment both Large(v) and Small(v) by 1/2 if v is equal to its opponent. Such
an arrangement will make some of our future arguments simple by ensuring that the
values of Small and Large are symmetric. We remark that there may be multiple
edges between u and v, in which case u and v are compared more than once and
Small(v) or Large(v) is updated every time a comparison between u and v occurs.

It would be nice if Algorithm Compare(U, V,G) always provides an approximate
partition of V . However, such a partition is not always possible. For example, if
every nut in V is smaller than every bolt in U , then no matter how we conduct our
comparisons, the outcome will not provide any useful information for partitioning V .
Nevertheless, we next show that the algorithm has a certain ranking property in a
certain case. Such a ranking property will then be further exploited to provide a more
sophisticated algorithm for partition.

In what follows, we define the rank of an element x with respect to (with respect
to) a set Y , denoted by rank(x, Y ), as the number of elements in Y that are smaller
than or equal to x. Note that rank(x, Y ) is well defined even if x and elements of
Y cannot be compared by a direct comparison; e.g., x and all elements in Y are
nuts. When we say the rank of element x, denoted by rank(x), without specifying
a corresponding Y , we mean the rank of x with respect to B (or, equivalently, with
respect to N). For any ζ, ξ ∈ [0, 1] and for any sets of elements U and V , let

V (ζ, ξ, U) = {v ∈ V | ζ |U | ≤ rank(v, U) ≤ ξ |U |]}.
Lemma 2.3. Assume U and V are a set of nuts and a set of bolts (or a set of bolts

and a set of nuts), resp., ε|U | ≥ 2, ζ, ξ ∈ [0, 1], and G ⊆ U×V is a bipartite graph with
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parameters d and ε as described in Lemma 2.1. (G is not required to satisfy the third
property of Lemma 2.1, so the parameter θ of Lemma 2.1 is not described here.) If
Algorithm Compare(U, V,G) is executed, then (1) at most ε|U | elements in V (0, ξ, U)
have their Small values less than or equal to (1− ξ− 2ε)d, (2) at most ε|U | elements
in V (ζ, 1, U) have their Large values less than or equal to (ζ − 2ε)d, and (3) for any
X ⊆ V (0, ζ, U) and any Y ⊆ V (ξ, 1, U), where ξ − ζ ≥ 6 ε, if Small(x) ≤ Small(y)
for all x ∈ X and all y ∈ Y , then either |X| < ε|U | or |Y | < ε|U |.

Proof. We first prove the first claim in the lemma. Let

VS = {v ∈ V (0, ξ, U) |Small(v) ≤ (1− ξ − 2 ε) d}.

We need to prove |VS | ≤ ε |U |. We may assume without loss of generality

1− ξ ≥ 2 ε,(7)

since otherwise VS = ∅. Clearly, v < u for all v ∈ V (0, ξ, U) and all u ∈ U(ξ + ε, 1, U).
(Here we need the assumption ε|U | ≥ 2.) Thus, by the definition of VS , e(U(ξ + ε, 1, U),
{v}) ≤ (1− ξ − 2 ε) d for all v ∈ VS . Therefore,

e(U(ξ + ε, 1, U), VS) ≤ (1− ξ − 2 ε) d |VS |
< (1− ε) (1− ξ − ε) d |VS |
≤ (1− ε) d |U(ξ + ε, 1, U)|

|U | |VS |,(8)

where the last inequality follows from

|U(ξ + ε, 1, U)| = |U | − d(ξ + ε)|U |e+ 1 ≥ (1− ξ − ε)|U |.(9)

On the other hand, inequalities (7) and (9) imply |U(ξ + ε, 1, U)| ≥ ε|U |. Hence, by
Lemma 2.1 and inequality (8), we conclude |VS | ≤ ε|U |, establishing the first claim in
the lemma.

The second claim is entirely symmetric to the first and can be proved in exactly
the same way.

We first observe that, for any u ∈ U and any V ′ ⊆ V such that |V ′| ≥ ε|U |,

e({u}, V ′) ≤ d |V ′|/|U |+ ε d |V ′| < 2 ε d |V ′|,(10)

where the first inequality follows from Corollary 2.2 and the second inequality follows
from ε|U | ≥ 2.

We now prove the third claim in the lemma by contradiction. Assume that there
exist X ⊆ V (0, ζ, U) and Y ⊆ V (ξ, 1, U) such that ξ− ζ ≥ 6ε, |X| ≥ ε|U |, |Y | ≥ ε|U |,
and Small(x) ≤ Small(y) for all x ∈ X and all y ∈ Y . For all x ∈ X ⊆ V (0, ζ, U),
Small(x) is incremented by 1 whenever x is compared with any u ∈ U(ζ + ε, 1, U).
(Here we need the assumption ε|U | ≥ 2). In addition, for all y ∈ Y ⊆ (ξ, 1, U), if
Small(y) is incremented at all after y is compared with an element u ∈ U , then
u ∈ U(ξ, 1, U). Therefore, for all x ∈ X and all y ∈ Y , e(U(ζ + ε, 1, U), {x}) ≤
Small(x) ≤ Small(y) ≤ e(U(ξ, 1, U), {y}). Hence,

e(U(ζ + ε, 1, U), X)/|X| ≤ e(U(ξ, 1, U), Y )/|Y |.(11)
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By the fact |U(0, ξ, U) ∩ U(ξ, 1, U)| ≤ 1 and inequality (10), we know that the right-
hand side of inequality (11) is strictly less than d−e(U(0, ξ, U), Y )/|Y |+2 ε d. There-
fore,

e(U(ζ + ε, 1, U), X)/|X|+ e(U(0, ξ, U), Y )/|Y | < d+ 2εd.(12)

On the other hand, since ζ + ε ≤ ξ − 5ε ≤ 1,

|U(ζ + ε, 1, U)| = |U | − d(ζ + ε)|U |e+ 1 ≥ (1− ζ − ε)|U |.(13)

Similarly,

|U(0, ξ, U)| = bξ|U |c ≥ ξ|U | − 1 ≥ (ξ − ε)|U |.(14)

By the assumption ξ − ζ ≥ 6ε, we immediately see that the right-hand sides of
inequalities (13) and (14) are both at least 5ε|U |. Thus, applying Lemma 2.1 to
inequality (12), we obtain (1− ζ − ε− ε) d+ (ξ − ε− ε) d < d+ 2εd, contradicting the
assumption ξ − ζ ≥ 6ε.

2.2.2. Construction of S(X). S(X) consists of three subsets SL(X), SR(X),
and SC(X). In order to partition X properly, not only do we need to know S(X)
but we also need to know SL(X), SR(X), and SC(X). This subsection is devoted to
constructing these sets.

We first introduce some concepts. Some of these concepts are not directly used
in the construction of S(X), but they are useful in understanding the relevant termi-
nologies and analyzing our final algorithm. So we define these concepts here for ease
of reference. The concepts of a natural interval and strangeness were used in [9].

• The natural interval of an AKS tree node is inductively defined as follows:
the natural interval of the root of an AKS tree is [1, n]; if the natural interval
of an AKS tree node X is [α, β], then the natural intervals of the left and
right children of X are [α, α+β−1

2 ] and [α+β+1
2 , β], respectively.

• Let [α(X), β(X)] denote the natural interval of an AKS tree node X, and let

m(X) = α(X)+β(X)
2 .

• The strangeness of an element x with respect to an AKS tree node X is
defined to be the number of levels that x needs to move from X upward in
X’s AKS tree in order to reach the first AKS tree node whose natural interval
contains rank(x). (Note that the strangeness of x with respect to X is well
defined even if x is not located in X.)
• For each AKS tree node X, let h(X) denote the height of X in its AKS tree.

(The height of a leaf is assumed to be zero.)

Claim 2.1. If X is an AKS tree node such that h(X) ≥ 0 (i.e., X is either above
or included in the leaf level), then cap(X) ≤ 62−h(X) (β(X)− α(X) + 1).

Proof. Assume that X is at level i for some i ≥ 0; i.e., X is i levels below the
root. Consider the lowest level where each AKS tree node is full. This level is at least
h(X) − 2 levels below X’s level, since either a leaf is full or its grandparent is full.
The sum of the capacities of all the nodes at the lowest full level is at most n, since
there are at most n elements in an AKS tree. Hence,

2i+h(X)−2cap(X)Ah(X)−2 ≤ n = 2i (β(X)−α(X)+1) ,
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where the last equality holds since the sum of the natural-interval sizes at any level
of an AKS tree is equal to n. The correctness of the claim follows immediately from
the above inequality.

In the next claim and the rest of the paper, we will use parameter c to denote a
certain large integer constant. We will not give an explicit value of c, but we will see
that a sufficiently large c will be good for our algorithm.

Claim 2.2. If h(Y ) ≥ 0.5h(X) + c and h(X) ≥ 0, then cap(X) < β(Y )− α(Y )
+ 1.

Proof. Note that h(Y ) ≥ 1
2h(X) + c implies h(X) − h(Y ) ≤ 1

2h(X) − c. Hence,
by Claim 2.1,

cap(X) ≤ 62−h(X) (β(X)− α(X) + 1)

= 62−h(X) (β(Y )− α(Y ) + 1) 2h(X)−h(Y )

≤ 62−h(X) (β(Y )− α(Y ) + 1) 2
1
2h(X)−c

< β(Y )− α(Y ) + 1,

where the last inequality holds since c is sufficiently large and h(X) ≥ 0.
Claim 2.3. For any X such that h(X) ≥ 0, at each level with height at least

0.5h(X) + c in either TN or TB, there exists a unique AKS tree node whose natural
interval contains [α(X), α(X) + dcap(X)/36e − 1].

Proof. Since natural intervals at the same level of an AKS tree cannot overlap
with each other, we only need to show the existence of a desired node at each level.
Moreover, since the natural interval of a node is contained in the natural interval of
its parent, we only need to consider the level with height exactly d0.5h(X) + ce. If
h(X) ≤ 0.5h(X)+c, then the ancestor of X with height d0.5h(X) + ce has the desired
property since Claim 2.1 implies that X’s natural interval contains [α(X), α(X) +
dcap(X)/36e − 1]. If h(X) > 0.5h(X) + c, then let Y be the unique descendant of
X at level d0.5h(X) + ce such that α(Y ) = α(X). By Claim 2.2, Y has the desired
property.

By Claim 2.3, the following notation of X ′L,i (i = 0, 1) is well defined. Similarly,
we can verify that X ′R,i (i = 0, 1), X ′C,0, X ′CL,1, and X ′CR,1 are all well defined. For
an AKS tree node X in TN (resp., TB) such that h(X) ≥ 0, let

• X ′ be the unique AKS tree node in TB (resp., TN ) such that [α(X ′), β(X ′)] =
[α(X), β(X)],
• X ′L,i (i = 0, 1) be the unique AKS tree node in TB (resp., TN ) such that
h(X ′L,i) = d2−ih(X ′)+ce and [α(X ′L,i), β(X ′L,i)] ⊇ [α(X ′), α(X ′)+dcap(X ′)/36e
− 1],

• X ′R,i (i = 0, 1) be the unique AKS tree node in TB (resp., TN ) such that
h(X ′R,i) = d2−ih(X ′) + ce and [α(X ′R,i), β(X ′R,i)] ⊇ [β(X ′)− dcap(X ′)/36e+
1, β(X ′)],
• X ′C,0 be the unique AKS tree node in TB (resp., TN ) such that h(X ′C,0) =
h(X ′) + c and [α(X ′C,0), β(X ′C,0)] ⊇ [m(X ′) − dcap(X ′)/72e + 1/2,m(X ′) +
dcap(X ′)/72e − 1/2],
• X ′CL,1 be the unique AKS tree node in TB (resp., TN ) such that h(X ′CL,1) =
d2−1h(X ′) + ce and [α(X ′CL,1), β(X ′CL,1)] ⊇ [m(X ′) − dcap(X ′)/72e + 1/2,
m(X ′)− 1/2],
• X ′CR,1 be the unique AKS tree node in TB (resp., TN ) such that h(X ′CR,1) =
d2−1h(X ′)+ce and [α(X ′CR,1), β(X ′CR,1)] ⊇ [m(X ′)+1/2,m(X ′)+dcap(X ′)/72e
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− 1/2],
• PL(X) be the unique path from X ′L,0 to X ′L,1,
• PR(X) be the unique path from X ′R,0 to X ′R,1,
• PCL(X) be the unique path from X ′C,0 to X ′CL,1,
• PCR(X) be the unique path from X ′C,0 to X ′CR,1.

In the above definition, PL(X) is assumed to contain the nodes X ′L,0 and X ′L,1. Simi-
larly, each of the other three paths (PR(X), PCL(X), PCR(X)) contains its end nodes
described above. We remark that the left and right ends of each interval in the above
definitions are integers. In particular, to ensure that m(X)−1/2 is an integer, we may
assume without loss of generality α(X) 6= β(X), since we will only need to partition
an AKS tree node X with α(X) 6= β(X). (If α(X) = β(X), then X can only contain
one element and there is no need to partition X.)

We are now ready to define SL(X), SR(X), and SC(X).
• Let TX denote the subtree of X’s AKS tree that is rooted at X, and let TX(d)

denote the subtree of TX consisting of all nodes in TX that are d levels within
X. (Note that TX(d) contains exactly d+ 1 levels.)
• Let

SL(X)=
⋃

Y ′∈PL(X)

TY ′ (d0.5h(X ′) + ce) ,

SR(X)=
⋃

Y ′∈PR(X)

TY ′(d0.5h(X ′) + ce), and

SC(X)=
⋃

Y ′∈PCL(X)∪PCR(X)

TY ′(d0.5h(X ′) + ce).

Note that SL(X), SR(X), and SC(X) are supposed to be sets of bolts or nuts,
but the above definitions define them as sets of AKS tree nodes. As we have used
X to denote both an AKS tree node and the list of elements in X, we use SL(X),
SR(X), and SC(X) to denote both the sets of AKS tree nodes as defined above and
the lists of nuts or bolts contained therein, as long as the meaning is clear from the
context. Roughly, SL(X) (resp., SR(X)) looks like a “tape” attached to path PL(X)
(resp., PR(X)). The tape has a “width” of d0.5h(X) + ce and vertically extends from
c levels above X ′ all the way down to the leaf level. Similarly, SC(X) looks like two
tapes of a similar shape. As a direct consequence, we know that

|S(X)| ≥ |X|,(15)

which will be used in the proof of Claim 3.7. The intuition behind this complicated
definition of SL(X), SR(X), and SC(X) will become clear in the proof of Theorem 3.1.

2.2.3. A partition algorithm. In this subsection, we describe how to partition
X into FL, CL, CR, and FR by comparing elements in X with elements in S(X),
according to Algorithm Compare described in subsection 2.2.1. The reason that our
algorithm can provide a proper partition of X is fairly lengthy and will be discussed
in section 3. In particular, it is dependent upon another key property of the original
AKS sorting algorithm.

Note that Lemma 2.3 only states that Algorithm Compare(U, V,G) sometimes
gives a proper partition of V , the larger set between U and V . In fact, a careful
investigation of the proof of Lemma 2.3 reveals that when V is substantially larger
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than U , not much can be said about the ranking of U (the smaller set between U and
V ) by Compare(U, V,G). On the other hand, however, we will need to partition X by
comparing X with S(X), which can be much larger than X in many cases. Hence, in
the most interesting case (see Case 2 below), the following algorithm, Partition(X),
consists of two major phases. In the first phase, we choose subsets S′L(X) ⊆ SL(X),
S′C(X) ⊆ SC(X), and S′R(X) ⊆ SR(X), each of which has size comparable to |X|,
and we let S′(X) = S′L(X) ∪ S′C(X) ∪ S′R(X). In the second phase, we use S′(X) to
partition X into FL, CL, CR, and FR.

Algorithm Partition(X).

Let ε be a sufficiently small constant. There are two cases.

Case 1. ε|X| < 2. We compare all elements in X with all elements in S(X).
Then, we construct a graph on all elements of X by drawing a directed edge from
x1 ∈ X to x2 ∈ X if there exists an element x ∈ S(X) such that x1 ≤ x ≤ x2. Such a
graph is a directed acyclic graph (DAG), and we can topologically sort X according to
the DAG. According to this order, we divide X into FL, CL, CR, and FR, each with
size specified in the AKS sorting algorithm, i.e., |FL| = |FR| = min{λ2 cap(X), |X|2 },
and |CL| = |CR| = |X|

2 − |FL|.
Case 2. ε|X| ≥ 2. Let G be a bipartite graph described in Lemma 2.1. In

particular, in the first three steps of the algorithm, G ⊆ X×SL(X), G ⊆ X×SR(X),
and G ⊆ X×SC(X), resp., and in the last step of the algorithm, G ⊆ S′(X)×X. As
we will see in the proof of Theorem 3.1, θ will be a fraction of λ for G ⊆ S′(X)×X.

Step 1. Apply Compare(X,SL(X), G). Let S′L(X) consist of d(λ/10)|X|e ele-
ments in SL(X) with the smallest Small values among those whose Small values
are at least d (|X| − 2λ

5 cap(X)− 2 ε |X|)/|X|. (Ties are broken arbitrarily.)

Step 2. Apply Compare(X,SR(X), G). Let S′R(X) consist of d(λ/10)|X|e ele-
ments in SR(X) with the smallest Large values among those whose Large values
are at least d (|X| − 2λ

5 cap(X)− 2 ε |X|)/|X|. (Ties are broken arbitrarily.)

Step 3. Apply Compare(X,SC(X), G). Let S′CL(X) consist of at most d(1/2 −
λ/10)|X|e elements in SC(X) with the smallest Small values among those whose
Small values are at least (1/2 − 2ε)d. (That is, (i) if there are more than d(1/2 −
λ/10)|X|e elements in SC(X) having their Small values at least (1/2 − 2ε)d, then
let S′CL(X) consist of d(1/2−λ/10)|X|e elements in SC(X) with the smallest Small
values among those whose Small values are at least (1/2− 2ε)d; and (ii) if there are
fewer than d(1/2− λ/10)|X|e elements in SC(X) having their Small values at least
(1/2 − 2ε)d, then let S′CL(X) consist of all these elements.) Similarly, let S′CR(X)
consist of at most d(1/2 − λ/10)|X|e elements in SC(X) with the smallest Large
values among those whose Large values are at least (1/2 − 2ε)d. (Ties are broken
arbitrarily.)

Include all elements in S′CL(X) and S′CR(X) into S′C(X). If S′C(X) now has fewer
than d(1−λ/5)|X|e elements, put an additional arbitrary set of elements from SC(X)
into S′C(X) so that S′C(X) contains exactly d(1− λ/5)|X|e elements.

Step 4. Let S′(X) = S′L(X)
⋃
S′R(X)

⋃
S′C(X). Apply Compare(S′(X), X,G).

Use CountingSort to sort all elements in X according to their Small values, with
the element with the largest Small value listed first. (Ties are broken arbitrarily.)
According to this order, we divide X (from the first to the last) into FL, CL, CR,
and FR, each with size specified in the AKS sorting algorithm.

Remark. Since |SC(X)| ≥ |PCL(X)| ≥ |X|, where |SC(X)| (resp., |PCL(X)|)
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denotes the number of elements contained in SC(X) (resp., PCL(X)), there are always
enough (i.e., d(1 − λ/5)|X|e) elements to be included in S′C(X) in Step 3. However,
it is not clear at all why there are always enough (i.e., d(λ/10)|X|e) elements to
be included in S′L(X) or S′R(X) in Steps 1 or 2. But we will show in the proof of
Theorem 3.1 that there are always sufficiently many elements to be included in S′L(X)
and S′R(X) when we use Partition(X) within our final algorithm for sorting nuts
and bolts (see inequality (23)).

3. An analysis of the algorithm. In this section, we sketch the correctness
proof and the running-time analysis of our algorithm for sorting nuts and bolts.

Theorem 3.1. The algorithm described in the preceding section sorts n nuts and
n bolts in O(n log n) time.

Proof. Our proof consists of two parts: the first part deals with the correctness
of the algorithm, and the second part deals with the running time of the algorithm.

Proof of correctness. In this part of the proof, we first prove a few claims concern-
ing certain properties of the sets SL(X), SR(X), SC(X), S′L(X), S′R(X), and S′C(X).
These claims provide intuition as to why S′(X) = S′L(X) ∪ S′R(X) ∪ S′C(X) contains
necessary elements for partitioning X by using the graph of Lemma 2.1.

We first introduce some notation. Let

η = 2µδ
A2

1− 4δ2A2
+

1

8A2 − 2A
+ µ.

Note that our η is (slightly) different from the parameter η defined in [9, p. 86],
but they play a similar role in the analyses. In particular, according to the analysis
of [9], η bounds the unbalance of an AKS tree node X in the following sense. Name
the children of X as X1 and X2. It is possible that more than half of the elements
contained in X may have ranks belonging to the natural interval of one of its children,
say, X1. In such a case, when X is partitioned into left and right halves (i.e., FL∪CL
and FR ∪ CR), some elements with ranks belonging to X1 may be moved into X2

(even if the partition of X is done perfectly) simply because of the capacity constraint
on X1. This will cause some of the elements moved into X2 to become strange with
respect to the node that they reside in for the first time. The analysis of [9] shows
that the number of elements that will be forced into X2 by such a reason is at most
η cap(X) (see Claim 3.1). According to the current parameter choices, we have

η =
8627

154836
= 0.0557 . . . .

As discussed in subsection 2.1, we will not specify the value of the parameter ε, which is
used in [9]. Rather, we assume ε to be a sufficiently small constant. Correspondingly,
we assume that graphG used in Algorithm Partition has parameter ε as a sufficiently
small constant depending upon ε and has parameter θ as a properly chosen constant,
which is a fraction of λ. Finally, we define Sr(X) to be the number of elements that
are contained in X and are r or more strange with respect to X. Note that our
definition of Sr(X) is slightly different from that of [9], in which Sr(X) is defined as
the ratio of the quantity in our definition to cap(X).

We will establish the correctness of the algorithm by proving that the following
two properties hold throughout the execution of the algorithm.

Property 3.1. For any AKS tree node X and for any r ≥ 1,

Sr(X) ≤ µ δr−1 cap(X).(16)
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Property 3.2. For any r ≥ 1 and any AKS tree node X such that |X| ≥
λ cap(X), when Algorithm Partition(X) is executed, (1) at most εµδr−1cap(X) el-
ements in X whose strangeness with respect to X is r or more can be placed into
CL ∪ CR; (2) at most (η + ε)cap(X) elements in X whose ranks are at most m(X)
can be placed into CR; and (3) at most (η + ε)cap(X) elements whose ranks are at
least m(X) can be placed into CL.

Before proving these properties, we point out that, as in [9], Property 3.1 alone
is sufficient to establish the correctness of the algorithm, since, toward the end of
the algorithm when cap(X) is less than a sufficiently small constant for all nonempty
X, Property 3.1 implies that no item can be strange with respect to the AKS tree
node that it resides in. In [9], Property 3.1 is difficult to prove, and an analogue of
Property 3.2 was relatively easily verified by the so-called ε-halver property, which in
turn depends on expander graphs. More precisely, an analogue of Property 3.2 in [9]
is independent of Property 3.1, except that the analogues to the second and the third
statements in Property 3.2 are dependent on Claim 3.1, which, in turn, depends on
Property 3.1. In our algorithm, however, the two properties are highly dependent
on each other. In particular, Algorithm Partition would not provide a reasonable
partition of X without the validity of Property 3.1 because we cannot always keep a
match between X and X ′. Thus, we will need to prove both properties simultaneously
in the analysis of our algorithm, whereas the analysis given in [9] for the original AKS
sorting algorithm only needs to focus on the proof of Property 3.1.

We now start proving Properties 3.1 and 3.2. The analysis of the original AKS
sorting algorithm provided in [9] actually shows that inequality (16) always holds as
long as Property 3.2 is never violated. This means that if either Property 3.1 or
Property 3.2 is violated at all, Property 3.2 must be violated first. Hence, it suffices
to show that Property 3.2 always holds as long as Property 3.1 always holds. In
particular, we prove Property 3.2 under the following assumption.

Assumption 3.1. Inequality (16) always holds.

Given Assumption 3.1, the following claim is proved in [9].

Claim 3.1. An AKS tree node X contains at most |X|/2 + η cap(X) elements
with ranks more than m(X) and at most |X|/2 + η cap(X) elements with ranks less
than m(X).

Proof. See [9, pp. 80–81].

In what follows, we prove a few claims for an arbitrary AKS tree node X.

Claim 3.2. For r ≥ 1, TX contains at most µ δr−1

1−2Aδ cap(X) elements that are r
or more strange with respect to X.

Proof. If an element is r or more strange with respect to X, it must be r + d
or more strange with respect to a node that is d levels below X in TX . Hence, by
Assumption 3.1, the number of elements that are r or more strange with respect to X
and are located exactly d levels below X in TX is upper bounded by µ δr+d−1 2dAd

cap(X). By summing these quantities over all d ≥ 0, we obtain the correctness of the
claim.

Claim 3.3. For any r ≥ c + 1, where c is the constant described immediately

before Claim 2.2, SL(X), SR(X), and SC(X) contain at most µ δr−c−1

(1−2Aδ)Ac cap(X),

µ δr−c−1

(1−2Aδ)Ac cap(X), and 2µ δr−c−1

(1−2Aδ)Ac cap(X), resp., elements whose strangeness with

respect to X ′ is at least r.
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Proof. We only prove the claim for SL(X). The cases of SR(X) and SC(X) can
be proved in the same fashion. By definitions, all of the elements in SL(X) are located
in TX′

L,0
(see subsection 2.2.2 for the definition of X ′L,0). Moreover, cap(X ′L,0) =

cap(X)
Ac , since X ′L,0 is c levels above X ′. Now, the correctness of the claim for SL(X)

follows from Claim 3.2.

In the next claim, ε1 is an arbitrarily small constant, which will be much smaller
than ε. This is obtained at the cost of making c be a sufficiently large constant and
making ε of Lemma 2.1 be a sufficiently small constant, much smaller than ε1. For
example, see inequality (34) and the argument immediately after inequality (28). In
both places, we need to assume ε/ε and/or ε1/ε to be sufficiently small.

Claim 3.4. (1) SL(X) contains all but at most ε1 cap(X)/36 of the elements
whose ranks are in [α(X), α(X) + dcap(X)/36e − 1]; (2) SR(X) contains all but at
most ε1 cap(X)/36 of the elements whose ranks are in [β(X)−dcap(X)/36e+1, β(X)];
(3) SC(X) contains all but at most ε1 cap(X)/36 of the elements whose ranks are in
[m(X)− dcap(X)/72e+ 1/2, m(X) + dcap(X)/72e − 1/2].

Proof. We only prove the claim for SL(X). The cases of SR(X) and SC(X) can
be proved in the same fashion. Without loss of generality, we assume that X ∈ TB .
For ease of notation, we call a bolt good if its rank (in N or B) is in [α(X), α(X) +
dcap(X)/36e− 1]. We need to prove that TB −SL(X) contains at most ε1 cap(X)/36
good bolts. Since SL(X) ⊆ TX′

L,0
⊆ TB , TB − SL(X) consists of two parts: TB −

TX′
L,0

and TX′
L,0
− SL(X). We will show that each of the two parts contains at most

ε1 cap(X)/72 good bolts.

Let

P = the path from X ′L,0 to the root of TB , including both X ′L,0 and the root,

P̄ = {Y ′ ∈ TB − TX′
L,0
− P | the parent of Y ′ is in P}.

Clearly, P̄ contains exactly one AKS tree node at each level above (inclusively) the
level of X ′L,0 and below (exclusively) the root level. Thus, we can list all of the nodes
in P̄ from bottom to top as Y ′1 , Y

′
2 , . . . , Y

′
|P̄ |. Clearly, TB−TX′

L,0
−P can be partitioned

as

TB − TX′
L,0
− P =

⋃
1≤i≤|P̄ |

TY ′
i
.(17)

Moreover, a good bolt y in TY ′
i

has rank(y) belonging to the natural interval of the
sibling of Y ′i (which is in P ), so, by Claim 2.3, y must be at least 1-strange with
respect to Y ′i . Thus, by Claim 3.2, the number of good bolts contained in TY ′

i
is at

most

µ

1− 2Aδ
cap(Y ′i ) ≤ µ

1− 2Aδ

cap(X)

Ac+i−1
.

Summing up the above quantities over all i ≥ 1, we know by (17) that the total
number of good bolts contained in TB − TX′

L,0
− P is at most

µ

1− 2Aδ

cap(X)

Ac(1− 1
A )
.
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On the other hand, the total number of good bolts contained in P is at most the total
capacity of the nodes along path P , which can be upper bounded by

cap(X)

Ac(1− 1
A )
.

Summing the preceding two terms, we know that the number of good bolts contained
in TB − TX′

L,0
is at most(

1 +
µ

1− 2Aδ

)
cap(X)

Ac(1− 1
A )
≤ ε1 cap(X)

72
,(18)

where the inequality holds since c is assumed to be a sufficiently large constant.
We next show that TX′

L,0
−SL(X) contains at most ε1 cap(X)/72 good bolts. List

all of the nodes in PL(X) (see subsection 2.2.2 for the definition) from top to bottom
as

Z ′1, Z
′
2, . . . , Z

′
b0.5h(X)c+1,

where Z ′1 = X ′L,0 and Z ′b0.5h(X)c+1 = X ′L,1. For each i such that 1 ≤ i ≤ b0.5h(X)c+
1, there are exactly

J = 2d0.5h(X)+ce+1

nodes in TX′
L,0

that are descendants of Zi and have distance exactly d0.5h(X)+ce+1

from Z ′i. Some of these elements are located within TX′
L,0
− SL(X), and we list all of

them as

Z ′i,1, Z
′
i,2, . . . , Z

′
i,J(i),

where J(i) ≤ J . For example, J(b0.5h(X)c+ 1) = 2d0.5h(X)+ce+1. Clearly,

TX′
L,0
− SL(X) ⊆

⋃
1≤i≤b0.5h(X)c+1

⋃
1≤j≤J(i)

TZ′
i,j
.(19)

By the definition of PL(X) and SL(X), if a node is in TX′
L,0

and has its natural

interval overlapping with [α(X), α(X) + dcap(X)/36e − 1], then the node must be in
SL(X). Since Z ′i,j ∈/ SL(X) for all 1 ≤ j ≤ J(i), each Z ′i,j has its natural interval non-
overlapping with [α(X), α(X) + dcap(X)/36e − 1]. On the other hand, by definition,
the rank of a good bolt is contained in [α(X), α(X) + dcap(X)/36e − 1]. Thus, the
strangeness of a good bolt with respect to Z ′i,j must be at least d0.5h(X) + ce + 1,
since the bolt needs to move up to Zi ∈ PL(X) to become nonstrange for the first
time. Thus, by Claim 3.2, the number of good bolts in TZ′

i,j
is at most

µ δ0.5h(X)+c

1− 2Aδ
cap(Z ′i,j) ≤

µ δ0.5h(X)+c

1− 2Aδ
cap(Z ′i)A

0.5h(X)+c+1

≤ µ δ0.5h(X)+c

1− 2Aδ
cap(X)Ah(X)+c+1.

Summing up this quantity over 1 ≤ i ≤ b0.5h(X)c + 1 and 1 ≤ j ≤ J(i) ≤ J , we
know by inequality (19) that the number of good bolts contained in TX′

L,0
− SL(X)

is at most

(0.5h(X) + 1) 2d0.5h(x)+ce+1 µ δ
0.5h(X)+c

1− 2Aδ
cap(X)Ah(X)+c+1 ≤ ε1

72
cap(X),
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where the inequality holds since c is assumed to be a sufficiently large constant. This,
together with inequality (18), proves the first statement of the claim.

We are now ready to prove Property 3.2. We first consider the simple case where
ε|X| < 2. Assume for contradiction that SL(X) contains no element with rank in
[α(X), α(X) + ε1 cap(X)]. Then none of the min{dcap(X)/36e, bε1 cap(X)c + 1}
elements with ranks in [α(X), α(X)+min{dcap(X)/36e−1, bε1 cap(X)c}] is in SL(X).
Thus, by Claim 3.4, min{dcap(X)/36e, bε1 cap(X)c+ 1} ≤ ε1cap(X)/36. Therefore,
min{cap(X)/36, ε1cap(X)} ≤ ε1 cap(X)/36, which is a contradiction. We have thus
shown that SL(X) contains an element whose rank is in [α(X), α(X) + ε1 cap(X)].
Therefore, in the topologically sorted order found at the end of Partition(X), every
element with rank less than or equal to α(X) is listed before every element with rank
greater than or equal to α(X)+bε1cap(X)c. The only elements that have ranks greater
than or equal to α(X) but may be listed before elements with ranks strictly less than
α(X) are those whose ranks are in [α(X), α(X) + bε1 cap(X)c − 1]. For sufficiently
small ε1, we have µ cap(X) + ε1 cap(X) < (λ/2) cap(X). Thus, by Assumption 3.1,
all of the µ cap(X) or fewer elements of X that have ranks strictly smaller than
α(X) will be caught into FL, establishing the first statement of Property 3.2. Using
Assumption 3.1 and Claim 3.4, we can prove the second and third statements of
Property 3.2 in a similar fashion (here we also need Claim 3.1).

In what follows, we prove Property 3.2 for the case ε|X| ≥ 2. The proof for this
case is quite involved, and we prove the three statements of Property 3.2 one by one.

We begin with a proof for the first statement in Property 3.2. For any r, let

X̄(r) = {x ∈ X − FL | rank(x) < α(X) and x is at least r-strange with respect to X }.

To prove the first statement in Property 3.2, it suffices to show

|X̄(r)| ≤ (ε/2)µ δr−1cap(X).(20)

(Similarly, we can show inequality (20) even if X̄(r) is defined to be the subset of
X −FR consisting of all elements that have ranks greater than β(X) but are at least
r-strange with respect to X.)

In what follows, let

ISL(X) = {x ∈ SL(X) | rank(x) ∈ [α(X), α(X) + (λ/9) cap(X)− 1].

By the first statement of Claim 3.4 and λ/9 ≤ 1/36,

|ISL(X)| ≥
⌊
λ

9
cap(X)

⌋
− ε1cap(X).(21)

Clearly, for all x ∈ ISL(X),

S1(X) ≤ rank(x,X) ≤ S1(X) + (λ/9)cap(X).(22)

Hence, by the first statement of Lemma 2.3, at most ε|X| elements of ISL(X) may
have their Small values (after Compare(X,SL(X), G)) less than or equal to
d (1− (S1(X) + (λ/9) cap(X))/|X| − 2ε). By inequality (21), this means that at least
b(λ/9)cap(X)c − ε1 cap(X) − ε|X| ≥ (λ/10) cap(X) elements of ISL(X) have their
Small values greater than or equal to d (1 − (S1(X) + (λ/9) cap(X))/|X| − 2ε) ≥
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d (|X|−(2λ/5) cap(X)−2ε|X|)/|X|, where the inequality follows from Assumption 3.1.
Thus, we have verified the remark for S′L(X) immediately after the description of
Partition(X) by showing that there exist enough elements to be included in S′L(X),
i.e.,

|S′L(X)| ≥ λ

10
cap(X).(23)

Of course, S′L(X) ⊆ ISL(X) may not hold, and inequality (22) may not hold for
elements in S′L(X). However, we will show the following fact, which is an analogue
to inequality (22).

Claim 3.5. S′L(X) contains at least (λ/10) cap(X) − 2ε|X| x’s satisfying the
following inequality:

S1(X)− 6ε|X| ≤ rank(x,X) ≤ (2λ/5)cap(X) + 4ε|X|.(24)

Proof. According to the second statement of Lemma 2.3, at most ε|X| elements
whose ranks with respect to X are greater than or equal to (2λ/5) cap(X)+4ε|X| may
have their Large values less than or equal to d ((2λ/5) cap(X) + 2ε|X|)/|X|. This
means that at most ε|X| elements violating the second inequality of inequality (24)
may be included in S′L(X). On the other hand, since, in Step 1 of Partition(X), we
have given priority to elements with the smallest Small values in choosing among all
elements whose Small values are greater than or equal to d (|X| − (2λ/5) cap(X) −
2ε|X|)/|X|, by the third statement of Lemma 2.3, the second inequality in inequal-
ity (22), and the fact that ISL(X) has at least (λ/10) cap(X) elements with Small
values greater than or equal to d(|X| − (2λ/5) cap(X)− 2ε|X|)/|X| (see between in-
equalities (22) and (23)), at most ε|X| elements violating the first of inequality (24)
may be included in S′L(X). Now, the claim follows from inequality (23).

Let

Ȳ (r) =

{
y ∈ X

∣∣∣∣ rank(y,X) ≥ (λ/2)cap(X) and y is listed before
all elements of X̄(r) at the end of Partition(X)

}
.

Ideally, all elements in X̄(r) should be listed among the first (λ/2) cap(X) positions
at the end of Partition(X). In reality, no element in X̄(r) is listed among the
first (λ/2) cap(X) positions. Thus, among all the first (λ/2) cap(X) positions, up to
|X̄(r)| positions that should ideally be occupied by elements in X̄(r) must be filled
by elements in Ȳ (r). Hence,

|Ȳ (r)| ≥ |X̄(r)|.(25)

By ε|X| ≥ 2, we know that all elements x’s satisfying inequality (24) are smaller than
all elements in Ȳ (r) and are larger than at least |X̄(r)| − 7ε|X| elements in X̄(r) (by
the definition of S1(X)). Hence, by Claim 3.5, for all y ∈ Ȳ (r), rank(y, S′L(X)) −
rank(x, S′L(X)) ≥ (λ/10) cap(X)−2 ε|X| > 6 ε|X| for at least |X̄(r)|−7ε|X| elements
x’s in X̄(r). Thus, by the third statement of Lemma 2.3 and inequality (25), we
conclude that |X̄(r)| − 7ε|X| < ε|X|, which implies

X̄(r) < 8ε|X|.(26)
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This inequality holds for all r ≥ 1, and it implies inequality (20) for all r such
that 8ε ≤ εµδr−1. So, in what follows, we will assume that r satisfies the inequality

εµδr−1 < 8ε.(27)

By ε|X| ≥ 2, all the elements of X whose ranks with respect to X are at least
(2λ/5)cap(X) + 5ε|X| are strictly larger than all elements satisfying the second in-
equality in inequality (24). By Claim 3.5 and the second statement of Lemma 2.3, at
the end of Compare(S′L(X), X) in Partition(X), at least |X|−(2λ/5)cap(X)−6ε|X|
elements of X whose ranks with respect to X are at least (2λ/5)cap(X) + 5ε|X| have
Large values greater than or equal to d(S′L(X) − 2ε|X| − 2ε|X|)/|X| ≥ (λ/11)d,
where the inequality follows from inequality (23). Thus, since the elements in X̄(r)
are all listed after the first (λ/2)cap(X) of X at the end of Partition(X), the ele-
ments in X̄(r) all have Large values greater than or equal to (λ/11)d at the end of
Compare(S′L(X), X) of Partition(X).

Now applying the third statement of Lemma 2.1 with θ = λ/11 to an arbitrary
subset of X̄(r) with min{|X̄(r)|, 2 e−4θ |X|/d} elements (where d is the degree of
each vertex in X in Compare(S′L(X), X,G)), the elements of this subset are directly
connected to at least min{θd|X̄(r)|/2, e−4θ2|X|} elements of S′L(X) by an edge whose
corresponding comparison shows the element in S′L(X) is smaller than or equal to
its opponent. This means that S′L(X) contains at least min{θd|X̄(r)|/2, e−4θ2|X|}
elements that are smaller than or equal to at least one element in X̄(r) and are
therefore at least r-strange with respect to X. Hence, by S′L(X) ⊆ SL(X) and
Claim 3.3,

min

{
θd|X̄(r)|

2
, e−4θ2|X|

}
≤ µ δr−c−1

(1− 2Aδ)Ac
cap(X).(28)

If e−4θ2|X| < θd|X̄(r)|/2, then inequalities (28) and (27) imply

e−4θ2|X| ≤ 8ε

ε(1− 2Aδ)(δA)c
cap(X),

which contradicts the assumption |X| ≥ λ cap(X) in Property 3.2 for sufficiently
small ratio ε/ε (depending on c). If θd|X̄(r)|/2 ≤ e−4θ2|X|, then inequality (28)
immediately implies inequality (20) for sufficiently small ε (i.e., sufficiently large d)
depending on c.

We have thus proved inequality (20) as well as the first statement of Property 3.2.
We next prove the second and third statements of Property 3.2 together.

Let η′ cap(X) + |X|/2 be the number of elements in X whose ranks are at most
m(X). By Claim 3.1,

η′ ≤ η.(29)

Without loss of generality, we assume

η′ > 0;(30)

i.e., X contains more than |X|/2 elements whose ranks are at most m(X). (Note that
if we were to prove the second statement only, we could not make such an assumption.)
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Claim 3.6. At least 7ε|X| elements x’s of S′CL(X) satisfy the inequality

|X|/2− 4ε|X| ≤ rank(x,X) ≤ |X|/2 + η′cap(X) + (ε1 + 16ε)|X|.(31)

Proof. For ease of notation, suppose all elements with Large values larger than
or equal to d(1/2−2ε) are listed according to their Large values, with the element of
the smallest Large values listed first. We call the first at most d(1/2−λ/10)|X|e non-
empty positions ideal positions. (Note that an element of SC(X) is surely included in
S′CR(X) if it is at an ideal position.)

Let

ISCR(X) = {x ∈ SC(X) | rank(x) ∈ [m(X),m(X) + (ε1 + 10ε)cap(X)]}.

By the third statement of Claim 3.4, |ISCR(X)| ≥ 10 ε cap(X). Clearly, for all x ∈
ISCR(X),

|X|/2 + η′cap(X) ≤ rank(x,X) ≤ |X|/2 + η′cap(X) + (ε1 + 10 ε) cap(X).(32)

Hence, by inequality (30) and the second statement of Lemma 2.3, at most ε|X|
elements of ISCR(X) may have their Large values less than or equal to d(1/2− 2ε)
at the end of Compare(X, SC(X), G). We call the 9ε|X| or more elements of
ISCR(X) that have Large values greater than or equal to d(1/2−2ε) ideal elements.
This also shows that there exist at least 9ε|X| ideal positions.

Now Claim 3.6 would immediately follow from inequality (32) if at least 9ε|X|
ideal elements are included in S′CR(X) (the “if” condition will be clearly satisfied when
at least 9ε|X| ideal elements are in ideal positions). We now prove that although some
ideal elements are not necessarily in ideal positions, the ideal positions will contain
enough elements satisfying inequality (31).

According to the first statement of Lemma 2.3, at most ε|X| elements whose ranks
with respect to X are less than |X|/2 − 4ε|X| may have their Large values larger
than d(1/2−2ε). This means that at most ε|X| elements violating the first inequality
of inequality (31) may occupy at most ε|X| ideal positions. Now, since we have shown
that there are at least 9ε|X| ideal positions, if the claim is incorrect, then there must
exist at least ε|X| elements violating the second inequality of inequality (31) that
are located among the first 9ε|X| ideal positions, and are therefore located before at
least ε|X| ideal elements. By inequalities (31) and (32), this contradicts the third
statement of Lemma 2.3.

Let X̄ = {x ∈ FL ∪ CL | rank(x) ≥ m(x)}. We next show that

|X̄| ≤ ε|X|.(33)

By the choice of η′, all elements in X̄ have ranks with respect to X at least |X|/2 +
η′cap(X). Thus, by ε|X| ≥ 2, X̄ contains at least |X̄| − (ε1 + 18ε)|X| elements whose
ranks with respect to X are at least |X|/2+η′cap(X)+(ε1 +17ε)|X|. Therefore, since
X̄ ⊆ FL∪CL, X̄ contains at least |X̄| − (ε1 + 18ε+ 6ε)|X| elements that have ranks
with respect to X at least |X|/2 + η′cap(X) + (ε1 + 17ε)|X| but are listed among
the first |X|/2 − 5ε|X| positions at the end of Partition(X). As a consequence,
at least |X̄| − (ε1 + 18ε + 6ε)|X| elements whose ranks with respect to X are at
most |X|/2 − 4ε|X| are listed after the first |X|/2 − 5ε|X| positions. Therefore, at
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least |X̄| − (ε1 + 18ε + 6ε)|X| elements whose ranks with respect to X are at least
|X|/2 + η′ cap(X) + (ε1 + 17ε)|X| are listed before at least |X̄| − (ε1 + 18ε + 6ε)|X|
elements whose ranks with respect to X are at most |X|/2−4ε|X|. By Claim 3.6 and
the third statement of Lemma 2.3, we have

|X̄| − (ε1 + 18ε+ 6ε)|X| ≤ ε|X|,(34)

which implies inequality (33) for sufficiently small ε and ε1.
Now the third statement of Property 3.2 follows immediately from inequality (33),

and the second statement of Property 3.2 follows from

|{x ∈ FR ∪ CR | rank(x) ≤ m(X)}| = |X̄|+ η′cap(X) ≤ η cap(X) + ε|X|,
where the inequality follows from inequalities (29) and (33). This completes the
correctness proof for our entire algorithm.

Analysis of running time. We next prove that our whole algorithm runs in
O(n log n) time. The algorithm proceeds in O(log n) stages, and so we only need
to show that each stage of the algorithm runs in O(n) time. Within each stage, we
first partition each AKS tree node X into four parts, FL, CL, CR, and FR, and
then we move each of the four parts to the children of X or to the parent of X. Since
moving these parts takes constant time for each node, we need only to analyze the
time needed to partition X.

Claim 3.7. The time needed to partition an AKS tree node X is at most

O

(
|S(X)| log

|S(X)|
|X|

)
,(35)

where |S(X)| denotes the number of elements contained in S(X).
Proof. In the case ε|X| < 2, Algorithm Partition(X) makes its comparisons

based on a complete bipartite graph between X and S(X). The total number of
comparisons is O(|S(X)| |X|) = O(|S(X)|/ε) = O(|S(X)|). The construction of the
DAG based on these comparison results takes O(|S(X)|) time. Finally, the topological
sort of X takes O(|X|) = O(1) time, so the total time needed is O(|S(X)|). The
correctness of the claim now follows from inequality (15).

In the rest of the proof for the claim, we assume ε|X| ≥ 2. In this case, Algorithm
Partition(X) consists of four steps. In each of the steps, Algorithm Compare is
applied to X and a subset of S(X), and we select a subset of the involved nuts and
bolts, based upon their Small and Large values. By inequality (15), the selection
of these subsets can be easily done in O(|S(X)|) time by CountingSort. Hence, we
only need to analyze the time needed within each execution of Compare.

Algorithm Compare consists of (1) comparisons based on a graph (say, G) of
Lemma 2.1 and (2) listing the involved nuts and bolts according to their Small
and Large values. Clearly, the listing can be easily done in O(|S(X)|) time by
CountingSort. Hence, the total time needed in Compare is determined by the
total number of the involved comparisons, which, in turn, is equal to the number of
edges in G. By Lemma 2.1, the number of edges in G is at most

O

(
|S(X)| log

|S(X)|
|X|

)
.

This completes the correctness proof of Claim 3.7.
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We next give an upper bound on |S(X)|. Since |S(X)| and SL(X) differ by at
most a constant factor, we will upper bound SL(X) instead. By definition, SL(X)
consists of trees of the form TY ′(d0.5h(X ′) + ce), where Y ′ ∈ PL(X). Since the
capacity of an AKS tree node decreases by a factor of A every level upward in the
AKS tree, we obtain

|SL(X)| = O
(∣∣∣TX′

L,1
(d0.5h(X ′) + ce)

∣∣∣) ,(36)

where |TX′
L,1

(d0.5h(X ′) + ce)| denotes the number of elements contained in TX′
L,1

(d0.5h(X ′) + ce). On the other hand, the total number of elements contained in

TX′
L,1

(d0.5h(X ′) + ce)

is within a constant factor of the total capacity of all the leaves in

TX′
L,1

(d0.5h(X ′) + ce).

Thus, the right-hand side of (36) is at most

O
(

2h(X′L,1)Ah(X′L,1) cap(X ′L,1)
)

= O
(

2h(X′L,1)Ah(X) cap(X)
)

= O
(

5h(X) cap(X)
)
,

where the last equality holds since h(X ′L,1) = d0.5h(X) + ce. Thus, we have shown

|S(X)| = O (|SL(X)|) = O
(

5h(X) cap(X)
)
.(37)

Moreover, in the time analysis of the algorithm, we can assume without loss of gen-
erality that

|X| ≥ λ cap(X).(38)

Otherwise, CL and CR would be empty and all elements in X would be sent to the
parent of X at the end of the stage. In such a case, we would not have to partition
X at all. By Claim 3.7 and inequalities (37) and (38), the running time of each stage
of the algorithm is at most

O

( ∑
X∈TN

(h(X) + 1) 5h(X) cap(X)

)

= O

 ∑
X∈TN , h(X)=0

cap(X)

  ∑
0≤h≤H

(h+ 1)

(
5

6

)h
= O

 ∑
X∈TN , h(X)=0

cap(X)


= O(n),

where H denotes the height of the whole AKS tree and the first equality follows from∑
X∈TN , h(X)=i+1

cap(X) =
1

2A

∑
X∈TN , h(X)=i

cap(X).
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This completes the time analysis of the algorithm.

Corollary 3.2. When it is allowed to make copies of nuts and bolts, the algo-
rithm can be modified to sort n nuts and n bolts in O(log n) time on n processors in
Valiant’s parallel comparison tree model.

Sketch of Proof. Given the proof of Theorem 3.1, the proof of the corollary
is relatively simple. The key fact is that Compare(U, V,G) can be executed in a
constant number of parallel steps in Valiant’s parallel comparison tree model, even if
d, the degree of a vertex in V , may not be a constant; we can simply make d copies for
each element in V . This modification will not affect the outcome of Compare(U, V,G)
because within Compare(U, V,G) whether an element x should be compared with
another element y does not depend on the outcome of any other comparisons that are
made earlier during the execution of Compare(U, V,G). Moreover, the modification
will not increase the total number of comparisons involved in Compare(U, V,G). So
the total number of processors needed for each of the O(log n) stages remains linear
in n.

4. Concluding remarks. We have designed an optimal O(n log n)-time algo-
rithm for sorting or matching nuts and bolts. Since our algorithm depends on some
random graphs that we do not know how to construct explicitly, a natural open ques-
tion is how to make our algorithm constructive.

Our algorithm can be executed in optimal O(log n) time on n processors in
Valiant’s parallel comparison tree model, provided that we can make copies of nuts
and bolts. However, when no copies are allowed (which appears to be a reasonable
assumption), we do not know if it is possible to sort the nuts and bolts in O(log n)
time on n processors in Valiant’s parallel comparison tree model.

Aumann [5] has pointed out that it is still possible to sort nuts and bolts by a
certain algorithm, even if there is no one-to-one match between the nuts and bolts.
It is easy to see that, when all different nuts have distinct widths and all different
bolts have distinct widths, such sorting is possible if and only if for any pair of nuts
(respectively, bolts) there exists a bolt (resp., nut) whose width is between the widths
of the pair. It can be shown that our algorithm sorts as long as such sorting is
possible. That is, our algorithm sorts distinct nuts and distinct bolts in O(n log n)
optimal sequential time (or O(log n) optimal parallel time on n processors in Valiant’s
parallel comparison tree model when copying nuts and bolts is allowed) as long as
such sorting is possible by any algorithm. Note that when sorting is possible but
matching is impossible, even O(n log n) expected sequential time does not seem to be
entirely trivial [5].

As we have mentioned in the introduction, the O(n log4 n)-time algorithm of
Alon et al. [3] (resp., the O(n log2 n)-time algorithm of Bradford and Fleischer [8])
for sorting nuts and bolts is based on an O(n log3 n)-time (resp., O(n log n)-time)
algorithm for selecting a median nut and a median bolt. It is well known that the
classic median selection (from a list of n numbers) can be done in O(n) time [6]. It is
curious to study if O(n)-time median selection is possible in the context of nuts and
bolts (say, when there is a match between nuts and bolts). By using the graphs of
Lemma 2.1 in some interesting way and by using some technique of [1], we have found
an O(n (log log n)2)-time algorithm for selecting a median nut and a median bolt. This
also gives an O(n log n (log log n)2)-time algorithm for sorting or matching nuts and
bolts. One nice property of this algorithm is that the constant factors behind the “O”
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notations are reasonable, as opposed to the prohibitively large constant involved in
our AKS-based approach. Details of our median-selection algorithm are omitted. We
recently heard that Bradford [7] found an O(n)-time algorithm for finding a median
nut and a median bolt, which apparently yields another O(n log n)-time sequential
algorithm for sorting or matching nuts and bolts.

Acknowledgments. We thank Noga Alon for telling us the problem before [3]
was published, Greg Plaxton for stimulating discussion on the design of the partition
scheme described in subsection 2.2.3, and Yonatan Aumann, Nabil Kahale, and Tom
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diameter of the symmetric TSP polytope is 2, independent of n. We constructively show that its
diameter is at most 4, for all n ≥ 3. Our result also shows that the diameter of the perfect 2-matching
polytope is at most 6, for every n ≥ 3.
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1. Introduction. The symmetric traveling salesman problem (TSP) associated
with the complete graph Kn is the problem of finding a tour having the smallest pos-
sible total distance, where a distance is assigned to every edge of Kn. The symmetric
traveling salesman polytope associated with Kn is TSPn = convex hull {xT : T is a
tour of Kn}, where xT is the incidence vector associated to the edges in T . The poly-
hedral structure of TSPn has been studied by many. In [2] Grötschel and Padberg
conjectured that the diameter of TSPn is 2. Investigations by Sierksma and Tijssen
resulted in a series of papers, and the following upper bounds were successively ob-
tained: n− 2, n− b√n− 2c, and bn/2c (see [7]). In this paper, a constructive proof
is given showing that the diameter of TSPn is at most 4, for every n ≥ 3, and is thus
independent of n.

Papadimitriou [5] showed that the problem of determining if two extreme points
of TSPn are nonadjacent is NP-complete. Nevertheless, there exists a characteriza-
tion of neighboring extreme points for the perfect 2-matching polytope that can be
exploited to provide a sufficient condition for adjacency on TSPn (see Rispoli [6]).
Padberg and Rao used a similar approach to adjacency on the asymmetric traveling
salesman polytope to show that its diameter is 2 (see [4]). They also determined
that the diameter of the perfect matching polytope is 2. Here we give a new proof
of this fact. The technique we use will also be employed to obtain the bound for
TSPn. An intermediate result is that for every pair of tours having a perfect match-
ing in common, the distance between their corresponding extreme points is at most
2. We also provide the first constant upper bound on the diameter of the perfect
2-matching polytope associated with Kn. In particular, we show that its diameter is
at most 6.

The outline of this paper is as follows. Basic definitions are given in the next
section, along with a discussion of the perfect matching polytope. Next, we obtain
the bound for the diameter of TSPn. The paper ends with some concluding remarks
and a discussion of the perfect 2-matching polytope.
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2. Preliminaries and the perfect matching polytope. The distance be-
tween a pair of extreme points of a polytope P is the number of extreme edges in a
shortest path linking them. The diameter of P , δ(P ), is the largest of the distances
between pairs of extreme points of P . The study of the function δ is motivated by its
relationship to edge-following algorithms of linear programming such as the simplex
method. For a comprehensive survey see Klee and Kleinschmidt [3].

For any two sets S and T , let S ∆ T denote the symmetric difference (S ∼
T ) ∪ (T ∼ S) or equivalently (S ∪ T ) ∼ (S ∩ T ). Let Kn be the complete undirected
graph on nodes N = {1, 2, . . . , n} with edges {{i, j} : i, j ∈ N and i 6= j}. A subgraph
H of Kn is called acyclic if there are no cycles in H. Given two subsets of edges H1

and H2, an alternating cycle is a cycle of even length whose edges alternate between
H1 and H2. A simple alternating cycle is an alternating cycle whose edges cannot be
partitioned into two or more edge-disjoint alternating cycles. A matching is a set of
edges in Kn such that no two edges have a node in common. For every even n ≥ 2,
a perfect matching is a matching of Kn consisting of n/2 edges. For every n ≥ 3, a
perfect 2-matching is a subgraph of Kn consisting of n edges and all nodes of degree
2. A tour T is a subgraph of Kn that is a perfect 2-matching and is also a cycle of
length n. Notice that for every even n ≥ 4, T can be partitioned into two subgraphs
M1 and M2 which are both perfect matchings. For every odd n ≥ 3, T = M1 ∪M2,
where M1 is a matching with (n − 1)/2 edges, M2 is a subgraph containg (n + 1)/2
edges, and M1 ∩M2 = �.

Lemma 1. Let n ≥ 4 be even. Let M1 and M2 be perfect matchings in Kn. Then
there exists a perfect matching M in Kn such that M1∪M and M2∪M are both tours
of Kn.

Proof. The proof is by induction on n. The case n = 4 can be checked directly.
Assume that the statement holds for some even n ≥ 4.

Suppose M1 and M2 are perfect matchings of Kn+2. Clearly, there is an edge in
Kn+2 that is not in M1∪M2, say e = {u, v}. M1∪{e} contains exactly one connected
component with three edges of the form {g, u} ∪ {u, v} ∪ {h, v}, with g 6= h. Let H1

be the perfect matching in Kn obtained from M1 by removing nodes u and v and
replacing the 3-edge component with edge {g, h}. Obtain H2 by similarly removing
u and v and “contracting” the 3-edge component in M2 ∪ {e}. By the inductive
assumption, there is a perfect matching H in Kn such that H1 ∪H and H2 ∪H are
both tours in Kn. Now, M = H ∪ {e} satisfies the lemma.

The perfect matching polytope associated with Kn, for n even, is PMn = convex
hull {xM : M is a perfect matching ofKn}, where xM is the incidence vector associated
to the edges in M . The perfect matchings in Kn are in one-to-one correspondence
with the extreme points of PMn. It is well known that if M1 and M2 are perfect
matchings in Kn, then the extreme points corresponding to M1 and M2 are neighbors
if and only if M1 ∆ M2 contains a unique simple alternating cycle (see [1]). Lemma 1
provides a concise proof of the following theorem; the original proof is in [4].

Theorem 1 (Padberg and Rao). δ(PMn) = 2, for every even n ≥ 8, and
δ(PMn) = 1, for n = 4 and 6.

Proof. For every pair of extreme points xM1 and xM2 , Lemma 1 implies the
existence of an extreme point xM adjacent to both xM1 and xM2 , hence δ(PMn) ≤ 2.
It is easy to find a pair of extreme points requiring exactly two steps.

The perfect 2-matching polytope associated with Kn, for n ≥ 3, is PTMn = convex
hull {xM : M is a perfect 2-matching of Kn}, where xM is the incidence vector
associated with the edges in M . Since every tour in Kn is a perfect 2-matching, and
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a complete nonredundant system of equations and inequalities describing PTMn is
known, the perfect 2-matching polytope is helpful in determining facets of TSPn (see
[2] for more details). The perfect 2-matchings of Kn are in one-to-one correspondence
with the extreme points of PTMn, and, likewise, the tours of Kn are in one-to-one
correspondence with the extreme points of TSPn. Two perfect 2-matchings are called
adjacent if their corresponding extreme points are adjacent on PTMn. Similarly, we
call tours adjacent if their corresponding extreme points are adjacent on TSPn. A
proof of Lemma 2 is provided in [6], where the “monotonic diameter” of PTMn is
obtained.

Lemma 2. If M1 and M2 are a pair of perfect 2-matchings in Kn, then M1

and M2 are adjacent on PTMn if and only if M1 ∆ M2 contains a unique simple
alternating cycle.

3. The symmetric traveling salesman polytope. Since every tour is a per-
fect 2-matching, TSPn is contained in PTMn. But what can be said about neighbor-
ing extreme points? If two tours are adjacent on TSPn, they may not be adjacent on
PTMn. However, if two tours are adjacent on PTMn, then they must necessarily be
adjacent on TSPn. By Lemma 2, we know that if T1 and T2 are tours and T1 ∆ T2

contains a unique simple alternating cycle, then T1 and T2 are adjacent on PTMn.
This gives the following.

Lemma 3. Let T1 and T2 be tours of Kn. If T1 ∆ T2 contains a unique simple
alternating cycle, then T1 and T2 are adjacent on TSPn.

The following notation will now be helpful. Given a subgraph H of Kn consisting
of q disjoint paths ρ1, ρ2, . . . , ρq of length one or more, let N(H) denote the subset
of nodes consisting of the 2q endpoints of the ρi. Let PM(H) denote the perfect
matching on N(H) induced by H by representing each ρi in H with an edge ei having
the same endpoints as ρi, for every i = 1, . . . , q. In other words, PM(H) consists of
the graph obtained from H by contracting each path ρi into an edge ei having the
same endpoints as ρi.

Theorem 2. (a) Let n ≥ 4 be even. Then for every pair of tours T1 and T2 of
Kn having a perfect matching in common, the distance between their corresponding
extreme points is at most 2 on TSPn.

(b) Let n ≥ 5 be odd. Then for every pair of tours T1 and T2 of Kn having a
matching with (n − 1)/2 edges in common, the distance between their corresponding
extreme points is at most 2 on TSPn.

Proof. (a) The case n = 4 may be checked directly, so assume that n ≥ 6. Let
T1 and T2 be nonadjacent tours of Kn satisfying T1 = M1 ∪M2 and T2 = M1 ∪M3,
where M1, M2, and M3 are perfect matchings in Kn. Since T1 ∆ T2 ⊆ M2 ∪M3,
and T1 and T2 are not adjacent, M2 ∪M3 consists of at least two components which
are either alternating cycles of length four or more, or single edges in M2 ∩M3. Let
C1, . . . , Cq, denote the components in M2 ∪M3. Let gi be any edge in Ci ∩M3, for
every i = 1, . . . , q. Set G = {g1, . . . , gq} and set E = M3 ∼ G. Observe that M1 ∪ E
must be acyclic since it is contained in T2. Moreover, PM(M1∪E) and PM(M2∪E)
are perfect matchings on N(M1 ∪ E). By Lemma 1, there is a perfect matching H
that links both PM(M1 ∪ E) and PM(M2 ∪ E) into a tour of N(M1 ∪ E). Let
T3 = M1 ∪ E ∪H; then T3 is a tour of Kn and satisfies

T1 ∆ T3 = (M1 ∪M2) ∆ (M1 ∪ E ∪H) = M2 ∪ E ∪H
which is also a tour of Kn. So, by Lemma 3, T1 and T3 are adjacent. In addition, by
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the definition of E, M3 ∼ E is the same as PM(M2 ∪ E), and hence

T2 ∆ T3 = (M1 ∪M3) ∆ (M1 ∪ E ∪H) = (M3 ∼ E) ∪H
is a simple alternating cycle. Therefore, T2 and T3 are adjacent.

(b) The case n = 5 may be checked directly, so assume that n ≥ 7. Let T1 and
T2 be nonadjacent tours of Kn having a matching with (n − 1)/2 edges in common.
Without loss of generality, we can assume that T1 = M1 ∪M2 and T2 = M1 ∪M3,
where M1 is a perfect matching on N ∼ {1}, M1 ∩M2 = �, and M1 ∩M3 = �.
Observe that either (i) the degree of node 1 is 0 or 2 in T1 ∆ T2; or (ii) the degree
of node 1 is 4 in T1 ∆ T2 and node 1 is incident to one simple alternating cycle in
T1 ∆ T2; or (iii) the degree of node 1 is 4 in T1 ∆ T2 and node 1 is incident to two
simple alternating cycles in T1 ∆ T2.

(i) Let f1 be an edge in M2 ∩M3 incident to node 1, and let f2 be the other
edge in M3 incident to node 1, which may or may not be in M2 ∩M3. Let C1, . . . , Cq
denote the components in M2 ∪M3 that do not contain node 1. Let gi be any edge
in Ci ∩M3, for every i = 1, . . . , q. Set G = {f2, g1, . . . , gq} and set E = M3 ∼ G.
Observe that both M1∪E and M2 ∆ E must be acyclic. Moreover, PM(M1∪E) and
PM(M2 ∆ E) are perfect matchings on N(M1 ∪E). By Lemma 1, there is a perfect
matching H on N(M1 ∪E) linking both PM(M1 ∪E) and PM(M2 ∆ E) into a tour
of N(M1 ∪ E). Hence T3 = M1 ∪ E ∪H is a tour of Kn, and T1 and T3 are adjacent
since

T1 ∆T3 = (M1 ∪M2) ∆ (M1 ∪ E ∪H) = M2 ∆ (E ∪H) = (M2 ∆ E) ∪H
is a simple alternating cycle. In addition, M3 ∼ E = PM(M2 ∆ E), hence

T2 ∆ T3 = (M1 ∪M3) ∆ (M1 ∪ E ∪H) = M3 ∆ (E ∪H) = (M3 ∼ E) ∪H
is also a simple alternating cycle, implying that T1 and T3 are adjacent.

(ii) Let γ denote the simple alternating cycle containing node 1 in T1 ∆ T2. Let
f be any edge in γ ∩M3 that is not incident to node 1. Let C1, . . . , Cq denote the
components in M2∪M3 that do not contain node 1. Let gi be any edge in Ci∩M3, for
every i = 1, . . . , q. Set G = {f, g1, . . . , gq} and E = M3 ∼ G. Then M1 ∪E is acyclic,
and M2∪E consists of disjoint alternating paths save that component containing node
1 which consists of γ ∼ {f}. Moreover, PM(M1 ∪ E) and PM [(M2 ∪ E) ∼ γ] ∪ {f}
are perfect matchings on N(M1 ∪ E). By Lemma 1, there is a perfect matching H
on N(M1 ∪ E) linking both PM(M1 ∪ E) and PM [(M2 ∪ E) ∼ γ] ∪ {f} into a tour
of N(M1 ∪ E). Hence T3 = M1 ∪ E ∪H is a tour of Kn, and T1 and T3 are adjacent
since

T1 ∆ T3 = (M1 ∪M2)∆(M1 ∪ E ∪H) = M2 ∪ E ∪H
is a simple alternating cycle. In addition, M3 ∼ E = PM [(M2 ∪ E) ∼ γ] ∪ {f}, so

T2 ∆ T3 = (M1 ∪M3) ∆ (M1 ∪ E ∪H) = M3 ∆ (E ∪H) = (M3 ∼ E) ∪H
is also a simple alternating cycle. Thus, T2 and T3 are adjacent.

(iii) Now, node 1 is incident to exactly two simple alternating cycles in T1 ∆ T2,
say, γ1 and γ2. Let f1 be any edge in γ1 ∩M3 that is not incident to node 1, and
let f2 = {1, k} be the unique edge in γ2 ∩M3 incident to node 1. Let C1, . . . , Cq
denote the components in M2 ∪M3 that do not contain node 1. Let gi be any edge
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in Ci ∩M3, for every i = 1, . . . , q. Set G = {f1, f2, g1, . . . , gq} and E = M3 ∼ G.
Then M1 ∪ E is acyclic and consists of disjoint alternating paths, where all paths
begin and terminate with M1 edges except for the path having node 1 as an endpoint
which begins with an M3 edge and terminates with an M1 edge. In addition, M2 ∪E
consists of disjoint alternating paths save that component containing node 1 which
consists of (γ1 ∪ γ2) ∼ {f1, f2}.

Set H1 = PM(M1 ∪E) and H2 = PM [(M2 ∪E) ∼ (γ1 ∪γ2)]∪{f1, f2}. Then H1

and H2 are perfect matchings on N(M1 ∪ E). If T1 ∆ T2 = γ1 ∪ γ2, then either T1

and T2 are neighbors or there exists a T3 obtained by exchanging M2 and M3 edges
along any one of γ1 or γ2. So we may assume that T1 ∆ T2 contains at least three
simple alternating cycles, implying that N(M1 ∪ E) contains at least six nodes, four
of which are the endpoints of f1 and f2.

Next we define a procedure to find a subset of edges H linking M1∪E into a tour
of Kn and M2 ∪ E into a subgraph containing a unique alternating cycle. Initially
set H1 = H1 and H2 = H2. Let {1, v1} be the edge in H1 incident to node 1, and let
{v2, k} be the edge in H1 incident to node k. H1 ∪ H2 must contain an alternating
cycle of length 4 or more passing through node 1. If this cycle has length exactly 4,
then set e = {1, v2}, place edge {v1, k} in H, and contract H1 and H2 with respect to
{v1, k}. Otherwise, the cycle in H1 ∪H2 passing through node 1 has length at least
6, and hence edge {v1, v2} is not in H2. Now set e = {1, k}, place edge {v1, v2} in
H, and contract H1 and H2 with respect to {v1, v2}. Observe that in every case, e is
incident to node 1 and, after the contraction, e ∈ H1 ∩H2. Next, iteratively choose
an edge {g, h} that joins two nodes in N(H1 ∼ {e}) satisfying {g, h} /∈ H1 ∪ H2.
Place {g, h} in H, and contract H1 and H2 with respect to {g, h}. This gives new
perfect matchings on a smaller subset of nodes denoted by H1 and H2 throughout
this procedure which is repeated until both H1 and H2 contain two edges. Upon
completion, H1 = H2 = {e, {u, v}}, for some edge {u, v} that represents a unique
path in M2∪E ∪H, say ρ, having odd length and passing through node 1. Moreover,
either the distance on ρ from node 1 to u is odd, or the distance on ρ from 1 to v is
odd. In the first case, complete the construction of H by adding to H edge {1, v},
and add either {k, u}, if e = {1, k}, or {u, v2}, if e = {1, v2}. When the distance on
ρ from 1 to v is odd, add to H edge {1, u}, and add either {k, v}, if e = {1, k}, or
{v2, v} if e = {1, v2}. Notice that M2 ∪ E ∪ H now consists of a single alternating
cycle that can be partitioned into two odd cycles meeting only at node 1. Finally, set
T3 = M1 ∪ E ∪ H. Then T3 is a tour of Kn, and T3 is adjacent to both T1 and T2

since

T1 ∆ T3 = (M1 ∪M2) ∆ (M1 ∪ E ∪H) = (M2 ∪ E) ∪H, and

T2 ∆ T3 = (M1 ∪M3) ∆ (M1 ∪ E ∪H) = (M3 ∼ E) ∪H.
At this point we remark that δ(TSPn) ≤ 6, for every even n ≥ 4. For example,

suppose that T1 = M1 ∪M2 and T2 = M3 ∪M4 are arbitrary tours and each Mi is a
perfect matching. By Lemma 1, there is a perfect matching M such that M ∪M2 and
M ∪M3 are also tours. Now apply Theorem 2(a) three times to link T1 to M ∪M2,
M ∪M2 to M ∪M3, and M ∪M3 to T2.

Lemma 4. Let n ≥ 8 be even. Let M1, M2, M3, and M4 be perfect matchings
in Kn such that M1 ∪M2 and M3 ∪M4 are tours of Kn, and neither M2 ∪M3 nor
M2 ∪M4 are tours of Kn. Then there exists a perfect matching M in Kn such that
M ∪M1, M ∪M3, and M ∪M4 are all tours of Kn, and M ∆ M2 contains a unique
alternating cycle.
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Proof. Let E be a maximal subset of edges in M2 ∼ (M3 ∪M4) such that both
M3 ∪E and M4 ∪E are acyclic. Note that E 6= �. Otherwise, M2 ∼ (M3 ∪M4) = �,
implying that either M2 = M3 or M2 = M4, contrary to the assumptions. Begin the
construction of M by placing every edge in E in M . Set Hi = PM(Mi∪E), for i = 1,
3 and 4, and set H2 = M2 ∼ E. Note that every Hi is a perfect matching on N(H1).
Moreover, H2 ⊂ (H3 ∪H4). This follows from the fact that if {g, h} ∈ H2 and is not
an edge in H3 ∪H4, then Hk ∪ {g, h}, and hence Hk ∪E ∪ {g, h} is acyclic for k = 3
and 4. This contradicts the maximality of E.

If H3 = H4, then H2 = H3 = H4. By Lemma 1, there is a perfect matching H on
N(H1) such that H1 ∪H and H2 ∪H are both tours of N(H1). Setting M = E ∪H
gives the result for this case. So assume that H3 6= H4 and that H3 ∪ H4 has at
least one cycle of length 4 or more. In addition, H3 ∪H4 must have more than one
component. Otherwise, H2 ⊂ (H3 ∪ H4) implies that either H2 = H3 or H2 = H4,
say, H2 = H3. Then H2 ∪H4, and hence (M2 ∼ E)∪ (M4 ∪E) is a single component,
i.e., a tour, which is impossible. So we may assume that H3 ∪ H4 has at least two
components.

Let N1 ∪ N2 be a partition of N(H1), such that N1 contains all of the nodes of
one of the components of H3 ∪H4, and N2 contains all of the nodes from all of the
remaining components of H3∪H4. Since at least one of the components in H3∪H4 is
a cycle of length 4 or more, we can assume that |N1| ≥ 4 and |N2| ≥ 2. In addition,
H1 ∪ H2 a tour of N(H1), and H2 ⊂ (H3 ∪ H4) imply that there exists an edge
e = {v1, v2} satisfying v1 ∈ N1, v2 ∈ N2, and e ∈ H1. Next we describe a procedure
to complete the construction of M . Begin by setting Hi = Hi, for i = 1, 2, 3 and 4,
and N i = Ni, for i = 1 and 2. At each iteration throughout this procedure an edge
will be selected, placed in M , and all of the Hi will be contracted with respect to this
edge. We will continue to refer to the four sequences of perfect matchings obtained
as Hi. Similarly, at every iteration two nodes will be removed from either N1 or N2,
and we continue to refer to the two sequences of subsets of nodes as N i. The following
step is repeated until it is no longer possible:

Let {g, h} be any edge that is not in H1 ∪H3 ∪H4 such that {g, h}
joins two nodes in the same N i, and neither g nor h are endpoints
of e. Place {g, h} in M , contract all Hi with respect to {g, h}, and
remove g and h from the appropriate N i.

When |N i| ≥ 6, there is always an edge {g, h} available. Suppose that |N i| = q ≥ 6,
and consider the complete graph Kq. Observe that q must be even, there are at most
3(q/2) − 1 edges linking two nodes within the same N i, and there are at most q − 3
additional edges incident to e in Kq. Since Kq has q(q − 1)/2 edges, the number of
edges available to choose {g, h} from is at least

[q(q − 1)/2]− [3(q/2)− 1]− (q − 3) = (1/2)(q − 4)(q − 2) > 0, for q ≥ 6.

Therefore, upon completion of the above step either |N1| = 4 and there are five edges
in H1 ∪H3 ∪H4 joining a pair of nodes in N1, or |N1| = 2. The same is true for N2.
Thus, H1 ∪H3 ∪H4 now has one of the following forms:

(i) H1 ∪H3 ∪H4 has eight nodes, |N1| = 4, and |N2| = 4; or
(ii) H1 ∪H3 ∪H4 has six nodes, |N1| = 4, and |N2| = 2; or
(iii) H1 ∪H3 ∪H4 has four nodes, |N1| = 2, and |N2| = 2.

(i) We know that v1 ∈ N1, v2 ∈ N2, and e ∈ H1. Since N1 ∼ {v1} has three
nodes, there must be an edge, say, {v3, v4} in H1, satisfying v3 ∈ N1 and v4 ∈ N2. Let
v5 and v6 denote the remaining nodes in N1, and let v7 and v8 denote the remaining
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nodes in N2. {v5, v6} must be an edge in H1; otherwise the repeated step above
would not terminate with |N1| = 4. Likewise, {v7, v8} is in H1. In addition, |N1| = 4
and |N2| = 4 implies that H1, H3, and H4 are mutually disjoint. Suppose that

H3 = {{v1, v5}, {v3, v6}, {v2, v7}, {v4, v8}} and

H4 = {{v1, v6}, {v3, v5}, {v2, v8}, {v4, v7}}.
Then the construction of M is completed by placing {{v1, v8}, {v3, v7}, {v2, v5},
{v4, v6}} in M . There are three other possible combinations for H3 and H4 but
they are all isomorphic to this case.

(ii) Again we know that v1 ∈ N1, v2 ∈ N2, e ∈ H1, and there must be an edge,
say {v3, v4} in H1, satisfying v3 ∈ N1 and v4 ∈ N2. There must also be an edge
{v5, v6} in H1 satisfying v5 and v6 ∈ N1. Notice that {v2, v4} is an edge in both H3

and H4. Since there must be five edges joining a pair of nodes in N1, H3 and H4

have exactly one edge in common. So we can assume that H3 = {{v1, v5}, {v2, v4},
{v3, v6}} and H4 = {{v1, v6} {v2, v4}, {v3, v5}}. The construction of M is completed
by placing {{v1, v3}, {v2, v5}, {v4, v6}} in M .

(iii) Again we know that v1 ∈ N1, v2 ∈ N2, e ∈ H1, and that there must be
an edge, say {v3, v4} in H1, satisfying v3 ∈ N1 and v4 ∈ N2. Moreover, H3 =
H4 = {{v1, v3}, {v2, v4}}. The construction of M is completed by placing {{v1, v4},
{v2, v3}} in M .

Theorem 3. δ(TSPn) ≤ 4, for every n ≥ 3.
Proof. For 3 ≤ n ≤ 7, the result may be checked directly. Therefore, suppose

that n ≥ 8 and let T and T ∗ be nonadjacent tours of Kn. We show how to construct
a sequence of tours of Kn, denoted by T = T0, T1, T2, T3, T4 = T ∗, such that two
successive Ti are either identical or adjacent.

Suppose n is even. Then T0 = M1 ∪M2 and T4 = M3 ∪M4, where the Mi are
perfect matchings in Kn. If M1 ∪M3 is a tour, then set T2 = M1 ∪M3. If T0 and T2

are adjacent, then set T1 = T2; otherwise, use Theorem 2(a) to obtain T1. Obtaining
T3 is similar. Furthermore, the case where any of M1 ∪M4, M2 ∪M3, and M2 ∪M4

are tours is similar. So assume that none of these are tours. By Lemma 4, there is a
perfect matching M in Kn such that M ∪M1 and M ∪M3 are both tours of Kn, and
M ∆ M2 and M ∆ M4 contain unique simple alternating cycles. Set T1 = M ∪M1

and T3 = M ∪M3. Then T0 ∆ T1 = M ∆ M2, so T0 and T1 are adjacent. Similarly,
T3 and T4 are adjacent. By Theorem 2(a), either T1 and T3 are adjacent or there is
a tour T2 adjacent to both T1 and T3.

Suppose n is odd. Then T0 = M1 ∪M2 and T4 = M3 ∪M4, where M2 and M4

are perfect matchings on N ∼ {1}, M1 ∩M2 = �, and M3 ∩M4 = �. If M2 ∪M3 is
a tour of Kn, then set T2 = M2 ∪M3. If T0 and T2 are adjacent, then set T1 = T2.
Otherwise, M2 is a matching with (n−1)/2 edges, so by Theorem 2(b), there is a tour
T1 adjacent to T0 and T2. Moreover, M3 contains a matching with (n − 1)/2 edges,
so the distance between T2 and T4 is at most 2 as well. If M2 ∪M3 is not a tour of
Kn, and M2 ∪M4 is a tour of N ∼ {1}, then let C1, . . . , Cq denote the components in
M2∪M3. Since M2∪M3 contains at least two components, q ≥ 2. Let gi be any edge in
Ci ∩M3, for every i = 1, . . . , q. Set G = {g1, . . . , gq} and set E = M3 ∼ G. Observe
that M4 ∪ E must be acyclic since it is contained in T4. Moreover, PM(M2 ∪ E)
and PM(M4 ∪ E) are perfect matchings on N(M2 ∪ E). By Lemma 1, there is a
perfect matching H that links both PM(M2 ∪ E) and PM(M4 ∪ E) into a tour of
N(M2 ∪ E). Let T2 = M2 ∪ E ∪ H. Then T2 is a tour of Kn, and T0 and T2 have
M2 in common. By Theorem 2(b), the distance between T0 and T2 is at most 2. Set
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T3 = M4 ∪E ∪H. Then T2 ∆ T3 = (M2 ∪M4), so T2 and T3 are adjacent. Moreover,
T3 ∆ T4 = (M4 ∪ E ∪ H) ∆ (M3 ∪M4) = (M3 ∼ E) ∪ H. Since M3 ∼ E is the
same as PM(M2∪E), T3 ∆ T4 is a simple alternating cycle, and hence T3 and T4 are
adjacent.

Now we may assume that M2∪M3 is not a tour of Kn and M2∪M4 is not a tour
of N ∼ {1}. By contracting the 2-edge component in M1 and M3 into a single edge
and deleting node 1, it follows from Lemma 4 that there is a perfect matching M on
nodes N ∼ {1} such that M ∪M1 and M ∪M3 are both tours of Kn, and M ∆ M2

and M ∆ M4 contain unique alternating cycles. Let T1 = M ∪M1 and T3 = M ∪M3.
Then the distance between T1 and T3 is at most 2; hence there exists a path of length
at most 4 joining T0 to T4.

4. Concluding remarks and the perfect 2-matching polytope. The work
described here provides the first upper bound for δ(TSPn) that is independent of n.
A tight lower bound for δ(TSPn) remains an open question; i.e., does δ(TSPn) = 2,
3, or 4? Sierksma and Tijssen [7] determined by “brute force” that δ(TSPn) = 2, for
5 ≤ n ≤ 12. For every n > 12, it is possible to construct tours such that exchanging
perfect matchings requires three intermediate steps. Therefore, 4 is the best possible
upper bound when simply exchanging perfect matchings.

As for perfect matching polytopes, our technique gives an immediate proof that
δ(PMn) = 2, for every even n ≥ 8. Using the construction given in section 3 of this
paper, we can also prove the following constant upper bound for perfect 2-matching
polytopes.

Theorem 4. δ(PTMn) ≤ 6, for every n ≥ 3.
Proof. It follows from Lemma 2 and the subtour patching technique (discussed

often in [2]) that every extreme point of PTMn either corresponds to a tour or is
adjacent to an extreme point corresponding to a tour. We also know that from the
construction given in section 3, every pair of extreme points on PTMn corresponding
to a pair of tours may be linked by a path on PTMn of length at most 4. So given any
pair of extreme points of PTMn, we first move to extreme points corresponding to a
pair of tours, if necessary, then join the tours with a path of length 4 or less. Hence,
δ(PTMn) ≤ 6.

REFERENCES
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Abstract. In this paper we prove a theorem on the number of distinct codes produced when the
α-ary Gray code mapping of Sharma and Khanna [Inform. Sci., 15 (1978), pp. 31–43] is iteratively
applied to an α-ary, dimension l code; that is, starting with an α-ary, dimension l code, and repeatedly
applying the permutation given by Sharma and Khanna’s mapping. From this theorem, it is easy to
show there are Θ(lq) distinct codes generated from this mapping, where q is the number of distinct
primes in α (Let f : N → R∗.O(f) is the set of functions g : N → R∗ such that for some c ∈ R+

and some n0 ∈ N, g(n) ≤ cf(n) for all n ≥ n0. Θ(f) is the set of functions g : N→ R∗ such that g
is in O(f) and f is in O(g).). To prove this theorem we show that any base α, dimension l code word
will cycle in O(lq) iterations of this Gray code mapping, and that this upper bound is attained. This
theorem is a generalization of a theorem proven by Culberson [Evolutionary Comput., 2 (1995), pp.
279–311] for the binary case.
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1. Gray codes. The Hamming distance between two strings x and y of dimen-
sion, or length, l is the number of characters in which they differ. For example, the
strings 34761 and 14781 have a Hamming distance of two. An α-ary Gray code of
dimension l is a sequence of αl distinct α-ary, length l strings such that any two ad-
jacent code words have a Hamming distance of one. The Gray code discussed in this
section will be represented by G(α, l). We will sometimes use subscripts to refer to
specific words in G(α, l); that is, Gi−1(α, l) is the ith word in G(α, l). For example,
G0(2, 3) = 000, G1(2, 3) = 001, and G2(2, 3) = 011.

A cyclic Gray code has the additional property that the Hamming distance be-
tween the first and last members in the Gray code is also one. G(α, l) is a cyclic
Gray code and has the special property that if g = g1g2 . . . gl and h = h1h2 . . . hl are
cyclically adjacent numbers in G(α, l) and gk 6= hk (i.e., the characters that differ)
then hk = gk⊕1. (We use the symbols ⊕ and ª for addition mod α and subtraction
mod α, respectively. As well, all summations in this paper are taken mod α.)

We can define G(α, l) in terms of a function that maps the base α, dimension l
integers, N (α, l), to G(α, l). For example, if x is the base α, dimension l representation
of the nonnegative integer i, then this function will map x to Gi(α, l). This mapping
was given in [4], and we give the same mapping in a slightly altered form.

The mapping is denoted by K, and its inverse by K−1. Let an element in G(α, l)
be represented by the string g = g1g2 . . . gl and its corresponding base α integer be
represented by the string x = x1x2 . . . xl. The mappings are then defined as

K(x) = (g),

gi =

{
x1 if i = 1,
xiªxi−1, 1 < i ≤ l,
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EXAMPLE 1
N (2, 3) K G(2, 3)
000 7−→ 000
001 7−→ 001
010 7−→ 011
011 7−→ 010
100 7−→ 110
101 7−→ 111
110 7−→ 101
111 7−→ 100

EXAMPLE 2
N (3, 3) K G(3, 3) N (3, 3) K G(3, 3)
000 7−→ 000 112 7−→ 101
001 7−→ 001 120 7−→ 111
002 7−→ 002 121 7−→ 112
010 7−→ 012 122 7−→ 110
011 7−→ 010 200 7−→ 210
012 7−→ 011 201 7−→ 211
020 7−→ 021 202 7−→ 212
021 7−→ 022 210 7−→ 222
022 7−→ 020 211 7−→ 220
100 7−→ 120 212 7−→ 221
101 7−→ 121 220 7−→ 201
102 7−→ 122 221 7−→ 202
110 7−→ 102 222 7−→ 200
111 7−→ 100

Fig. 1.1. Two examples of Gray codes.

and

K−1(g) = (x),

xi =

{
g1 if i = 1,
gi⊕xi−1, 1 < i ≤ l,

G(2, l) is the binary reflected Gray code. Both K and K−1 can be computed in
parallel. That is, gi can be written in terms of x, and xi can be written in terms of
g. For instance, xi = g1⊕g2⊕ · · ·⊕gi. See Figure 1.1 for two examples of this Gray
code. Further work on this Gray code was done in [5], and those interested in Gray
codes in general may also wish to see [1] and [2].

2. Iterating the Gray code G(α, l). In this section we prove a theorem on
the number of distinct codes produced when N (α, l) is iteratively mapped using K−1.
That is, we start with N (α, l) and repeatedly apply the permutation given by K−1.
Let N i

j(α, l) = K−1(N i−1
j (α, l)) and N 0

j (α, l) = N j(α, l). Iteratively applying K−1

to each code word can be seen as iterating G(α, l), since N 1(α, l) = G(α, l).
We want to know the number of distinct codes that can be generated by iterating

N (α, l), or, more formally, for what i > 0 does N i(α, l) = N (α, l) such that ∀j, 0 <
j < i, N j(α, l) 6= N (α, l)?

The following theorem follows easily from Theorem 3.1 (proven in section 3).
Theorem 2.1. Let l > 1 and α = pn1

1 pn2
2 . . . p

nq
q , where pi is prime, pi 6= pj for

i 6= j (prime decomposition), and for each pi, set hi such that phi−1
i < l ≤ phii . Then

K−1 will generate m = ph1+n1−1
1 ph2+n2−1

2 . . . p
hq+nq−1
q distinct codes.

Proof. We know, from Theorem 3.1, that for any string x, xm = x. We also know
that this upper bound is attained for any string such that x1 6= 0, greatest common
denominator (GCD) (x1, α) = 1, and l > 1. Since this is true for some strings (e.g.,
any string whose first character is 1), we know that iterating N (α, l) gives m distinct
codes.

If l = 1 then m = 1; for l > 1, lq ≤ m < αlq, where q is the number of distinct
primes in α. This implies that the maximum number of codes generated is Θ(lq)∀l.

3. Iterating strings using K−1. In this section we will prove a theorem on the
cycles induced when an α-ary, dimension l string is iterated. We will use the notation
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xi = K−i(x) = K−1(K−(i−1)(x)) and x0 = K0(x) = x. We use subscripts to refer to
a particular digit in x. For example, if x = x0 = 12356, then x0

3 = 3.
A cycle on string x consists of the sequence x0, x1, . . . , xi−1, where xi = x0 and

∀j such that 0 < j < i, xj 6= x0. The following cycle theorem gives an upper bound on
the cycle length of any string x, and gives the actual cycle length when GCD(x1, α)= 1
and x1 6= 0.

Theorem 3.1. Let l > 1 and α = pn1
1 pn2

2 . . . p
nq
q , where pi is prime, pi 6= pj for

i 6= j (prime decomposition), and for each pi, set hi such that phi−1
i < l ≤ phii . If

m = ph1+n1−1
1 ph2+n2−1

2 . . . p
hq+nq−1
q , then xm = x, and if x1 6= 0 and GCD(x1, α)= 1,

then for any 0 < m′ < m, xm
′ 6= x.

Given any α-ary string and the number m as described in Theorem 3.1, mapping
the string with the inverse Gray code mapping m times will cause the iterated string
to return to its original value. If x1 6= 0 and GCD(x1, α) = 1, then m is the smallest
integer for which the code word will cycle. For example, if x = 1000 and α = 2, then
x1 = 1111, x2 = 1010, x3 = 1100, x4 = 1000, which implies that m = 4. The special
case of this theorem for α = 2 was proven in [3].

Before proving this theorem, we will prove a number of lemmas.
Lemma 3.2.

xij = xij−1⊕xi−1
j , i > 0, 1 < j ≤ l.

Proof. The proof is from the definition of K−1.
Lemma 3.3.

x1
j = x1⊕x2⊕ · · ·⊕xj , 1 < j ≤ l,

and

xi1 = x1, i ≥ 1.

Proof. Both statements follow from Lemma 3.2.
Lemma 3.4.

xij =

j∑
k=1

(
i+ j − k − 1

j − k
)
xk, 1 ≤ j ≤ l, i ≥ 1.

Proof.
Basis: Lemma 3.3 is the basis, and it can be seen that both of the statements in

Lemma 3.3 are special cases of Lemma 3.4.
Induction step:
I.H: Assume Lemma 3.4 is true for xij−1 and xi−1

j .
We know from Lemma 3.2 that

xij = xij−1⊕xi−1
j ,

and applying the induction hypothesis yields

xij =

j−1∑
k=1

(
i+ j − k − 2

j − k − 1

)
xk⊕

j∑
k=1

(
i+ j − k − 2

j − k
)
xk.
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We now add the kth terms, 1 ≤ k ≤ j − 1, to obtain(
i+ j − k − 2

j − k − 1

)
xk⊕

(
i+ j − k − 2

j − k
)
xk,

which is equal to (
i+ j − k − 1

j − k
)
xk,

which satisfies Lemma 3.4. The xj term occurs only once, and it also satisfies
Lemma 3.4.

We now introduce the notation cij,k, where 1 ≤ k ≤ j. cij,k refers to the coefficient

of the kth term of the equation given in Lemma 3.4 for xij . That is

cij,k =

(
i+ j − k − 1

j − k
)
.

Lemma 3.5. Let x = x1x2 . . . xl be any α-ary string. If ∀j, 2 ≤ j ≤ l, cmj,1 =
0(mod α), then xm = x.

Proof. To show xm = x we must show that ∀j, 1 ≤ j ≤ l, xmj = xj . Note that
xm1 = x1; thus we need only consider an arbitrary j, 2 ≤ j ≤ l.

Assume ∀j′, 2 ≤ j′ ≤ l, cmj′,1 = 0(mod α). Then

xmj =

j∑
k=1

cmj,kxk

=

j−1∑
k=1

cmj,kxk⊕cmj,jxj

=

j−1∑
k=1

cmj,kxk⊕xj ,

since cmj,j = 1. But since

cmj.k = cmj−k+1,1,

the summation is equal to 0(mod α), and xmj = xj .
Lemma 3.6. Let x = x1x2 . . . xl be any α-ary string such that x1 6= 0 and

GCD(x1, α) = 1. If ∃j, 2 ≤ j ≤ l such that cmj,1 6= 0(mod α), then xm 6= x.
Proof. Assume x1 6= 0, GCD(x1, α) = 1, and cmj,1 6= 0(mod α), for some j, 2 ≤

j ≤ l. If cm2,1 6= 0(mod α), then xm2 = mx1⊕x2 6= x2 and we are done. Otherwise,
cmj,1 6= 0(mod α), for some j, 2 < j ≤ l and that cmj′,1 = 0(mod α), for j′, 2 ≤ j′ < j.
Then

xmj = cmj,1x1⊕cmj,2x2⊕ · · ·⊕cmj,k−1xj−1⊕xj ,
but note that

cmj,k = cmj−k+1,1,

which means that

xmj = cmj,1x1⊕xj ,
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since all the other terms are congruent to zero. Since cmj,1 6= 0(mod α), then xmj 6=
xj .

Lemma 3.5 shows that finding an m that sets cmj,1 = 0(mod α) for 2 ≤ j ≤ l
implies that xm = x. Lemma 3.6 shows that if we choose the smallest such m that
sets cmj,1 = 0(mod α) for 2 ≤ j ≤ l and x1 6= 0 and GCD(x1, α) = 1, then xm

′ 6= x,
for 0 < m′ < m. Our goal then will be to set the cmj,1 terms to zero (mod α), picking
the smallest such m that would do so.

We now prove Theorem 3.1. To do this we use induction on j, and within the
inductive proof, we will use the fact that cmj,1 = m+j−2

j−1 cmj−1,1. Since m increases with
l, we will use the notation mj , which refers to the cycle upper bound length on strings
of length j. If j > i, then mj will be a multiple of mi. Let pi be a prime in α. Since
hi also varies with l, we use the notation hi,j within the proof.

Proof of Theorem 3.1. Basis (j = 2):

cm2
2,1 = m2 ∀m2 > 1.

We pick the minimum m2 that will set m2 = 0(mod α), or m2 = α = pn1
1 pn2

2 . . . p
nq
q .

It is easy to see that Theorem 3.1 is satisfied for j = 2 and that pi occurs ni times
in the prime-power factorization of cm2

2,1 , which corresponds to I.H.2 (defined below).
In this case hi,2 = 0.

Induction step (j > 2):
For the induction step we need only consider an arbritrary prime pi, 1 ≤ i ≤ q.
I.H.1: Assume settingmj−1 as in Theorem 3.1 will set c

mj−1

j′,1 = 0( mod α),∀j′, 2 ≤
j′ < j.

I.H.2: Assume j−1 = C1p
d
i +1 (where pi and C1 are relatively prime, d < hi,j−1)

implies pi occurs ni + hi,j−1 − 1− d times in the prime-power factorization of c
mj−1

j−1,1.

I.H.2 is needed because we must know how many factors of pi are in c
mj−1

j−1,1. If we

know this, then using the fact that c
mj−1

j,1 =
mj−1+j−2

j−1 c
mj−1

j−1,1, we can determine the

number of times pi occurs in the prime-power factorization of c
mj−1

j,1 . If there are ni or

more such occurrences, then c
mj−1

j,1 = 0(mod α) and it is sufficient to set mj = mj−1;
otherwise, mj must be increased (while still being a multiple of mj−1). This leads to
two cases:

1. j = C2p
d′
i + 1, 0 ≤ d′ < hi,j−1,

2. j = pd
′
i + 1, d′ = hi,j−1,

where C2 and pi are relatively prime. For each case we must now show that I.H.1 and
I.H.2 hold for j.

Case 1 (j = C2p
d′
i + 1, 0 ≤ d′ < hi,j−1). Recall that c

mj−1

j,1 =
mj−1+j−2

j−1 c
mj−1

j−1,1. In
this case, pi will occur d times in the prime-power factorization of mj−1 + j − 2 and
pi will occur d′ times in the prime-power factorization of j − 1, and the total number
of factors of pi will be ni + hi,j−1 − 1 − d + d − d′ = ni + hi,j−1 − 1 − d′. Setting
mj = mj−1 (and hi,j = hi.j−1) corresponds to Theorem 3.1; I.H.1 holds for j since
we need at least ni occurrences of pi in c

mj−1

j1 , and this is the case. I.H.2 also holds.

Case 2 (j = pd
′
i + 1, d′ = hi,j−1). In this case it can be easily seen that pi occurs

ni−1 times in the prime-power factorization of c
mj−1

j,1 , but that ni are needed. Setting

mj = pimj−1 (as in Theorem 3.1, i.e., hi,j = hi,j−1 + 1) will make c
mj
j,1 have one more

factor of pi than c
mj−1

j,1 , while leaving all other factors unchanged. Then,

c
mj
j,1 =

(mj + j − 2)(mj + j − 3) · · · (mj)

(j − 1)!
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and

c
mj−1

j,1 =
(mj−1 + j − 2)(mj−1 + j − 3) · · · (mj−1)

(j − 1)!
.

The denominator of c
mj
j,1 is equal to that of c

mj−1

j,1 , and so the denominators have the
same number of factors of pi. Thus we need consider only the numerator. Consider an
arbritrary factor of the numerator of c

mj
j,1 , mj + k, where 0 ≤ k ≤ j − 2. In the k = 0

case, c
mj
j,1 has an extra factor of pi. When k is nonzero, there are no extra factors of

ps, 1 ≤ s ≤ q. There are two cases to consider, ps 6= pi and ps = pi. For the first case,

j − 2 < p
hs,j
s which means that mj + k = (psE +F )pts and mj−1 + k = (psE

′ +F ′)pts
where F and F ′ have no factors of ps, and E,E′, and t are constants, and thus both
I.H.1 and I.H.2 are satisfied. For the latter case a similar argument suffices but uses

the fact that j − 2 < p
hi,j−1

i (since j = p
hi,j−1

i + 1).
When x1 6= 0 or GCD(x1, α) 6= 1, the m of Theorem 3.1 may be larger than the

cycle length of x (though m will be a multiple of x’s cycle length). For an example
x where Theorem 3.1 describes the cycle length, consider x = 123456 for α = 10. In
this case m = 200, as the theorem states. The strings 421 and 4211 for α = 8 are
two examples of strings whose minimum cycle lengths are 2, which is less than the
m = 16 of Theorem 3.1.

4. Conclusion. In this paper we discussed the problem of iteratively applying
the inverse Gray code mapping to strings, and showed that a cycle on any string x
will have length in O(lq), where l is the length of x and q is the number of distinct
primes in α. If GCD(x1, α) = 1 and x1 6= 0, then x will have a cycle length in Θ(lq).
This implies that the number of distinct codes generated by iterating N (α, l) (or any
α-ary, dimension l code) using K−1 is Θ(lq).
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Abstract. A binpacking game is a cooperative N -person game, where the set of players consists
of k bins of size 1 and n items of sizes a1, . . . , an. The value of a coalition of bins and items is the
maximum total size of items in the coalition that can be packed into the bins of the coalition. Our
main result asserts that for every ε > 0, there exist ε-approximate core allocations provided k is large
enough. Moreover, for every fixed δ > 0, the smallest ε for which the ε-approximate core of a given
binpacking game is nonempty can be computed in polynomial time with error at most δ, provided k
is sufficiently large. We furthermore derive more specialized results for some subclasses of binpacking
games.
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1. Introduction. A cooperative (maximum value) N -person game is defined by
a set N of players and a characteristic (or value) function v : 2N → R satisfying
v(∅) = 0. A subset S ⊆ N is called a coalition and N itself is the grand coalition.
In the usual interpretation, v(S) is taken to represent the gain that coalition S can
achieve if all its members cooperate.

A central question of cooperative game theory is how to allocate the total gain
v(N) among the individual players i ∈ N in a “fair” way. One of the most attractive
allocation concepts goes back to von Neumann and Morgenstern [10] attempting to
allocate a vector in the core of the game (see also Shapley [11, 12]).

Here we define the core core(v) of our game to be the polytope of all vectors
x ∈ RN satisfying

(i) x(N) ≤ v(N),
(ii) x(S) ≥ v(S) for all S ⊆ N ,

where we use the notation x(S) =
∑
i∈S xi.

Because a game may have an empty core, one might be tempted to relax condition
(ii) above in such a way that the modified core becomes nonempty. Several ways of
doing so have been proposed in the literature (see, for example, the discussion and
the references in Faigle and Kern [3]). One of these concepts was introduced in Faigle
and Kern [3] as the (multiplicative) ε-core and further expanded to the concept of the
nucleon in Faigle et al. [5]. (For a survey of other and/or related allocation concepts
see, e.g., Weber [15]).

Given ε ≥ 0, the ε-core ε-core(v) is defined as the polytope of all vectors x ∈ RN
satisfying condition (i) above together with condition

(ii′) x(S) ≥ (1− ε)v(S) for all subsets S ⊆ N .
If the characteristic function v is nonnegative (which will be the case for all

binpacking games we consider here), 1-core(v) is obviously nonempty. In order to
have an allocation concept that approximates the core as closely as possible, one now
would like to have ε as small as possible with the guarantee that ε-core(v) is nonempty.
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There are many interesting classes of games whose characteristic functions are
implicitly given as optimum values of combinatorial optimization problems (cf. Tijs
and Borm [13]). In this context, the question naturally arises of whether it is possible
to efficiently compute good ε-core allocations for particular classes of combinatorial
games. Our aim here is to study classes of binpacking games as introduced in Faigle
and Kern [3].

A binpacking game is defined by a set of k bins, each of size (or capacity) 1, and n
items 1, 2, . . . , n of sizes (or weights) a1, . . . , an, where we assume, w.l.o.g, 0 ≤ ai ≤ 1.
The player set N consists of all bins and all items. So we have |N | = n+ k.

The value v(S) of a coalition S containing k′ ≤ k bins and items ai1 , . . . , ais is
the weight of an optimal binpacking relative to S, i.e.,

v(S) := max

k′∑
j=1

∑
i∈Ij

ai,

where the maximum is taken over all collections of pairwise disjoint subsets I1, . . . , Ik′ ⊆
{i1, . . . , is} such that ∑

i∈Ij
ai ≤ 1.

We set v(S) = 0 if k′ = 0 or s = 0.
Example. Consider the binpacking game with k = 2 bins, three items of size

a1 = a2 = a3 = 1/2, and two items of size a4 = a5 = 1/2 + δ for some δ > 0 . Letting
δ → 0, it is shown in Faigle and Kern [3] that for each ε < 1/7 , there is a binpacking
game with empty ε-core.

It was shown in Faigle and Kern [3] that the 1/2-core of a binpacking game is
always nonempty. Woeginger [16] improved this result to ε = 1/3. Kuipers [7] showed
that the 1/7-core of a binpacking game is nonempty if all weights ai are strictly larger
than 1/3 (see also section 2 below).

An intriguing conjecture has been proposed by Woeginger [17]:
Conjecture 1. There exists a universal constant C > 0 such that each binpacking

game v admits an allocation vector x ∈ RN with the properties
(i′) x(N) ≤ v(N) + C ;
(ii) x(S) ≥ v(S) for all subsets S ⊆ N .
A weaker conjecture is the following.
Conjecture 2. For every ε > 0, there exists a constant K(ε) such that each

binpacking game with k ≥ K(ε) bins admits a nonempty ε-core.
It is not hard to see that Conjecture 1 implies Conjecture 2. Indeed, for any given

ε > 0, take K(ε) = 2C/ε and consider a binpacking game with k ≥ 2C/ε bins. If all
items a1, . . . , an fit into the k bins, then there exists a trivial core allocation: allocate
ai to the ith item and zero to every bin.

If it is impossible to pack all items, an optimal packing fills each bin to at least
half its capacity. Thus v(N) ≥ k/2 . Choose now the allocation vector x ∈ RN as in
Conjecture 1 and observe x(N) ≤ (1 + ε)v(N) .

Let xε = (1 + ε)−1x . Then xε(N) ≤ v(N) and for every S ⊆ N ,

xε(S) ≥ (1 + ε)−1v(S) ≥ (1− ε)v(S),

i.e., xε is a member of the ε-core and Conjecture 2 holds.
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The main purpose of the present paper is to prove Conjecture 2. The rest of the
paper is organized as follows. In section 2, we introduce some notation and relate the
allocation problem to the problem of the duality gap with respect to a certain linear
programming relaxation of the binpacking problem. Section 3 proves Conjecture 1 for
two particular subclasses of binpacking games (one of them being the class of games
with all items strictly larger than 1/3). Section 4 establishes the proof of Conjecture 2.
A main tool here is the combination of the results of section 2 with the binpacking
technique introduced by de la Vega and Lueker [14]. In section 5, we investigate the
problem of computing the smallest ε for which a given binpacking game has a non-
empty ε-core. We show that, for every fixed δ > 0, the optimal ε can be determined
within error δ in polynomial time, provided k is strictly larger than 1/δ .

We would like to point out that the binpacking problem we are facing here is
closely related to the “usual” binpacking problem but differs in an important aspect:
one usually wants to minimize the number of bins so that the given items can be
packed, while our problem asks us to maximize the (weighted) number of items that
can be packed into the given number of bins.

2. The duality gap. We approach Conjecture 1 by studying the linear program

(LP ) min x(N),
s.t. x(S) ≥ v(S) for all S ⊆ N .

(Note that x ≥ 0 is implied by the constraints arising from the singleton coali-
tions.)

We want to bound the difference x∗(N)−v(N), where x∗ is an optimal solution of
(LP ) above. Note that x∗(N)− v(N) ≤ 0 holds if and only if core(v) 6= ∅. In general,
this difference can be interpreted as a duality gap as we will see in the following. (A
more general framework for the study of this duality gap is the model of “partition
games” as discussed in Faigle and Kern [4]).

To simplify the notation, note that, by symmetry, there exists an optimal solution
x∗ allocating the same amount x∗0 to each bin. Furthermore, it apparently suffices to
consider only those restrictions x(S) ≥ v(S) where S consists of (exactly) one bin and
some subset I ⊆ {1, . . . , n} of items with total size∑

i∈I
ai ≤ 1.

Let us call such an I ⊆ {1, . . . , n} feasible and denote by F the collection of all feasible
subsets of items.

Denote by σ = (σI) ∈ RF the total size vector, i.e.,

σI =
∑
i∈I

ai for all I ∈ F .

Now our allocation problem can be written in the form

(AP ) min kx0 +
n∑
i=1

xi,

s.t. x0 + x(I) ≥ σI for all I ∈ F ,
x0, x ≥ 0.
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Its dual is a “fractional packing problem”:

(PP ) max σT y,

s.t.
∑
I∈F

yI ≤ k,∑
I3i

yI ≤ 1 (i = 1, . . . , n),

y ≥ 0.

The integer linear program corresponding to (PP ) is

(IPP ) max σT y,

s.t.
∑
I∈F

yI ≤ k,∑
I3i

yI ≤ 1 (i = 1, . . . , n),

y ∈ {0, 1}F .
Observe that (IPP ) is just an integer linear programming formulation of our

binpacking problem given by k bins and items with weights a1, . . . , an. Thus the
optimal value of (IPP ) is v(N) and, by linear programming duality, the optimal
value of (PP ) equals the optimal value x∗(N) of our original problem (LP ).

Conjecture 1 thus states that the duality gap x∗(N) − v(N) can be bounded by
a universal constant C > 0.

There is a direct relationship between the duality gap and the nonemptyness of
the ε-core.

Lemma 2.1. ε-core(v) 6= ∅ if and only if ε ≥ (x∗(N)− v(N))/x∗(N).
Proof. Note that x ∈ ε-core(v) holds if and only if x(N) ≤ v(N) and the vector

(1− ε)−1x is a feasible solution for the linear program (LP ).
We remark that proving Conjecture 1 would be of no help from the point of

view of practical computation, since there is no obvious way to solve (PP ). Yet, the
situation is computationally not quite hopeless; we show in section 5 that, for every
fixed error bound δ > 0, the smallest ε with ε-core(v) 6= ∅ can be approximated within
δ in polynomial time if k > 1/δ.

3. Two special cases. In this section, we will prove Conjecture 1 for two special
classes of binpacking games. In the first class, the item sizes ai are required to be
strictly larger than 1/3. So each feasible set of items has at most two members. Our
binpacking problem thus reduces to a weighted matching problem, which we analyze
in the spirit of the argument Kuipers [7] employed as a refinement of an argument in
Faigle and Kern [3].

We will use a generalization of a well-known half-integrality result for perfect
matchings. Let G = (V,E) be a graph on the set V of nodes and an edge weighting
w : E → R, and consider the linear program

(FM) max wT y,

s.t.
∑
e∈E

ye ≤ k,∑
e3i

ye ≤ 1 (i = 1, . . . , |V |),

ye ≥ 0.
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Lemma 3.1. There exists an optimal solution y∗ ∈ {0, 1/2, 1}E such that the set

C = {e ∈ E | y∗e = 1/2}
is a disjoint union of circuits of odd size and at most one single edge.

Proof. It is well known that (FM) has an optimal solution y∗ ∈ {0, 1/2, 1}E (cf.
Lovász and Plummer [8]). Let C be any connected set of edges in C. If C is an even
circuit or a path with at least two edges, then either the even edges or the odd edges
of C have total weight of at least w(C)/2 . So we may modify y∗ by either setting the
even edges in C to value 1 (and the odd edges to 0) or conversely in order to obtain
a feasible solution ŷ for (FM) yielding the same objective function value.

If there are two single edges in C, we modify y∗ by setting the value of the larger
one to 1 and of the smaller to 0, and the lemma follows.

Theorem 3.2. If all item sizes a1, . . . , an in the binpacking game are strictly
larger than 1/3, then the duality gap is at most 1/4.

Proof. Note that the duality gap of a binpacking game is 0 whenever k ≥ n. We
therefore assume k < n. Consider now a game given by k bins and items of sizes
a1, . . . , an, where ai > 1/3 . We construct a weighted graph G = (V,E) on |V | = 2n
nodes as follows:

(a) Each node i = 1, . . . , n is assigned weight wi = ai.
(b) Each node i = n+ 1, . . . , 2n is assigned weight wi = 0.
(c) Let E = {(i, j) |wi + wj ≤ 1} .
(d) For each e ∈ E, let wij = wi + wj be the weight of e.
The optimization problems (IPP ) and (PP ) from section 2 can now be restated

as

(IPP ) max wT y,

s.t.
∑
e∈E

ye ≤ k,∑
e3i

ye ≤ 1 (i = 1, . . . , 2n),

ye ∈ {0, 1},
and

(PP ) max wT y,

s.t.
∑
e∈E

ye ≤ k,∑
e3i

ye ≤ 1 (i = 1, . . . , 2n),

ye ≥ 0.

(IPP ) is a (restricted cardinality) maximum weighted matching problem and
(PP ) is the corresponding fractional relaxation (FM) above. Lemma 3.1, therefore,
guarantees us the existence of an optimal fractional solution y∗ ∈ {0, 1/2, 1}E such
that the set

C = {e ∈ E | y∗e = 1/2}
is a disjoint union of odd circuits and at most one single edge.
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Claim. We may assume that C contains at most one odd circuit.

To see the validity of the claim, suppose there are two disjoint odd circuits C1

and C2. Choose nodes i ∈ C1 and j ∈ C2 of minimal weight respectively. Then
wi ≤ 1/2 and wj ≤ 1/2, and hence e = (i, j) ∈ E. It is now clear how to modify y∗ on
C1 ∪ C2 ∪ e to a fractional solution ŷ with the same weight so that ŷ takes on values
in {0, 1} on C1 ∪ C2 ∪ e. Repeating this argument, we arrive at the desired optimal
solution with at most one odd circuit.

Now choose y∗ as to satisfy the claim and let C be the odd circuit in C. If C
contains a node v, say, of weight w(v) = 0, we can easily modify y∗ to a feasible
optimal solution ŷ that takes on (0, 1)-values on the edges of C. Because k is an
integer, ŷ can be assumed to have no edge of value 1/2, which implies that ŷ is also
feasible for (IPP ) and that the duality gap is 0.

In the remaining case, we assume y∗ to be such that C contains exactly one
odd circuit C with each node of positive weight. There is also no loss of generality,
assuming y∗e = 0 whenever we = 0. Because G contains at least n nodes of weight 0,∑
e∈C y

∗
e > 1 and k < n then imply that there must exist some node v ∈ V such that

wv = 0 and y∗e = 0 for every edge e with endpoint v. Let (i, j) be an edge of C with
wi = ai ≤ 1/2. We modify y∗ to be feasible solution ȳ by setting ȳ(v,j) = 1/2 and
ȳ(i,j) = 0. Observe

wT y∗ − wT ȳ = ai/2 ≤ 1/4.

Since {e ∈ E | ȳ = 1/2} contains no odd circuit, we can modify ȳ as before to a
feasible solution ŷ for (IPP ) with wT ȳ ≥ wT ŷ, which proves the theorem.

Our second result bounds the duality gap by a constant C = C(m) for the class
of binpacking games where the number of distinct item sizes is not more than m (the
number n of items, of course, may be larger than m). This result will be of further
use in section 4.

Theorem 3.3. If the item sizes a1, . . . , an take on at most m different values,
then the duality gap is bounded by C(m) = m/2.

Proof. Assume that the item sizes are a1, . . . , am and occur with multiplicities
µ1, . . . , µm. Then each feasible set I ∈ F can be described by its type vector T =
(t1, . . . , tm) indicating the number ti of items of size ai that occur in I. Let T be the
set of feasible types and let

σT =
m∑
i=1

tiai.

Then the problems (IPP ) and (PP ) from section 2 are equivalent to

(IPP ′) max σT z,

s.t.
∑
T∈T

zT ≤ k,∑
T=(t1,...,tm)∈T

tizT ≤ µi (i = 1, . . . ,m),

zT ∈ N0,

and



CORE OF BINPACKING GAMES 393

(PP ′) max σT z,

s.t.
∑
T∈T

zT ≤ k,∑
T=(t1,...,tm)∈T

tizT ≤ µi (i = 1, . . . ,m),

zT ≥ 0.

(Indeed, the equivalence of (IPP ′) with (IPP ) is straightforward to verify, for
example, by induction on the µi’s. The equivalence of (PP ′) with (PP ) follows from
the observation that their linear programming duals are equivalent.)

Assuming, w.l.o.g., k ≥ 1 and µi ≥ 1 for all i = 1, . . . ,m, the feasibility region
of (PP ′) is full-dimensional (because zL = ε yields a feasible solution for every suf-
ficiently small ε > 0). Hence every optimal basic solution z∗ satisfies at least |T |
restrictions with equality, which in turn yields |supp(z∗)| ≤ m + 1. Rounding down
each component of z∗ to the nearest integer results in a feasible solution ẑ for (IPP ).
Let

∆ = k −
∑
T∈T

ẑT ,

and note that z′ = z∗ − ẑ must be an optimal fractional packing of the remaining
items into ∆ bins.

Hence, if ẑ 6= 0, we may argue by induction on the number n of items that there
exists an integral packing z′′ of the remaining items into ∆ bins with a duality gap of
at most C(m), which establishes the bound C(m) on the duality gap of the original
problem.

If ẑ = 0 we construct an integral packing z′′ “greedily” by filling the first bin with
items to the largest weight possible, then the second, etc.. This packing guarantees
that the first bin is filled with items of total weight at least

σmax := max{σT | z∗T 6= 0}.
If z′′ uses all of the available items, then σT z′′ ≥ σT z∗, and the duality gap is 0.
Otherwise, z′′ fills each bin to weight at least 1/2. So

σT z′′ ≥ σmax + (k − 1)/2.

Now supp(z∗) ≤ m+1 yields σT z∗ ≤ σmax+m. Hence m < k implies σT z∗−σT z′′ ≤
m/2 .

If m ≥ k, σT z∗ ≤∑T∈T z
∗ ≤ k and σT z′′ ≥ k/2 imply the claimed bound on the

duality gap.

4. Arbitrary item sizes. We approach the binpacking game with arbitrary
item sizes with the binpacking method of de la Vega and Lueker [14]. We slightly
modify the item sizes so that they take on a relatively small number m of distinct
values only. We then estimate the change in the objective function value resulting
from this modification. Taking Theorem 3.3 into account, we finally are able to bound
the duality gap.

To fix notation, assume we are given a binpacking game with k bins and items
a1, . . . , an. We always consider the items as presented in an ordered list

L : a1 ≤ a2 ≤ · · · ≤ an.
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We denote by σ(L) the optimum value of problem (PP ) and by σ̂(L) the optimum
value of problem (IPP ) from section 2 and let

gap(L) = σ(L)− σ̂(L)

denote the corresponding duality gap.
Lemma 4.1. Let ε > 0 be such that ε−1 ∈ N. Then k ≥ εn implies

gap(L) ≤ 2εk + ε−2.

Proof. Let m = ε−2 and h = bn/mc and note h ≤ ε2n ≤ εk.
Divide L into m + 1 consecutive sublists L = L1, . . . , LmR such |Li| = h, i =

1, . . . ,m, and |R| ≤ m. Denote by aij the first (and hence smallest) element of Lj ,
i.e., ai1 = a1, ai2 = ah+1, etc..

We consider the lists L−j = aij , . . . , aij , which arise from the Lj ’s by replacing
each item with a copy of the smallest item in the sublist. This process yields the
modified list

L− = L−1 , . . . , L
−
mR.

With L+
j = L−j+1, j = 1, . . . ,m−1, and L+

m = 11, . . . , 1, we also consider a related
modified list

L+ = L+
1 , . . . , L

+
m−1RL

+
m.

It is straightforward to see that
(1) σ̂(L+) ≥ σ̂(L−) .
Indeed, every (integral) binpacking relative to L− implies a packing relative to

L+ of at least the same value: empty each bin containing an item of size ai1 and fill
it with an item of size 1.

Similarly, any integral binpacking relative to L+ yields a feasible packing for L if
we replace the lth element of L+

j by the lth element of Lj . The decrease in value is
then bounded by

h(ai2 − ai1) + h(ai3 − ai2) + · · ·+ h(1− aim) ≤ h ≤ εk.

Together with (1), this shows
(2) σ̂(L) ≥ σ̂(L−)− εk .
On the other hand, each feasible fractional binpacking relative to L yields a

feasible fractional binpacking relative to L− if we simply replace the items of L by
the corresponding items of L−. Because

∑
I∈F σIyI =

∑n
i=1 ai

∑
I3i yI , the resulting

decrease in value is seen to be at most εk. Thus
(3) σ(L−) ≥ σ(L)− εk .
Since L− has at most 2m different item sizes, we know from Theorem 3.3 that

gap(L−) is bounded by m. So we deduce from (2) and (3) that

gap(L) ≤ 2εk +m.

We want to remove the correlation between k and n in Lemma 4.1.
Lemma 4.2. Let ε > 0 be such that ε−1 ∈ N and that ε < a1 ≤ · · · ≤ an holds for

the list L . Then

gap(L) < 2ε2k + ε−4.
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Proof. Consider an optimal basic fractional solution y∗ for the linear program
(PP ). By induction on the number n of items, we may assume that each item i
occurs in some feasible set I with y∗I 6= 0. Because each feasible set contains at most
(ε−1 − 1) items, we obtain the upper bound

n ≤ |supp(y∗)| (ε−1 − 1)

on the number of items.
Note that each item i with

∑
I3i y

∗
I = 1 contributes more than ε to the objective

function value. So there can be no more than k/ε such items i.
On the other hand, (PP ) is full-dimensional. Thus y∗ must satisfy |F| restrictions

with equality. Hence the preceding observation implies the bound |supp(y∗)| ≤
1 + k/ε.

This shows that k ≥ ηn holds with η = ε2. Therefore, Lemma 4.1 yields the
bound

gap(L) < 2ε2k + ε−4.

Theorem 4.3. Let L be an arbitrary list of items and let ε > 0 be such that
ε−1 ∈ N. Then

gap(L) ≤ max{εk, 2ε2k + ε−4}.

Proof. Let L′ be the sublist of L containing all items of size larger than ε. Fur-
thermore, let y′ be an optimal (integral) binpacking relative to L′ of value σ̂(L′). We
now try to improve y′ by adding as many items from L \ L′ into the remainig “free”
space of the k bins. Denote the resulting (integral) packing by ŷ. We consider two
cases.

Case 1. ŷ does not use all items from L \ L′.
Then each bin is filled by ŷ to at least weight 1− ε. Hence

gap(L) ≤ k − k(1− ε) ≤ εk.

Case 2. ŷ uses all items from L \ L′.
Because

σ(L) ≤ σ(L′) +
∑

i∈L\L′
ai and σ̂(L) ≥ σ̂(L′) +

∑
i∈L\L′

ai,

we have

gap(L) ≤ gap(L′),

and the bound follows from Lemma 4.2.
We are now in the position to prove Conjecture 2, employing the same argument

that allowed us to derive Conjecture 2 from Conjecture 1 in section 1.
Corollary 4.4. Assume ε > 0 is such that ε−1 ∈ N. Let the binpacking game

be given by the list L and k ≥ 48ε−5 bins. Then ε-core(L) 6= ∅.
Proof. It follows from Woeginger [16] that every binpacking game has a non-empty

ε-core if ε ≥ 1/3. So we can assume ε < 1/3. In the latter case, we observe

2(ε/2)2k + (ε/2)−4 < εk/2.
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Relative to ε/2, Theorem 4.3 therefore implies gap(L) ≤ εk/2.
Now consider an optimal integral packing ŷ of the items from the list L into the

k bins. If ŷ uses all items, then the 0-core(L) is nonempty (a core vector is obtained
by assigning to each item i its weight xi = ai and 0 to each bin).

If ŷ does not use all the items, each bin is filled to at least half of its capacity,
i.e., σ̂(L) ≥ k/2 . So Lemma 2.1 guarantees that the ε-core is nonempty.

5. Approximating the best ε. Given an arbitrary binpacking game via a list
L of items and k bins, there exists a minimal ε(L, k) ≥ 0 such that ε-core(L) is
nonempty whenever ε ≥ ε(L, k). In fact, Lemma 2.1 immediately yields

ε(L, k) = 1 − σ̂(L)

σ(L)
.

In this section, we will show that for every fixed δ0 > 0, there exists a polynomial
algorithm that, on input L and k > 1/δ0, computes an ε∗ with the properties

(i) ε∗-core(L) is nonempty;
(ii) ε∗ − ε(L, k) ≤ δ0 .
Our algorithm is motivated by the theoretical analysis of the preceding section.

We will use the following notation. We define

k0 := min{k | k > 1/δ0},
δ := d(δ0 − 1/k0)−1e−1.

Lδ is the sublist of L which contains all items of size larger than δ. (IPPδ) and
(PPδ) are the optimization problems (IPP ) and (PP ) relative to the list Lδ.

If k ≥ 48 δ−5, we know from Corollary 4.4 that δ-core(L) is nonempty and hence
0 ≤ ε(L, k) ≤ δ allows us to take ε∗ = δ.

We can therefore assume that the number k of bins is bounded by the constant
C = C(δ) = 48 δ−5. Because no feasible set of items relative to Lδ contains more
than 1/δ items, there are at most the polynomially bounded number

nk/δ

of feasible solutions for (IPPδ). This means that we can find an optimal solution ŷδ
for (IPPδ) by enumeration in polynomial time. We now try to improve ŷδ by adding
as many items from L \ Lδ as possible greedily into the remaining space of the bins
and obtain the feasible solution ŷ for (IPP ).

If ŷ does not use all the items from L \ Lδ, we know from

σ̂(L) ≥ σT ŷ ≥ (1− δ)k

that δ-core(L) 6= ∅, i.e., ε∗ = δ suffices.
For the remainder, we thus assume that ŷ does use all the items from L \Lδ and

note that, consequently, ŷ must be an optimal solution for (IPP ) (otherwise, ŷδ could
not have been optimal for (IPPδ)).

Compute an optimal solution yδ for the linear program (PPδ). Since the number
of restrictions of (PPδ) is polynomially bounded, yδ can be found in polynomial time.
We try to improve yδ, making use of items in L \ Lδ so that the resulting vector y is
feasible for (PP ). Again, we proceed greedily as follows.

Find feasible sets I1, . . . , Ir such that yδIi > 0, and the following three properties
hold:
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(1) σ(Ii) ≤ 1− δ;
(2)

r−1∑
i=1

yδIi < 1;

(3)

r∑
i=1

yδIi ≥ 1.

Choose a ∈ L \ Lδ of size s(a) and define the vector ỹ via

ỹI =



0 for i = 1, . . . , r − 1,
yδIi if I = Ii ∪ a and i ≤ r − 1,

1−
r−1∑
i=1

yδIi if I = Ir ∪ a,
yδIr − ỹ{Ir∪a} if I = Ir,
yδI otherwise.

Then ỹ is feasible for (PP ) and σT ỹ = σT yδ + s(a).
Repeat the algorithm with ỹ instead of yδ and stop with the vector y if no further

iteration is possible. There are two possibilities.
Case 1. All elements of L \ Lδ have been used.
Then y must indeed be an optimal solution for (PP ). Hence we have

ε(L, k) = 1 − σT ŷ

σT y
.

Case 2. Not all elements of L \ Lδ have been used.
Then it is not hard to see that σT y ≥ (1−δ)(k−1) must hold. Again, we consider

two cases.
If σ̂(L) ≥ (1 − δ)(k − 1) , then 1 − (σ̂(L)/σ(L)) ≤ δ + 1/k, i.e., we may take

ε∗ = δ0.
Generally, we observe

1− σT ŷ

(1− δ)(k − 1)
≤ ε(L, k) ≤ 1− σT ŷ

k
.

If σ̂(L) < (1− δ)(k − 1), then

σ̂(L)

(
1

(1− δ)(k − 1)
− 1

k

)
< 1− (1− δ)(k − 1)

k
≤ δ +

1

k
≤ δ0.

Since k ≥ k0, (1− σ̂(L)(1− δ)−1(k− 1)−1) and (1− σ̂(L)/k) then determine a
confidence interval for ε(L, k) of length at most δ0.

We summarize the results in this section.
Theorem 5.1. For every fixed δ > 0, there is a polynomial algorithm that, on

input of the list L and the number k > 1/δ of bins, determines an interval containing
ε(L, k) and having length at most δ.

6. Remarks and open problems. Several questions regarding computational
complexity arise naturally in the context of binpacking games (or, more generally, in
“combinatorial games”). To wit: Given an instance of a binpacking game,

(1) Is the (ε-)core nonempty?
(2) Is a given vector x an (ε-)core allocation?
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While there are many similarities with respect to the usual complexity aspects of
combinatorial optimization problems, noteworthy discrepancies arise from the
gametheoretic model (see also Deng and Papadimitriou [1]). For example, the in-
teger program (IPP ) is NP -hard. For k = 2 and

∑
i ai = 2, it is equivalent with

PARTITION (cf. Garey and Johnson [6]). But even for k = 1, no polynomial algo-
rithm to solve (IPP ) exists unless P = NP holds. Yet, the answer to question (1)
above is trivially “yes” when k = 1: one simply allocates the optimal value of (IPP )
(whatever it might be) to the bin player.

On the other hand, the latter observation implies that testing membership in the
feasibility region of the allocation problem (AP ) in section 2 is, already for k = 1, at
least as hard as solving a knapsack problem. Indeed, the allocation vector assigning
value q to the bin and value 0 to any other item is feasible for (AP ) if and only if q
is an upper bound on the total size of items that can be packed into the “knapsack.”

Moreover, Woeginger [17] noted that it is hard to decide whether a given allocation
vector lies in the core of a binpacking game already in the case k = 1 (unless P = NP ).
His construction relates a binpacking game with one bin to the NP -complete problem
SUBSET SUM as follows.

Let integers q1, . . . , qn, and r, qi ≤ r, be given. Does there exist a subset of the
qi’s with sum exactly r?

Define a binpacking game with 1 bin and n + 1 items 0, 1, . . . , n of sizes a0 = 1
and ai = qi/r (i = 1, . . . , n). Consider an allocation x which assigns value (1 − r−1)
to the bin, value r−1 to item 0, and value 0 to each of the other items. Then x lies
in the core of the binpacking game if and only if no subset of the integers qi has sum
exactly r.

We suspect that question (1) above is hard, too. But we are not aware of a strict
proof of this conjecture.

We also leave it as an open problem to decide whether our Theorem 5.1 can be
improved in the sense that the assumption “k > 1/δ” can be dropped.

REFERENCES

[1] X. Deng and C.H. Papadimitriou, On the complexity of cooperative solution concepts, Math.
Oper. Res., 19 (1994), pp. 257–266.

[2] U. Faigle, Cores of games with restricted cooperation, ZOR—Math. Methods Oper. Res., 33
(1989), pp. 405–422.

[3] U. Faigle and W. Kern, On some approximately balanced combinatorial cooperative games,
ZOR—Math. Methods Oper. Res., 38 (1993), pp. 141–152.

[4] U. Faigle and W. Kern, On the core of ordered submodular cost games, Math. Programming,
to appear.

[5] U. Faigle, S.P. Fekete, W. Hochstättler, and W. Kern, The nucleon of cooperative games
and an algorithm for matching games, Math. Programming, to appear.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, New York, 1979.

[7] J. Kuipers, Bin packing games, Zeit. Oper. Res., to appear.
[8] L. Lovász and M.D. Plummer, Matching Theory, North–Holland Math. Stud. 121, North-

Holland, Amsterdam, 1986.
[9] A. van den Nouweland, J. Potters, S. Tijs, and J. Zarzuelo, Cores and Related Solution

Concepts for Multi-choice Games, Res. Memorandum FEW 478, University of Tilburg,
1991.

[10] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton
University Press, Princeton, NJ, 1944, 1947.

[11] L.S. Shapley, On balanced sets and cores, Naval Res. Logistics Quart., 14 (1967), pp. 453–460.
[12] L.S. Shapley, Cores and convex games, Internat. J. Game Theory, 1 (1971), pp. 1–26.



CORE OF BINPACKING GAMES 399

[13] S. Tijs and P. Borm, Operations research, games and graphs. ZOR—Math. Methods Oper.
Res., 38 (1993), pp. 109–110.

[14] F. de la Vega and G.S. Lueker, Bin packing can be solved within 1 + ε in linear time,
Combinatorica, 1 (1981), pp. 349–356.

[15] R.J. Weber, Games in coalitional form, in Handbook of Game Theory II, R.J. Aumann and
S. Hart, eds., North–Holland, Amsterdam, 1994, pp. 1285-1303.

[16] G.J. Woeginger, On the rate of taxation in a cooperative bin packing game, ZOR—Math.
Methods Oper. Res., 42 (1995), pp. 313–324.

[17] G.J. Woeginger, Private communication, 1995.



TIME AND COST TRADE-OFFS IN GOSSIPING∗

ARTUR CZUMAJ† , LESZEK GA̧SIENIEC‡ , AND ANDRZEJ PELC§

SIAM J. DISCRETE MATH. c© 1998 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 400–413, August 1998 005

Abstract. Each of n processors has a value which should be transmitted to all other processors.
This fundamental communication task is called gossiping. In a unit of time every processor can
communicate with at most one other processor and during such a transmission each member of a
communicating pair learns all values currently known to the other.

Two important criteria of efficiency of a gossiping algorithm are its running time and the total
number of transmissions. Another measure of quality of a gossiping algorithm is the total number
of links used for transmissions. This is the minimum cost of a network which can support the
gossiping algorithm. We establish trade-offs between the time T of gossiping and the number C of
transmissions and between the time of gossiping and the number L of links used by the algorithm.

For a given T we construct gossiping algorithms working in time T , with parameters C and L
close to optimal.

Key words. algorithm, lower bounds, gossiping, time, cost
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1. Introduction. Gossiping (also called all-to-all broadcasting) is one of the
fundamental tasks in network communication. Every node of a network (processor)
has a piece of information (value) which has to be transmitted to all other nodes by
exchanging messages along the links of the network. Gossiping algorithms have been
extensively studied, especially in the last twenty years; see the comprehensive surveys
[5, 8] of the domain.

The classical communication model, already used in the early papers on gossiping
[1, 2, 3, 7, 14], is called the 1-port full-duplex model. Communication is synchronous.
In a single round (lasting one unit of time) every node can communicate with at most
one neighbor, and during such a transmission communicating nodes exchange all the
values they currently know.

Two important criteria of efficiency of a gossiping algorithm are its running time
(the number of communication rounds) and the total number of transmissions (calls).
The latter is a measure of cost of the algorithm, assuming unit charge per call. The
minimum time of gossiping in a complete n-node network was the first problem in
this domain, studied in the 1950s [2, 14]. It was proved to be dlog ne for even n and
dlog ne+ 1 for odd n. On the other hand, the minimum number of calls in gossiping
is 2n− 4 for any n > 3 (cf. [1, 7]).

Another measure of quality of a gossiping algorithm is the total number of links
used for communication. This is the minimum cost of a network which can support the
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algorithm, measured by the number of links in the network. This can also be viewed
as a measure of the cost of implementing the algorithm, a fixed cost associated with
network design, rather than the cost associated with each run. Clearly, the sparsest
network supporting gossiping is a tree, and thus the minimum number of links is n−1.

It turns out that the above criteria of efficiency are incompatible: it is impossible
to minimize time and the number of calls or to minimize time and the number of
links used by the algorithm, simultaneously. If n = 2r, every gossiping algorithm
working in time r must have both the number of calls and the number of links used
for communication equal to r2r−1, as every node has to communicate in every round
with a different node in order to double its knowledge. On the other hand, Labahn [11]
proved that the minimum running time of a gossiping algorithm with the number of
calls 2n−4 is 2dlog ne−3, almost a double of the absolute minimum time. (An earlier
proof of this fact, published in [15], was incorrect.) Likewise, in order to minimize
the number of links used for communication, we must allow larger gossiping time.
Labahn [10] proved that the minimum gossiping time in a tree is at least 2dlog ne−1,
again almost a double of the absolute minimum time.

These results indicate the existence of time vs. cost trade-offs in gossiping, where
cost is measured either by the number C of calls or by the number L of links used for
communication. Establishing these trade-offs is the main goal of the present paper.
For a given T (ranging from logn to 2log n) we show upper and lower bounds on
the minimum cost of gossiping in time T . The algorithms yielding our upper bounds
are generalizations of known gossiping schemes that minimized separately either the
running time or the cost (cf. [1, 2, 3, 7, 11, 13, 14, 15]). While these classical
algorithms were either fast but costly or cheap but slow, it turns out that they can
be combined to yield almost optimal cost for any given running time. However, the
main contribution of this paper is lower bounds on the minimum cost of gossiping for a
given running time that closely matches the performance of our respective algorithms.
This is the first time that the full spectrum of relations between the time and the cost
of gossiping is investigated. This way of stating the problem significantly increases
its complexity, as compared to the classical approach concentrating only on extremal
parameter values.

The main technical difficulties of this work lie in establishing the lower bounds on
the number of messages and the number of links used by a gossiping scheme with given
execution time. To do so, we need to control the amount of knowledge gained by all
nodes in any information exchange process whose running time is within the imposed
bound. This is particularly hard in the case of the lower bound on the number of
links for very fast gossiping schemes (see Theorem 5.1).

Each of our bounds is useful for a different range of values of the running time and
cost. If the running time is T = dlog ne+t(n), we show an upper bound 2n+O(nlog n

2t(n) )

on the number of calls, which closely matches the lower bound Ω(nlogn
2t(n) ) following from

[12]. These bounds are useful for small t(n), i.e., when the running time is small. If
the running time is T = 2dlog ne − r(n), we show an upper bound 2n+O(r(n)2r(n))

and a lower bound 2n+ Ω( 2r(n)

log2 n
). These bounds are useful for small r(n), i.e., when

the running time is larger.

Here are a few consequences of the above results. Let the running time T of
gossiping be equal to dlog ne + t(n). Let C denote the minimum number of calls in
time T . The following sequence of bounds shows how C gradually decreases from
Θ(nlog n) to the asymptotically optimal range 2n + o(n), as restrictions on T are
being relaxed.
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If t(n) is constant then C ∈ Θ(nlog n).
If t(n) = log logn− f(n), where f(n)→∞, then C ∈ ω(n).
If t(n) ≥ log log n− d for a constant d, then C ∈ O(n).
If t(n) = log logn+ f(n), where f(n)→∞, then C ∈ 2n+ o(n).
For medium range values of the running time T we obtain the following bounds

on the minimum number of calls:
If t(n) = αlog n, where 0 < α < 1, then C ∈ 2n + O(n1−αlog n) and C ∈

2n+ Ω( n
1−α

log2 n
).

Finally, if we want to keep the number of calls very small, time has to increase
significantly.

If C = 2n+ c(n), where c(n) is polylogarithmic in n, then T ∈ 2log n− o(log n).
We also establish trade-offs between the time T of gossiping and the minimum

number L of links used for communication. For medium and large values of T the
optimum values of L are roughly one-half of the values of C for the same time. In this
range we get bounds that are even tighter than in the case of the number C of calls.
For example, if T = log n+ αlog n, where 0 < α < 1, then L ∈ n+O(n1−αlog n) and

L ∈ n + Ω(n
1−α

logn ). For small values of T = log n + t(n) we obtain the upper bound

n+O(nlogn
2t(n) ) on L, but our lower bound leaves a larger gap than before: we show that

if t(n) ≤ c log log logn for c < 1, then L ∈ ω(n(log log n)d), for d < 1− c. It remains
open, for example, if L ∈ Ω(nlog n) for constant t(n).

The latter bound should be contrasted with a result of Grigni and Peleg [6],
concerning broadcasting. They showed that the minimum number of links in an n-
node network supporting broadcasting from any node in a given time T is extremely
sensitive to the value of T : if n is a power of 2, broadcasting in time logn requires
Ω(nlog n) links, while broadcasting in time logn + 1 can be performed in a network
with O(n) links. Our bound shows that this is not the case for gossiping: in particular,
gossiping in time logn + const cannot be performed in a network with a linear number
of links.

It turns out that the problem of minimizing the cost of gossiping with a given
running time has a different flavor in the case of the number of calls and of the
number of links. While the same algorithms provide upper bounds in both cases, the
techniques used to prove lower bounds are different, and results concerning one of
these performance measures do not seem to imply meaningful bounds for the other,
in any straightforward way.

Our positive results permit us to choose a gossiping scheme which uses the right
balance of resources (time, number of messages, number of links) in a given appli-
cation. The significance of our negative results lies in a more realistic assessment of
feasibility of fast gossiping schemes. While very fast schemes are theoretically pos-
sible, their high cost may make them inapplicable in practice: an excessive number
of messages (high values of parameter C) is likely to cause network congestion, while
dense networks (high values of parameter L) are usually difficult to implement. In sit-
uations where these drawbacks are prohibitive, our lower bounds may suggest settling
for a slower scheme.

The paper is organized as follows. In section 2 we introduce the terminology
and state some preliminary results used in what follows. Section 3 is devoted to
the description of a class of gossiping algorithms and computing their running time,
number of calls, and number of links used for communication. These results yield
upper bounds on the minimum cost of gossiping with a given running time. In section
4 we establish lower bounds on the number of calls in gossiping with a given running
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time. In section 5 we give lower bounds on the number of links used in gossiping
with a given running time. In section 6 we derive consequences of previous results
by applying them with appropriate parameter values. Finally, section 6 contains
conclusions and open problems.

2. Terminology and preliminaries. The set of communicating nodes is de-
noted by X and its size is denoted by n. A calling scheme S on the set X is a
multigraph on X whose edges are labeled with natural numbers 1, ..., t so that edges
sharing a common node have different labels. Edges with label i represent calls made
in the ith time unit. The number of labels is called the running time of the scheme
and the number of edges is called the number of calls of the scheme. The correspond-
ing multigraph is called the graph of calls of the scheme S. The underlying graph of
a calling scheme S is the simple graph on the set X of nodes in which adjacent nodes
are those joined by at least one edge in S. This is the minimal network that supports
the scheme S. The number of edges in the underlying graph of S is called the number
of links used by S.

Upon completion of S the node v knows the value of the node w if there exists an
ascending path from w to v in S, i.e., a path with increasing labels on edges. The set
of nodes who know the value of v upon completion of S is denoted by K(v), and the
set of nodes whose values are known to v upon completion of S is denoted by K−(v).
If K(v) = K−(v) = X for all v ∈ X, the calling scheme S is called a gossiping scheme
or gossiping algorithm. The (total) knowledge upon completion of the calling scheme
S is the number K =

∑
v∈X |K−(v)|. The knowledge after i rounds is at most n2i,

because |K−(v)| ≤ 2i for every node v. The knowledge at the end of a gossiping
scheme is n2.

Lemma 2.1.

1. If the calling scheme has k calls then |K(v)| ≤ k + 1 and |K−(v)| ≤ k + 1 for
every node v.

2. If the running time of a calling scheme is t then |K(v)| ≤ 2t and |K−(v)| ≤ 2t

for every node v.

Proof. The proof is straightforward.

Lemma 2.2. If |K(v)| = k then the time required for the remaining n− k nodes
to learn the value of v is at least log n− log k.

Proof. One of the k informed nodes has to inform at least n−k
k other nodes which

requires time at least log n
k = log n− log k.

All logarithms are with base 2. The notation O, Ω, and Θ is standard. We use

o(f(n)) (resp., ω(f(n))) to denote the class of functions g(n) such that g(n)
f(n) (resp.,

f(n)
g(n) ) converges to 0, as n grows.

3. Gossiping algorithms and upper bounds. In this section we present a
class of gossiping algorithms that provide good time and cost trade-offs in both the
case when cost is measured by the number of calls and when it is measured by the
number of links used for communication. Two important graphs will be used in the
construction of our schemes. The first is the k-dimensional hypercube Hk. This is the
graph on 2k nodes labeled with all binary sequences of length k. Nodes are adjacent
iff their labels differ in exactly one position. Nodes whose labels differ in the jth
position are called j-neighbors.

The second graph is the k-broadcasting tree Bk. It is defined by induction on k.
B0 is a single node v. Bk+1 is obtained from Bk by attaching a different new node to
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every node of Bk. The set of all new edges is called the (k+ 1)th layer in Bk+1. The
initial node v is called the root of the broadcasting tree.

Hypercubes and broadcasting trees are important for gossiping. Giving the label
j to edges of the hypercube Hk joining j-neighbors yields a gossiping scheme with
the smallest running time k. The cost of this scheme, however, is very large: it uses
k2k−1 calls and k2k−1 links. On the other hand, broadcasting trees yield gossiping
schemes with small cost but large time. Replace every edge in layers j = 2, ..., k of
Bk by two edges: one with label k− (j− 1) and the other with label k+ (j− 1). Give
label k to the edge in layer 1. The obtained gossiping scheme first gathers all values
in the root and then broadcasts all of them to all nodes. Its running time is 2k − 1,
but its cost is very low: if n = 2k is the number of nodes, it has the optimal number
n− 1 of links and it uses 2n− 3 calls, only one call more than the absolute minimum.

In order to save gossiping time at a given cost or to lower cost with a given
running time, it is advantageous to use a combination of the two above schemes. Let
n = 2k + x, where 0 < x ≤ 2k. Thus k = dlog ne − 1. Let r ≤ k and s = k − r. We
describe the gossiping algorithm COT(n, r). (COT stands for cube of trees.) Consider
the hypercube Hr and let each of its nodes be the root of a broadcasting tree Bs.
Trees rooted at distinct nodes of Hr are disjoint. There are 2k nodes in all trees.
Attach each of the remaining x nodes to a distinct node in one of the trees. Define
the set of edges incident to these nodes to be the (s+ 1)th layer. Replace each edge
of layers j = 1, ..., s+ 1 by two edges with labels s+ 2− j and s+ r + 1 + j. Finally,
give label s+ 1 + i, for i = 1, ..., r, to edges of the hypercube Hr joining i-neighbors.

The above described gossiping scheme works as follows: first information from
all nodes of the tree rooted at a given node of the hypercube is gathered in this
node. Then gossiping is executed inside the hypercube Hr among all its nodes. At
this point all nodes of the hypercube know all values. Finally, each node of the
hypercube broadcasts the complete information to all nodes of the tree rooted at it.
The underlying graph of the scheme COT(n, r) is the undirected version of the graph
Hr,s used in [6] for broadcasting.

Theorem 3.1. The gossiping algorithm COT(n, r) has running time T = 2dlog ne
− r and uses C = 2n+ (r − 4)2r−1 calls and L = n+ (r − 2)2r−1 links.

Proof. Gathering information in nodes of Hr takes time s + 1, gossiping in Hr

takes time r, and broadcasting complete information in trees takes time s + 1, for a
total of

T = r + 2(s+ 1) = k + s+ 2 = 2dlog ne − r.
Gathering information in nodes of Hr uses 2r(2s − 1) + x calls, gossiping in Hr uses
r2r−1 calls, and broadcasting complete information in trees again uses 2r(2s − 1) + x
calls, for a total of

C = r2r−1 + 2(2r(2s − 1) + x) = r2r−1 + 2 · 2k − 2r+1 + 2x = 2n+ (r − 4)2r−1.

The number of links in the hypercube Hr is r2r−1 and the total number of links in
all trees is 2r(2s − 1) + x, for a total of

L = r2r−1 + 2r(2s − 1) + x = r2r−1 + 2k − 2r + x = n+ (r − 2)2r−1.

The above theorem yields upper bounds on the cost of gossiping with a given
running time. It will be convenient for our purposes to formulate them in two versions.

Corollary 3.2. For any functions t, r : N → N such that t(n), r(n) ≤ dlog ne,
there exists a gossiping algorithm
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1. with running time T = 2dlog ne− r(n), number of calls C ∈ 2n+O(r(n)2r(n)),
and using L ∈ n+O(r(n)2r(n)) links;

2. with running time T = dlog ne+ t(n), number of calls C ∈ 2n+O(nlogn
2t(n) ), and

using L ∈ n+O(nlogn
2t(n) ) links.

Proof.

1. The proof is straightforward.

2. Use part 1 for r(n) = dlog ne − t(n).

The above corollary shows that there exists a gossiping algorithm whose time and
cost are both asymptotically optimal, i.e., whose running time is logn+ o(log n) and
which uses 2n + o(n) calls and n + o(n) links. To this end it suffices to take, e.g.,
t(n) = (log logn)2. However, the results of the following sections will enable us to
establish time and cost trade-offs more precisely.

4. Lower bounds on the number of calls. In this section we give two lower
bounds on the number of calls in gossiping with a given running time. Each of them
provides meaningful consequences for a different range of time and cost values. The
first bound follows directly from a result of Labahn [12] and is useful for small values
of the running time.

Theorem 4.1. Every gossiping algorithm with running time T = log n + t(n)
uses C ∈ Ω(nlogn

2t(n) ) calls.

The next theorem yields lower bounds on the number of calls in gossiping that
are useful when the running time is larger. We first prove two lemmas.

Lemma 4.2. If a calling scheme has a running time at most t and its graph of
calls is a tree then

1. there exists a node v such that |K(v)| ≤ t+ 1;

2. there exists a node v such that |K−(v)| ≤ t+ 1.

Proof. We prove only the first part of the lemma: the second part is analogous.
Call a node v terminal if there is no ascending path of length larger than 1, starting
from v. It suffices to prove that there exists a terminal node v. Indeed, for such a
node, K(v) consists of v itself and of its neighbors in the tree of calls. The desired
inequality follows from the fact that the number of neighbors of a node in the graph
of calls cannot exceed the running time of the calling scheme.

Choose any node w0 and suppose that it is not terminal. Choose any ascending
path (w0, w1, w2) of length 2. If w2 is terminal, we are done, if not, choose any
ascending path (w2, w3, w4) of length 2, and so on. Since labels in each path are
strictly increasing and the graph of calls is a tree, at every step at least one new
node is visited. Thus the process must terminate at some node wk which has to be
terminal.

Lemma 4.3. If a calling scheme on n nodes has a running time at most t and
uses at most n− 1 calls then

1. there exists a node v such that |K(v)| ≤ t+ 1;

2. there exists a node v such that |K−(v)| ≤ t+ 1.

Proof. Again we prove only the first part of the lemma. Suppose that S is a
calling scheme satisfying the assumptions but violating assertion 1. Let a1, ..., ak be
the numbers of nodes in components of the graph of calls of S. No component has
a node v such that |K(v)| ≤ t + 1. It follows from Lemma 4.2 that none of the
components can be a tree, hence the ith component must have at least ai edges.
Hence the total number of edges in the graph of calls is at least n, contradicting the
assumption on the number of calls in S.
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Theorem 4.4. Every gossiping algorithm with running time T = 2log n − r(n)

uses C ∈ 2n+ Ω( 2r(n)

log2 n
) calls.

Proof. Let t be the largest integer such that less than n calls are placed before
round t. Let S∗1 be the calling scheme consisting of all calls of S with labels at
most t − 1. Lemma 4.3 implies that after time t − 1 there is a node v such that
|K(v)| ≤ 2log n. (Here K(v) is taken with respect to the calling scheme S∗1 .) By
Lemma 2.2 the additional time required for all nodes to learn the value of v is at least
log n

2log n = log n− log log n− 1. Hence

t− 1 + log n− log log n− 1 ≤ T,

and consequently

t ≤ log n+ log logn+ 2− r(n).

Let S1 be the calling scheme consisting of all calls of S with labels at most t. (The
number of calls in S1 is at least n.) Lemma 2.1 implies that after the first t rounds,

|K−(v)| ≤ 2t ≤ 4nlog n

2r(n)

for every node v ∈ X. (Here sets K−(v) are taken with respect to the calling scheme
S1.)

Let a(n) = C − (2n− 1) and consider the calling scheme S2 consisting of the first
a(n) calls placed after round t (order calls in the same round arbitrarily). Lemma 2.1
implies that, for every node v ∈ X, |K−(v)| ≤ a(n) + 1, where K−(v) is taken with
respect to S2. Thus, upon completion of all calls in schemes S1 and S2,

|K−(v)| ≤ 4nlog n

2r(n)
(a(n) + 1),

for every node v ∈ X.

Now at most n−1 calls remain to be placed. Denote by S3 the scheme consisting
of these remaining calls. By Lemma 4.3 there exists a node w such that |K−(w)| ≤
2log n, where now K−(w) is taken with respect to the scheme S3. It follows that upon
completion of all calls in schemes S1, S2, and S3, i.e., at the end of the scheme S,
node w knows the values of at most

4nlog n

2r(n)
· (a(n) + 1) · 2log n

nodes. Since S is a gossiping scheme, we must have

8n log2 n(a(n) + 1)

2r(n)
≥ n,

from which

a(n) ∈ Ω

(
2r(n)

log2 n

)
.

This concludes the proof.
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5. Lower bounds on the number of links. In this section we establish two
lower bounds on the number of links used by a gossiping scheme with a given running
time. The first bound concerns the case when the running time is small.

Theorem 5.1. Every gossiping algorithm with running time T ≤ log n +
c log log logn, where c < 1 is a constant, uses L ∈ ω(n(log log n)d) links, where
d < 1− c.

Before proving the theorem we fix some additional terminology and prove several
technical lemmas. Consider a calling scheme with running time T . Let T = log n +
f(n), where f(n) ≤ c log log logn, c < 1. Suppose that the number of links used by
this scheme is L ≤ an(log log n)d for some constants a > 0 and d < 1 − c. Then,
L ≤ n·2b(n), where b(n) ≤ d∗ log log logn for d ≤ d∗ < 1−c and sufficiently large n. We
will prove that the considered calling scheme is not a gossiping scheme. Suppose it is.

A node v is called weak after round i of the scheme if |K−(v)| is at most 1
2f(n)+2 2i;

a node that is not weak is called strong. A call between nodes v and w in round i is
said to be α-increasing if |K−(v)| + |K−(w)| after round i is at most α times larger
than |K−(v)|+ |K−(w)| before this round. Let ε = 1

22f(n)+b(n)+9 .

In every round i consider the following classes of calls:
A: Calls between weak nodes;
B: (2− ε)-increasing calls not belonging to the class A;
C: All remaining calls.
The idea of the proof is to show that in many rounds there are few nodes that are

either weak or participate in calls of class C, and consequently the increase of knowl-
edge in these rounds is too slow to enable achieving knowledge n2 upon completion of
the scheme. Among our arguments many hold only for sufficiently large n. This does
not cause any problems, since the result is of asymptotic nature. We skip the phrase
“for sufficiently large n” for the sake of brevity.

We start with a lower bound on the number of strong nodes.
Lemma 5.2. In every round there are at least 3

2f(n)+2−1
n strong nodes.

Proof. After every round i the knowledge K is at least n2i−f(n) because in the
remaining logn+ f(n)− i rounds knowledge can increase at most 2logn+f(n)−i times
and the final knowledge must be n2. Let p be the number of strong nodes and n− p
the number of weak nodes after the ith round. After the ith round the knowledge K
is at most p2i + (n− p)2i−f(n)−2, hence

p2i + (n− p)2i−f(n)−2 ≥ n2i−f(n),

which implies

p ≥ n · 2i−f(n) − 2i−f(n)−2

2i − 2i−f(n)−2
= n · 3

2f(n)+2 − 1
.

The aim of the next two lemmas is to give an upper bound on the size of the class
C. Define the forbidden distance to be the maximum number k such that if a call of
class C has been placed on a link in round i then no call of this class is placed on this
link in rounds i+ 1, . . . , i+ k.

Lemma 5.3. The forbidden distance is at least 2f(n)+b(n)+8.
Proof. Suppose that a call of class C has been placed on link e = (v1, v2) in round

i and let w = |K−(v1)| = |K−(v2)| be the amount of information in each of these
nodes after this round. Let l be the minimum positive integer such that a call of class
C is placed on link e in round i+ l. We will show that l > 2f(n)+b(n)+8. Since the call
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on link e in round i was in the class C, at least one of the nodes v1 or v2 was strong
after round i− 1. Thus

w ≥ 2i−1 · 1

2f(n)+2
= 2i−f(n)−3.(1)

Consider the increase of the number |K−(v1)| + |K−(v2)| in round i + l. Let wj =
|K−(vj)| after round i+ l − 1 for j = 1, 2. We have

wj ≤ w + 2i + · · ·+ 2i+l−2 = w + 2i+l−1 − 2i,

the upper bound requiring that vj communicate in every round i + 1, ..., i + l − 1
with nodes having maximum and mutually disjoint information. On the other hand,
|K−(v1)∩K−(v2)| ≥ w after round i+ l− 1 because this inequality was already true
after round i.

After round i+ l we have

w∗ = |K−(v1)| = |K−(v2)| ≤ w1 + w2 − w;

hence the increase of the number |K−(v1)|+ |K−(v2)| in round i+ l is at most

2w∗

w1 + w2
≤ 2− 2w

w1 + w2
≤ 2− 2w

2w + 2i+l − 2i+1
= 2− 1

1 + 2i+l−1−2i

w

.

In view of inequality (1) the right-hand side of the above is at most

2− 1

1 + 2i+l−1−2i

2i−f(n)−3

= 2− 1

1 + 2f(n)+3(2l−1 − 1)
≤ 2− 1

1 + 2f(n)+l+2
.

Since the call in round i + l on link e is in the class C, it is not in the class B and
consequently the number |K−(v1)|+ |K−(v2)| must increase in round i+ l more than
2− ε times. Hence we get

2− 1

1 + 2f(n)+l+2
> 2− ε,

which implies

1 + 2f(n)+l+2 > 22f(n)+b(n)+9

,

2f(n)+l+3 > 22f(n)+b(n)+9

,

and finally

l > 2f(n)+b(n)+9 − f(n)− 3 > 2f(n)+b(n)+8.

Lemma 5.4. |C| ≤ nlogn
2f(n)+7 .

Proof. Since the total number of rounds is less than 2logn, there are at most
2log n

2f(n)+b(n)+8 calls of class C on every link. The total number of links is at most n2b(n);
hence

|C| ≤ n2b(n) · 2log n

2f(n)+b(n)+8
≤ nlog n

2f(n)+7
.
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The next two lemmas show that in many rounds there are many strong nodes
that do not participate in calls of class C.

Call a round essential if there are at most n
2f(n)+6 calls of class C in this round.

Lemma 5.5. At least T
2 rounds are essential.

Proof. Otherwise, more than T
2 rounds would have more than n

2f(n)+6 calls of class
C, for a total of more than

1

2
log n · n

2f(n)+6
=

nlog n

2f(n)+7
,

which contradicts Lemma 5.4.

Lemma 5.6. In every essential round there are at least n
2f(n)+1 strong nodes that

do not participate in calls of class C.

Proof. By Lemma 5.2 there are at most n(1 − 3
2f(n)+2−1

) weak nodes in every
round. By definition there are at most n

2f(n)+6 calls of class C in every essential
round. At most n

2f(n)+5 nodes can participate in these calls. Hence the total number
of nodes that are either weak or participate in a call of class C is at most

n

(
1−

(
3

2f(n)+2 − 1
− 1

2f(n)+5

))
≤ n

(
1− 1

2f(n)+1

)
,

in every essential round.

The next two lemmas show that in many rounds the rate of knowledge increase
can be bounded strictly below 2.

Call a pair of nodes {v, w} red in round i if |K−(v)|+|K−(w)| is at least 1
2f(n)+2 2i−1

after round i− 1 and if this sum increases at most 2− ε times in round i; otherwise,
call the pair {v, w} white in round i.

Lemma 5.7. In every essential round there are at least n
2f(n)+3 pairwise disjoint

red pairs of nodes.

Proof. Fix an essential round i. A strong node v that does not participate in a
call of class C either participates in a call of class B or does not communicate at all in
round i. By Lemma 5.6, there are either at least n

2f(n)+2 nodes of the first type or of
the second type. In the first case there are at least n

2f(n)+3 calls in the class B because
every such call involves at least one strong node (otherwise it would be in class A).
All pairs of nodes in these calls are red, which proves the lemma in this case. In the
second case, partition nodes that do not communicate in the ith round into disjoint
pairs arbitrarily. Clearly |K−(v)|+ |K−(w)| does not increase at all in such pairs in
the ith round and at least n

2f(n)+3 pairs contain a strong node in this case; hence they
are red.

Lemma 5.8. In every essential round the total knowledge K increases at most

2− 1

M2f(n)
times, where M = 22b(n)+10

.

Proof. For simplicity assume that the number of nodes is even—it will be clear
how to modify the argument otherwise. Fix an essential round i. By Lemma 5.7 there
are at least n

2f(n)+3 pairwise disjoint red pairs in round i. For every such pair {v, w},

|K−(v)|+ |K−(w)| ≥ 1

2f(n)+2
2i−1
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after round i−1, and the increase of |K−(v)|+ |K−(w)| in this round is at most 2− ε
times. For pairs {v, w} that are white in round i, |K−(v)|+ |K−(w)| ≤ 2i after round
i− 1 and the increase of |K−(v)|+ |K−(w)| is at most two times.

We want to establish an upper bound on the rate of knowledge increase in
round i. We will compute this rate as a fraction R whose numerator is the sum
of |K−(v)|+ |K−(w)| over disjoint pairs of nodes after round i and the denominator
is the corresponding sum before round i.

The value of R cannot decrease if the number of red pairs is decreased to n
2f(n)+3

and the sum |K−(v)| + |K−(w)| after round i − 1 is lowered to 1
2f(n)+2 2i−1 in every

red pair, while the number of white pairs is increased to n
2 − n

2f(n)+3 and the sum

|K−(v)| + |K−(w)| after round i − 1 is increased to 2i in every white pair. Also, R
cannot decrease if we assume that the increase of |K−(v)|+ |K−(w)| is 2− ε times in
red pairs and two times in white pairs. Hence we get

R ≤
n

2f(n)+3 (2− ε) 1
2f(n)+2 2i−1 + (n2 − n

2f(n)+3 ) · 2 · 2i
n

2f(n)+3
1

2f(n)+2 2i−1 + (n2 − n
2f(n)+3 ) · 2i .

Denote x = 2f(n); simplifying gives us

R ≤
1

32x2 (2− ε) + 2(1− 1
4x )

1
32x2 + (1− 1

4x )
= 2− ε

32x2 − 8x+ 1
≤ 2− ε

x3

and finally

R ≤ 2− 1

22f(n)+b(n)+9x3
≤ 2− 1

M2f(n)
,

where M = 22b(n)+10

.
Proof of Theorem 5.1. Denote, as before, x = 2f(n) and M = 22b(n)+10

. By
Lemmas 5.5 and 5.8, knowledge increases at most 2 − 1

Mx times in at least 1
2 log n

rounds. In all remaining rounds it increases at most 2 times. Hence, in order to show
that our scheme is not a gossiping scheme it suffices to show

n

(
2− 1

Mx

) 1
2 logn

· 2 1
2 logn+f(n) < n2,

i.e., (
1− 1

2Mx

) 1
2 logn

· 2f(n) < 1.(2)

Since f(n) ≤ c log log logn for c < 1 and b(n) ≤ d∗ log log logn for d∗ < 1− c, we
have

4f(n)Mx = 4f(n)22f(n)+b(n)+10 ≤ log n.

Let g(n) = 2Mx and h(n) = logn
g(n) . The latter inequality implies h(n) ≥ 2f(n). Since

(1− 1
g(n) )g(n) → 1

e , we have (1− 1
g(n) )g(n) ≤ 1

2.5 for sufficiently large n and thus

(
1− 1

g(n)

) 1
2 logn

=

((
1− 1

g(n)

)g(n)
) 1

2h(n)

≤
(

1

2.5

) 1
2h(n)

.
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In view of h(n) ≥ 2f(n) we have(
1

2.5

) 1
2h(n)

· 2f(n) < 1,

which implies inequality (2).
The last result of this section gives a meaningful lower bound on the number of

links when the running time is in the medium or large range.
Theorem 5.9. Every gossiping algorithm with running time T ≤ 2log n − r(n)

for r(n) ≥ 0 uses L ∈ n+ Ω( 2r(n)

logn ) links.

Proof. We may assume that r(n) = log logn+ f(n), where f(n)→∞; otherwise

the conclusion is trivial. Suppose that L ≤ n + 2r(n)

16log n . Take a spanning tree of
the underlying graph, with root k, diameter at most 2log n, and maximum degree at
most 2log n. Such a tree must exist for the gossiping to be completed in time less

than 2logn. Color all links of this tree black and all other links (at most 2r(n)

16log n + 1

of them) red. Add red links to the tree one by one, each time recoloring red those
black links which appear in a newly created cycle. If the link {v, w} is added, this
causes recoloring red links on the paths joining v with k and w with k in the tree.
(Some of them may have been recolored already.) Hence adding a new red link causes

recoloring at most 2log n black links. After adding at most 2r(n)

16log n + 1 red links, the
total number of red links at the end of the recoloring process is at most

(2log n+ 1)

(
2r(n)

16log n
+ 1

)
,

which is less than 2r(n)−2 for sufficiently large n, in view of r(n) = log logn+ f(n).
Since links that are red at the end of the recoloring process are exactly those

situated in cycles in the underlying graph, this graph has z < 2r(n)−2 nodes situated
in cycles. Hence there exists a tree D attached to only one node d in some cycle such
that

|D| ≥ n− z
z

<
n

2r(n)−2
− 1 >

2n

2r(n)
.

Case 1. 2n
2r(n) < |D| ≤ n

2 .

The value of some node v in D reaches the node d after time larger than log 2n
2r(n) =

log n− r(n) + 1. Broadcasting the value of v from d to all nodes outside of D requires
time at least log n

2 = log n−1. Hence the total time of gossiping exceeds 2log n−r(n).
Case 2. |D| > n

2 .
Since the maximum degree of D is at most 2log n, the tree D contains a subtree

Y such that 2n
2r(n) < |Y | ≤ 2log n · 2n

2r(n) . The rest of the argument is as in Case 1,
with D replaced by Y .

6. Discussion. We have two pairs of bounds on the minimum number of calls C
in gossiping with a given running time T . If T = dlog ne+t(n) then C ∈ 2n+O(nlogn

2t(n) )

and C ∈ Ω(nlogn
2t(n) ). If T = 2dlog ne − r(n) then C ∈ 2n + O(r(n)2r(n)) and C ∈

2n + Ω( 2r(n)

log2 n
). The first pair of bounds is useful for small t(n), e.g., when t(n) ∈

O(log log n), i.e., when gossiping time is small. They yield the following corollary
showing how C gradually decreases from Θ(nlog n) to the asymptotically optimal
range 2n+ o(n), as restrictions on T are being relaxed.

Corollary 6.1. If T = dlog ne+ t(n) then
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1. if t(n) is constant then C ∈ Θ(nlog n).
2. if t(n) ∈ log log n− ω(1), then C ∈ ω(n).
3. if t(n) ≥ log log n− d for a constant d, then C ∈ O(n).
4. if t(n) ∈ log log n+ ω(1), then C ∈ 2n+ o(n).

The lower bound C ∈ Ω(nlogn
2t(n) ), following from [12], becomes trivial when t(n) >

log log n. For even larger values of gossiping time our second pair of bounds can be
applied. For example, it gives a fairly precise estimate of the minimum number of
calls when the running time is in the medium range αlog n, where 1 < α < 2.

Corollary 6.2. If the running time of a gossiping algorithm is T = αlog n,

where 1 < α < 2, then C ∈ 2n+O(n2−αlog n) and C ∈ 2n+ Ω( n
2−α

log2 n
).

The next corollary corresponds to the situation when the gossiping time is fairly
large. In this case it is more natural to reverse the problem: what is the minimum
running time of gossiping when the number of calls has to be kept very small?

Corollary 6.3. If the number of calls in a gossiping algorithm is C = 2n+c(n),
where c(n) is polylogarithmic in n, then its running time T is 2log n− o(log n).

Proof. Suppose this is not true, and let T = 2log n − r(n) for r(n) ∈ Ω(log n).

Then r(n) ≥ dlog n for some constant d and C ∈ 2n + Ω( nd

log2 n
), a contradic-

tion.
We next turn our attention to the trade-off between the time T and the number

of links L. For small values of T the gap between our upper and lower bounds is larger
than in the previous case. Corollary 3.2 and Theorem 5.1 imply, for example, that if
T = log n+ c, where c is a constant, then L ∈ O(nlog n) and L ∈ ω(n(log log n)d) for
d < 1. It remains open if L ∈ Ω(nlog n) in this case.

The last pair of bounds, applicable for larger values of gossiping time T = 2log n−
r(n), follows from Corollary 3.2 and Theorem 5.9. In this case L ∈ n+ O(r(n)2r(n))

and L ∈ n+Ω( 2r(n)

logn ). For the medium range of gossiping time αlog n, where 1 < α < 2,
this gives an even more precise estimate of L than was previously given for C.

Corollary 6.4. If the running time of a gossiping algorithm is T = αlog n,

where 1 < α < 2, then L ∈ n+O(n2−αlog n) and L ∈ n+ Ω(n
2−α

logn ).
Finally, a result similar to Corollary 6.3 holds for the number of links.
Corollary 6.5. If the number of links used by a gossiping algorithm is L = n+

c(n), where c(n) is polylogarithmic in n, then its running time T is 2log n− o(log n).

7. Conclusion. We established upper and lower bounds on the minimum num-
ber of calls and the minimum number of links used by a gossiping scheme with a given
running time. Our algorithms, which turned out to be cost efficient for the whole range
of running time values, follow the same simple pattern: gather information in nodes of
a hypercube of appropriately chosen size using a separate broadcasting tree for each
node, then gossip in the hypercube in minimal time, and finally broadcast complete
information to all remaining nodes, again using the same broadcasting trees. The tree
part of the scheme uses few calls and few links but a lot of time, as it is executed
twice, while the hypercube part is fast but uses many calls and many links. Thus a
suitable balance between these parts must be maintained to get low cost for a given
running time.

Our bounds leave very small gaps. For example, if T = 3
2 log n, our upper bound

on C is 2n+O(
√
n · log n) and the lower bound is 2n+Ω(

√
n

log2 n
), leaving a gap within a

factor of O(log3 n) in the part of the number of calls exceeding the absolute minimum
2n−4. In the case of the number of links L, our bounds are even tighter for this range
of running time. For the same value T = 3

2 log n as before, our upper bound on L is
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n+O(
√
n · log n) and the lower bound is n+ Ω(

√
n

logn ), leaving a gap within a factor of

O(log2 n) in the part of the number of links exceeding the absolute minimum n− 1.
Further tightening of these bounds, for all values of running time, remains a

natural open problem yielded by our results. We do not know, for example, if it is
possible to gossip in time 3

2 log n using 2n+ Θ(
√
n) calls and/or n+ Θ(

√
n) links. It

also remains open what is the minimum value of L when T = log n + const. We
conjecture that L ∈ Θ(nlog n) in this case.

Another interesting problem is to evaluate the complexity of finding the exact
value of the minimum cost of gossiping with a given running time. Given n and T ,
can the minimum number of calls C or the minimum number of links L be found in
polynomial time?

In many papers (cf. [4, 9, 10]) gossiping was studied for specific important net-
works, such as trees, grids, or hypercubes, and the time or the number of calls were
minimized separately. It would be interesting to extend our study by investigating
time vs. number of calls trade-offs in gossiping for these networks as well. Also,
communication models other than the classical 1-port full-duplex model (cf., e.g., [9])
could be considered in this context.
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Abstract. A distance-preserving elimination ordering of a graphG is a linear ordering v1, v2, . . . ,
vn of the vertices such that each subgraph Gi = G(v1, . . . , vi), i < n, is an isometric subgraph of G.
We prove that the ordering of the vertices of a pseudo-modular or a house-free weakly modular graph
G produced by the breadth-first search is distance preserving. We specify this result by showing that
if, in addition, G does not contain the cycles Cn, n ≥ 5, and the bipyramids bipyr(Cm),m ≥ 6,
as an isometric subgraph, then any ordering produced by the lexicographic breadth-first search is a
domination elimination ordering (i.e., every vertex vi is dominated by some vertex vj , j < i, or, in
other words, every vertex vk, k < i, adjacent to vi is also adjacent to vj).
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1. Introduction. Various authors considered specific elimination orderings to
characterize certain graph classes or discrete structures. The theory of elimination
orderings is used in designing efficient algorithms for solving a number of combina-
torial optimization, facility location, and scheduling problems, as well as in Gaussian
elimination on sparse systems of linear equations. One of the first classes of graphs
to be recognized by a specific ordering of vertices was the class of chordal graphs.
They are the graphs having perfect elimination orderings, i.e., the greater neighbors
of any vertex form a complete subgraph. Linear time algorithms to recognize chordal
graphs and to compute a perfect elimination ordering are the Lexicographic Breadth-
First Search (LBFS) of Rose, Tarjan, and Lueker [35] and the Maximum Cardinality
Search (MCS) of Tarjan and Yannakakis [39] (Farber and Jamison [22] and Shier [37]
prove similar results while studying the notion of induced-path convexity in chordal
graphs). Jamison and Olariu [24] introduced the notion of semisimplicial elimination
ordering, which relaxes that of perfect elimination ordering. They stated that any
ordering produced by the procedure LBFS is a semiperfect elimination ordering if
and only if the graph does not contain the house, the domino, or any cycle Cn, with
n ≥ 5, as an induced subgraph; such graphs are called HHD-free (for a new proof of
this result see Dragan, Nicolai, and Brandstädt [19]). Dahlhaus et al. [21] established
that if the graph does not contain the house and any cycle Cn, n ≥ 5 as an induced
subgraph (in [21] such graphs are called HC-free graphs), then any ordering produced
by MCS or LBFS is a domination elimination ordering (a new proof was given by Dra-
gan [20]). Finally, note that Scharlau [36] used a variant of the breadth-first search
to prove shellability of a class of numbered simplicial complexes.
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In recent years several classes of graphs have been investigated from a metric point
of view. These are modular graphs (which generalize the median graphs (cf. Bandelt
[2], Bandelt and Hedĺıková [4], Mulder [30]), distance-hereditary graphs (cf. Bandelt
and Mulder [5], Hammer and Maffray [27], Howorka [29]), bridged graphs (which gen-
eralize chordal graphs; cf. Anstee and Farber [1], Farber and Jamison [23], Soltan and
Chepoi [38]), pseudomodular and pseudomedian graphs (Bandelt and Mulder [6] and
Bandelt and Mulder [7]), the absolute retracts of reflexive graphs alias Helly graphs
and their bipartite variants (cf. Bandelt and Pesch [10], Nowakowski and Rival [32],
Quilliot [33]) and their numerous subclasses. These classes have their distinctive fea-
tures; however, their members share two metric properties, namely, the triangle and
the quadrangle conditions [3, 16, 8]. In [3] such graphs were dubbed weakly modular
graphs. Again, the recognition problem for a majority of these classes of graphs is
solvable in polynomial time by applying special vertex elimination schemes. Usually,
the members of these classes admit a domination elimination ordering, i.e., an order-
ing v1, . . . , vn of the vertices such that each vi is dominated by some vj , j < i, i.e.,
all vertices vk, k < i, adjacent to vi are also adjacent to vj . If, in addition, vj is a
neighbor of vi, then the graphs admitting such an ordering are called dismantlable or
cop-win graphs in view of the results of Nowakowski and Winkler [31] and Quilliot
[34]. That bridged graphs are cop-win graphs has been established by Anstee and
Farber [1]. Recently, we proved [18] that a dismantling scheme of a bridged graph
can be computed in linear time just by applying the Breadth-First Search (BFS). In
this note, we continue this line of research by investigating the metric properties of
the orderings produced by BFS and LBFS. We prove that for a large class of graphs
(house-free weakly modular graphs and all pseudo-modular graphs) every ordering
v1, . . . , vn of a graph G generated by BFS is a distance-preserving ordering, i.e., every
subgraph Gi induced by the vertices v1, . . . , vi is a distance-preserving alias isometric
subgraph of G. For this purpose we introduce and investigate the class of pseudo-
peakless functions (the lower sets of such functions induce isometric subgraphs). To
find a distance-preserving ordering of a graph with n vertices is equivalent to con-
structing a pseudopeakless function which takes n distinct values. As for domination
elimination orderings, we characterize the house-free graphs such that any ordering
produced by BFS or LBFS of each isometric subgraph is a domination elimination
ordering.

2. Weakly modular graphs. All graphs occurring in this note are finite, con-
nected, and without loops or multiple edges. The distance d(u, v) between two vertices
u and v of a graph G is the length of a shortest path between u and v. The set of all
vertices w on shortest paths between u and v is called the interval I(u, v) between u
and v, that is,

I(u, v) = {x : d(u, v) = d(u, x) + d(x, v)}.

An induced subgraph H of a graph G is isometric if the distance between any pair of
vertices in H is the same as that in G. An induced subgraph (or a subset of vertices)
H is called convex if H includes every interval I(u, v) with u, v in H.

The disk with center u and radius k is the set

Dk(u) = {x : d(u, x) ≤ k}.

We will also use the notation N [u] for the disk D1(u). In particular, N [u] = N(u) ∪
{u}, where N(u) = {x : d(u, x) = 1} is the (open) neighborhood of u. More generally,
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for a subset S let N(S) denote the neighborhood of S, i.e., N(S) = ∪v∈SN(v). Finally,
G(S) denotes the subgraph induced by S.

A graph G is weakly modular [3, 8, 16] if its shortest-path metric d = dG satisfies
the following two conditions:

Triangle condition: for any three vertices u, v, w with

1 = d(v, w) < d(u, v) = d(u,w),

there exists a common neighbor x of v and w such that d(u, x) = d(u, v)− 1.
Quadrangle condition: for any four vertices u, v, w, z with

d(v, z) = d(w, z) = 1 and d(u, v) = d(u,w) = d(u, z)− 1,

there exists a common neighbor x of v and w such that d(u, x) = d(u, v)− 1.
We can define weakly modular graphs using the concept of metric triangle. Recall

that three vertices u, v, and w form a metric triangle uvw if the intervals I(u, v), I(v, w),
and I(w, u) pairwise intersect only in the common end vertices. (If uvw is a metric
triangle, then any permutation of the letters u, v, and w defines the same metric tri-
angle.) According to [16], G is weakly modular if and only if for every metric triangle
uvw all vertices of the interval I(v, w) are at the same distance k = d(u, v) from u.
The number k is called the size of the metric triangle uvw. A metric triangle uvw is
a pseudomedian of the triple x, y, z if the following metric equalities are satisfied:

d(x, y) = d(x, u) + d(u, v) + d(v, y),

d(y, z) = d(y, v) + d(v, w) + d(w, z),

d(z, x) = d(z, w) + d(w, u) + d(u, x).

A graph in which every metric triangle is degenerate, that is, has size 0, is called mod-
ular [2]. In other words, a graph is modular if I(x, y)∩I(y, z)∩I(z, x) is nonempty for
every triple x, y, z. Now, a pseudomodular graph is a graph in which each metric trian-
gle has size at most 1. According to [6], pseudomodular graphs can be characterized
in the following way:

If 1 ≤ d(u,w) ≤ 2 and k = d(u, v) = d(v, w) ≥ 2 for vertices u, v, w, then
there exists a common neighbor x of u and w such that d(v, x) = k − 1.

A graph is called hereditary weakly modular if every isometric subgraph is weakly
modular. In a similar way we can define hereditary modular [2] and hereditary pseudo-
modular graphs [6]. Recall from [2] that hereditary modular graphs are graphs in
which all isometric cycles have length four, while hereditary pseudomodular graphs
are the graphs which do not contain the house, the 3-sun, or any cycle Cn, n ≥ 5,
as an isometric subgraph (the forbidden isometric subgraphs listed in Figure 2.1).
Chordal bipartite and distance-hereditary graphs represent two important instances
of hereditary modular and hereditary pseudo-modular graphs, respectively. Finally,
hereditary weakly modular graphs are the graphs which do not contain the house
or any cycle Cn, n ≥ 5, as an isometric subgraph [16]. Besides these two classes of
graphs, the class of hereditary weakly modular graphs comprises the important classes
of bridged graphs (where all isometric cycles have length three [23, 38]), HHD-free
graphs [24], chordal graphs, HC-free graphs [21], alias house-free weakly triangulated
graphs [28].
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Fig. 2.1. Forbidden graphs.

3. Distance-preserving orderings and pseudopeakless functions. For a
given linear ordering v1, v2, . . . , vn of the vertices of a graph G, let Gi denote the
subgraph induced by {v1, v2, . . . , vi}, and let Ni(vj) denote N(vj) ∩ {v1, . . . , vi}, and
accordingly Ni[vj ] = Ni(vj) ∪ {vj}.

An ordering v1, v2, . . . , vn of G is distance-preserving if each Gi, i = 1, 2, . . . , n
is an isometric subgraph of the graph G. It is quite evident that perfect elimination
orderings, semiperfect elimination orderings, and domination elimination orderings
are distance-preserving. In Figure 3.1 we present an example of a distance-preserving
ordering of a 4-cube.

There are close relationships between distance-preserving orderings and a certain
class of functions, which we shall call pseudopeakless. Let P = (x0, x1, . . . , xp) be a
path of a graph G. A real valued function f defined on P is peakless if 0 ≤ j < i <
k ≤ p implies f(xi) ≤ max{f(xj), f(xk)} and equality holds only if f(xj) = f(xk). A
function f defined on the vertices of a graph G is peakless if the restriction of f on
any shortest path of G is peakless. Peakless functions were introduced and studied by
Busemann [12] and Busemann and Phadke [13] in the geometry of geodesics; see [14]
for a recent survey. In graphs, peakless functions were considered in [17]. Peakless
functions inherit and generalize the properties of usual convex functions. Now, a
function f defined on a graph G is called pseudopeakless if any two vertices of G can be
joined by a shortest path along which f is peakless. Equivalently, f is pseudopeakless
if for any two nonadjacent vertices u, v there is a vertex w ∈ I(u, v) − {u, v} such
that f(w) ≤ max{f(u), f(v)} and equality holds only if f(u) = f(v). The most useful
property of pseudopeakless functions is their unimodality, that is, any local minimum
of f is global. The proof is simple: let u be a global minimum of f and let v be an
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Fig. 3.1. A distance-preserving ordering of a 4-cube.

arbitrary vertex of G. Consider the shortest path P between u and v along which f
is peakless. Then either f is constant on this path, or for the neighbor w of v in P
we have f(w) < max{f(u), f(v)} = f(v). In either case, v is also a global minimum;
otherwise v is not a local minimum.

Finally, a function f is strictly pseudopeakless if any two nonadjacent vertices u, v
of G can be connected by a shortest path P along which f is strictly peakless, i.e.,
f(w) < max{f(u), f(v)} for any w ∈ P − {u, v}.

For a subgraph H of a graph G by f |H , we denote the restriction of a function f
to H. For a real number a let

[f ≤ a] = {v ∈ V : f(v) ≤ a}

be the lower set of a function f. Let Ga denote the subgraph of G induced by [f ≤
a]. The following evident lemmas capture some basic properties of pseudopeakless
functions.

Lemma 3.1. If f is a pseudopeakless function defined on the vertices of a graph G
with n vertices, then every Ga is an isometric subgraph of G. Conversely, if f has |V |
distinct values and Ga is an isometric subgraph for any a, then f is pseudopeakless.

Lemma 3.2. If v1, . . . , vn is a distance-preserving ordering of G, then the function
α(vi) = i is pseudopeakless. Moreover, G admits a distance-preserving ordering if and
only if there is a pseudopeakless function which has n distinct values.

For similar relationships between perfect elimination orderings and peakless func-
tions, see [37, 17] (more exactly, Shier [37] used quasi-concave and quasi-convex func-
tions, but all quasi-convex functions which have n distinct values are peakless).

Lemma 3.3. If H is a convex subgraph of G and f is a pseudopeakless function
on G, then f |H is pseudopeakless on H.

We shall say that a function g refines a function f whenever every lower set of f
is a lower set of g. Two functions are equivalent if they have identical lower sets.

Lemma 3.4. If f is a strictly pseudopeakless function on G, then any refinement
g is also strictly pseudopeakless.
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Proof. Let v and w be two nonadjacent vertices of G and x ∈ I(v, w) − {v, w}
such that a = f(x) < max{f(v), f(w)} = f(w). Since [f ≤ a] is a lower set of the
function g and w /∈ [f ≤ a], we conclude that g(x) < g(w).

Let f be a function defined on G. By an f–minimal path connecting two vertices
u and v, what is meant is a shortest-path Pf (u, v) = (u = w0, w1, . . . , wp = v) with
the minimum sum

∑p
i=0 f(wi).

Lemma 3.5. (1) A function f on G is pseudopeakless if and only if it is locally
pseudopeakless, i.e., for any two vertices u and v at distance two there is a common
neighbor w of u and v such that f(w) ≤ max{f(u), f(v)} and equality holds only if
f(u) = f(v).

(2) A function f on G is strictly pseudopeakless if and only if for any two vertices
u, v, with d(u, v) = 2, there exists a common neighbor w of u and v such that f(w) <
max{f(u), f(v)}.

Proof. Pick two nonadjacent vertices u and v, and let Pf (u, v) be an f -minimal
path connecting u and v. We assert that f is peakless along this path. Since every
subpath of Pf (u, v) again is an f -minimal path, it suffices to verify the peaklessness
condition only for the vertices w0 = u,wp = v, and a vertex wi, where f attains
its maximum on Pf (u, v) − {u, v}. Assume that wi is as close as possible to w0.
Applying an induction argument on the distance d(u, v) departing from d(u, v) = 2,
we can assume that f is peakless along each of the f -minimal paths (w0, . . . , wi) and
(wi, . . . , wp). Consider the vertices wi−1 and wi+1. Since f is locally pseudopeakless,
from the choice of the path Pf (u, v) we conclude that f(wi) ≤max{f(wi−1), f(wi+1)}.
From the choice of wi we obtain that wi = w1. If f(w1) < f(w0), we are done.
Otherwise, f(w0) = f(w1) = f(w2). Now, letting w2 play the role of w1, and w1 and
w3 the roles of w0 and w2, respectively, we obtain the equality f(w3) = f(w2), and
so on until we arrive at the vertex wp. Hence, f(w0) = f(w1) = · · · = f(wp).

Similar Tietze-type results were established for convexity in graphs in [9, 16] and
for some kind of isometricity of disks of Cayley graphs in [15].

For a graph G, a function f is called locally unimodal if the restriction of f on
every interval I(u, v) with d(u, v) = 2 is a unimodal function on I(u, v).

Lemma 3.6. Any locally unimodal function f on G is pseudopeakless. Conversely,
if G does not contain the graphs F1 and F2 (Figure 3.2) as induced subgraphs, then
any pseudopeakless is locally unimodal.

Proof. Let u and v be two arbitrary vertices of G with d(u, v) = 2. If f attains
its minimum on I(u, v) in some vertex w 6= u, v, then either f(u) = f(w) = f(v) or
f(w) < max{f(u), f(v)}. So, assume that u is the unique minimum of f on I(u, v).
Since v cannot be a local minimum of f, necessarily f(v) > f(x) for some common
neighbor x of u and v. Thus, f(x) < max{f(u), f(v)}. By Lemma 3.5, f is pseudo-
peakless.

If G does not contain the graphs F1 and F2 as induced subgraphs, then the
interval I(u, v) between any two vertices u, v at distance 2 is convex. By Lemma
3.3 the restriction of any pseudopeakless function on I(u, v) is pseudopeakless, and
therefore, unimodal.

The numberings of vertices of the graphs F1 and F2 presented in Figure 3.2 provide
examples of pseudopeakless but nonlocally unimodal functions.

For a d-polytope P ⊂ Rd, a numbering of its vertices is called completely unimodal
[26, 41, 40] if every k-face (2 ≤ k ≤ d) has a unique local minimum, that is, every
face F has only one vertex such that all its neighbors on F get a larger number. In a
similar way we can define completely unimodal functions. It is established in [26, 41]
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that if P is the d-dimensional cube, then a numbering is completely unimodal if and
only if it is unimodal on every 2-face. Let G(P ) denote the graph (1-skeleton) of a
polytope P. From previous results we obtain the following fact.

Proposition 3.7. Let P be a polytope such that all its faces induce convex
subgraphs in G(P ), and let f be a function defined on the vertices of P.

(1) If f is locally unimodal, then f is completely unimodal;

(2) If every 2-face of P is a 4-cycle and every I(u, v) with d(u, v) = 2 constitutes
a 2-face of P, then the following conditions are equivalent:

(i) f is completely unimodal;
(ii) f is unimodal on each 2-face;
(iii) f is pseudopeakless.

The proof of both assertions follows from Lemmas 3.6 and 3.3 and unimodality
of pseudopeakless functions.

For a vertex v and a subset of vertices M by d(v,M), we denote the minimum over
all distances d(v, x), x ∈ M. For a fixed M ⊆ V , let dM (v) = d(v,M). We shall now
characterize the graphs for which the functions du(v) = d(v, u) and dC(v) = d(v, C)
are pseudopeakless for all vertices u ∈ V and all cliques C of G (by a clique we mean
any complete subgraph of G). A graph G is called meshed [9] if for every triple u, v, w
of vertices with d(v, w) = 2 and

1 ≤ d(u, v) ≤ d(u,w) ≤ d(u, v) + 1,

there exists a common neighbor x of v and w with d(u, x) ≤ d(u, v).

Proposition 3.8. (1) For any vertex u of a graph G, the distance function du
is pseudopeakless if and only if G is meshed. In particular, the distance function du
of a weakly modular graph is pseudopeakless.

(2) for any vertex u of a graph G, the distance function du is strictly pseudopeak-
less if and only if G is pseudomodular.

The proof of this result is immediate in view of Lemma 3.5. The characterization
of pseudomodular graphs as graphs with strictly pseudopeakless functions follows from
(2) of Lemma 3.5 and the characterization of pseudomodular graphs of [6] presented
in section 2.

Proposition 3.9. For a graph G the following conditions are equivalent:

(i) for any clique C of G, the distance function dC is pseudopeakless;
(ii) for any edge e of G the distance function de is pseudopeakless;
(iii) G is a weakly modular graph.
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Proof. (i)→ (ii) is evident.

(ii) → (iii). It suffices to verify the quadrangle condition, because any meshed
graph satisfies the triangle condition [9]. So, let p, q ∈ I(x, y) be two neighbors of
x, where x and y are selected as close as possible. By Proposition 3.8 there exists a
common neighbor w of p and q such that d(w, y) ≤ d(p, y) = d(q, y). We can suppose
that d(w, y) = d(p, y); otherwise we are done. By the triangle condition there are two
common neighbors y′ and y′′ of p, w and q, w, respectively, one step closer to y. By
the induction assumption there exists a common neighbor z ∈ I(y′, y) ∩ I(y′′, y) of
y′ and y′′. Consider the distance function de, where e = xq. Then de(p) = 1, while
de(z) = de(y

′) = 2. Since de is pseudopeakless, there is a common neighbor u of p and
z with de(u) = 1. Since d(x, z) = 3, the vertex u must be adjacent to q. Therefore,
u ∈ I(p, y) ∩ I(q, y), as required.

(iii) → (i). According to Lemma 3.5 it suffices to establish that dC is locally
pseudopeakless. Let d(u, v) = 2. Pick two vertices x, y ∈ C such that d(u, x) = d(u,C)
and d(v, y) = d(v, C). We can assume that d(u, x) < d(u, y) and d(v, y) < d(v, x);
otherwise u and v will have a common closest vertex in C, and we are in a position to
apply Proposition 3.8. Moreover, |d(u, x) − d(v, y)| ≤ 1; otherwise, if, say d(u, x) =
d(v, y) + 2, then d(t, y) = d(v, y) + 1 for any common neighbor t of u and v, and
we are done. We proceed by induction on d(u, x) + d(v, y). If d(u, x) = d(v, y), then
d(v, x) = d(u, x) + 1. By Proposition 3.8 there is a vertex w ∈ I(u, v) − {u, v} such
that d(w, x) ≤ d(u, x). So, assume that d(v, y) = d(u, x) + 1. Then u, y ∈ I(v, x). Pick
an arbitrary neighbor z of x in I(v, x). By the quadrangle condition we would find
a common neighbor t of z and y which is one step closer to v. Consider the clique
C ′ = {z, t}. By the induction assumption there exists a vertex w ∈ I(u, v) − {u, v}
such that d(w,C ′) ≤ d(u, z). Since d(u, z) = d(u, x)− 1, this finishes the proof.

The following example shows that in Proposition 3.8 we cannot replace cliques
and edges by isometric subgraphs or shortest paths. In the following graph (which
is pseudomodular) consider the isometric subgraph induced by the set M = {a, b, c};
see Figure 3.3. The function dM is not pseudopeakless because dM (y) = dM (x) =
dM (z) = 1; however, dM (c) = 0 and I(y, c) = {y, x, z, c}.

The results of [17] for graphs, as well as the results for G-spaces and G-surfaces
(see [14] for references), show that the nonconstant peakless functions are quite rare.
In contrast, at least in meshed or weakly modular graphs nonconstant and even locally
nonconstant pseudopeakless functions exist in abundance. Propositions 3.8 and 3.9
provide a method for constructing such kind of functions. Consider for example the
distance function du. The lower sets of this function are the disks Dk(u) centered at
u. In particular, du takes the constant value k on the sphere Sk(u) = {v : d(u, v) =
k}. One method to produce a distance-preserving ordering of a meshed or a weakly
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modular graph G is to extend the function du to a pseudo–peakless function which
takes |Sk(u)| distinct values on each sphere Sk(u). The simplest way to realize this
is to apply the breadth-first search (BFS) starting from the vertex u. In the BFS the
vertices of a graph G with n vertices are numbered from 1 to n in increasing order.
We number with 1 the vertex u and put it on an initially empty queue of vertices. We
repeatedly remove the vertex v at the head of the queue and consequently number and
place onto the queue all still unnumbered neighbors of v. BFS constructs a spanning
tree Tu of G with the vertex u as a root. Then a vertex v is the father in Tu of any of
its neighbors w in G included in the queue when v is removed. The procedure is called
once for each vertex, so the total complexity of its implementation is O(|V | + |E|)
(a detailed description of the BFS procedure is presented, for example, in the book
of Golumbic [25]). Another method to order the vertices of a graph in linear time is
the lexicographic breadth-first search (LBFS) proposed by Rose, Tarjan, and Lueker
[35]. According to LBFS, the vertices of a graph G are numbered from n to 1 in
decreasing order. The label label(w) of an unnumbered vertex w is the list of its
numbered neighbors. As the next vertex to be numbered, select the vertex v with
the (lexicographic) largest label, breaking ties arbitrarily [35]. Evidently, LBFS is
a particular instance of BFS, i.e., every ordering produced by LBFS can also be
generated by BFS. Below we reproduce the details of LBFS.

procedure LBFS(G);
Input: the adjacency list of G;
Output: an ordering of the vertices of G.

begin
for every vertex w in V do label(w)← ∅;
for i← n downto 1 do begin

pick an unnumbered vertex v with the largest label;
number the vertex v with i;
for each unnumbered w ∈ N [v] do

add i to label(w)
end

end;

Let v1, . . . , vn be the ordering ofG produced by BFS. For each vertex v let α(v) = i
if v = vi. We close the section with some basic properties of the BFS orderings,
formulated in terms of the function α. Important convention: in all subsequent results
where BFS is used, α(u) = 1, i.e., the procedure BFS starts from the vertex u.

Lemma 3.10. (1) Let x and y be the fathers in Tu of the vertices v and w,
respectively. If α(v) < α(w), then α(x) ≤ α(y). Conversely, if α(x) < α(y), then
α(v) < α(w);

(2) the function α refines the distance function du, i.e., if d(u, v) < d(u,w), then
α(v) < α(w);

(3) the function α is monotone along any shortest path connecting the root u with
any vertex v.

4. Distance-preserving orderings of weakly modular graphs. We are now
in a position to state the main result of this paper. We start with a special case
of pseudomodular graphs. Already from Lemmas 3.7 and 3.4 we can deduce that
α is strictly pseudopeakless, because it refines the strongly pseudopeakless distance
function du. Alternatively, consider the base point order <u defined by v <u w if
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and only if v ∈ I(u,w). Then a function f is called strictly isotone if v <u w implies
f(v) < f(w).

Lemma 4.1. Any strictly isotone function f on a pseudomodular graph G is
strictly pseudopeakless.

The proof is immediate in view of previous results and because the distance
function of pseudomodular graphs is strictly pseudopeakless.

Theorem 4.2. Let G be a pseudomodular or a house-free weakly modular graph.
Then any ordering v1, . . . , vn of the vertices of G produced by BFS is a distance-
preserving ordering.

Proof. The case of pseudomodular graphs is covered by Lemma 4.1. Henceforth,
let G be a house-free weakly modular graph. It is necessary to verify that every Gi,
i = 1, . . . , n is an isometric subgraph of G, or equivalently, that the function α is
pseudopeakless. Suppose the contrary, and let Gi be the first nonisometric subgraph
among the subgraphs induced by the lower sets of the function α. Pick a vertex w of
Gi as close as possible to v = vi such that v and w cannot be connected inside Gi with
a shortest path. Then v and w are the only common vertices of the interval I(v, w)
and Gi. Denote by x and y the fathers of the vertices v and w, respectively. First we
establish some metric relationships between the vertices v, wx, and y. Let k = d(u, v)
and t = d(v, w).

Claim 1. All vertices of the interval I(v, w) are at distance k = d(u, v) from u.

Proof of Claim 1. Indeed observe that I(v, w) ∩ I(v, u) = {v} and I(v, w) ∩
I(w, u) = {w}. Otherwise we will get a vertex p ∈ I(v, w) − {v, w} which is closer
to u than v or w. By BFS, α(p) < max{α(v), α(w)} = i and p ∈ Gi, contrary to
the choice of the vertices v and w. Hence, any pseudomedian of the triple u, v, w
has the form u′, v, w. From the properties of weakly modular graphs presented in
section 2 we know that d(u′, v) = d(u′, q) = d(u′, w) for any vertex q ∈ I(v, w). Since
u′ ∈ I(u, v) ∩ I(u,w), we obtain that d(u, v) = d(u,w) = k ≥ d(u, q). The choice of
the vertices v and w implies that d(u, q) = k. This settles Claim 1.

Claim 1 implies that x 6= y. Since α(w) < α(v), we obtain α(y) < α(x) by BFS.
From the choice of v and w, we conclude that the function α is peakless along some
shortest path Pα(x, y) connecting x and y.

Claim 2. d(y, v) = d(y, x) = d(v, w) + 1 = d(p, v), where p is the neighbor of y in
the path Pα(x, y).

Proof of Claim 2. First we will prove that d(x, y) ≤ d(v, w) + 1. Consider a
shortest-path P = (v = v0, v1, . . . , vt−1vt = w) between v and w. We infer from Claim
1 that all vertices of P are at distance k from u. Applying the triangle condition to u
and the consecutive vertices of the path P , we can find vertices z1, . . . , zt at distance
k−1 from u such that every zj is a common neighbor of the vertices vj−1 and vj . Notice
that zj cannot be adjacent to any other vertex of the path P, otherwise zj ∈ I(v, w),
which is impossible by Claim 1. If x or y are adjacent to at least one vertex vj ,
0 < j < t, then d(x, y) ≤ d(v, w) + 1, and we are done. The same inequality holds
when the vertices x = z0, z1, . . . , zt, zt+1 = y induce a path. So, we can assume that
two consecutive vertices zj−1 and zj are nonadjacent. Since zj−1, zj ∈ I(vj , u), by the
quadrangle condition there exists a common neighbor u′ of zj−1, zj at distance k − 2
to u. Then either the vertices vj−1, vj , zj−1, zj , u

′ or the vertices vj+1, vj , zj−1, zj , u
′

induce a house. This shows that d(x, y) ≤ d(v, w) + 1, in particular, d(y, v) ≥ d(v, w).

If w and y are equidistant from v, then by the triangle condition there is a
common neighbor z of w and y one step closer to v. Since α(y) < α(x), by BFS
we get α(z) < α(v). Then we obtain a contradiction to the choice of the vertices
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v and w, because z ∈ I(v, w). Hence, w ∈ I(y, v). Next, suppose that the vertex p
also belongs to the interval I(y, v). By the quadrangle condition there is a common
neighbor q ∈ I(w, v)∩ I(p, v) of w and p. And again, since α(p) < max{α(y), α(x )} =
α(x ), we conclude that α(q) < α(v) = i, contrary to our assumption. By Claim 2,
d(x, y) ≤ d(v, w) + 1. If d(x, y) = d(v, w), then x ∈ I(v, y) and p ∈ I(x, y) ⊂ I(v, y),
which is impossible. Therefore, d(x, y) = d(v, p) = d(v, w) + 1, thus establishing
Claim 2.

We are now prepared to prove the theorem. Let Pα(y, x) = (y, p = p1, p2, . . . , pt, x).
Since α(pj) < α(x), from the choice of v and w and the procedure BFS we conclude
that pj cannot be adjacent to any vertex of the interval I(v, w). As d(v, y) = d(v, p1),
by the triangle condition there exists a common neighbor q1 of p1 and y which is
one step closer to v. We assert that q1 6= w. Indeed, otherwise p2, w ∈ I(p1, v) and
by the quadrangle condition there is a common neighbor w′ ∈ I(w, v) ∩ I(p2, v) of
w and p2, contrary to our assumption. So, let q1 6= w. Then w, q1 ∈ I(y, v) and
q1, p2 ∈ I(p1, v). Again applying the quadrangle condition, we can find the vertices
w1 ∈ I(w, v)∩ I(q1, v) and q2 ∈ I(q1, v)∩ I(p1, v), adjacent to w, q1 and q1, p1, respec-
tively; see Figure 4.1.

Recall that the vertices p2 and w1 cannot be adjacent. Therefore, q2 6= w1. If q2 =
p3, then p3, w1 ∈ I(q1, v). Applying the quadrangle condition we would get a common
neighbor w′ ∈ I(w1, v)∩ I(p3, v) of w1 and p3. Since α(p3) < α(x), necessarily α(w′) <
α(v), contrary to the fact that w′ ∈ I(v, w). So, let q2 6= p3. Since q2, p3 ∈ I(p2, v) and
q2, w1 ∈ I(q1, v), we could find the vertices q3 and w2 one step closer to v and adjacent
to q2, p3 and q2, w1, respectively. Walking this way along the path Pα(x, y), we will
find distinct vertices w3, . . . , wt−1 and q3, . . . , qt−1, qt such that w,w1, w2, . . . , wt−1, v
induce a shortest path between w and v, and y, q1, q2, . . . , qt−1, qt, v induce a shortest
path between y and v. In addition, every qj , 1 ≤ j < t is adjacent to wj and pj and
qj ∈ I(pj , v), wj ∈ I(qj , v), whereas the last vertex qt is adjacent to pt and v.

We claim that every qj , 1 < j < t, is adjacent to wj−1 and pj+1, while q1 is
adjacent to w, p2 and qt is adjacent to x and wt−1. Consider the subgraphs induced
by the vertices w,w1, q1, y, p1 and y, q1, p1, p2, q2. As we already established, w1 and
p1 cannot be adjacent. Since G is house free, from the metric relations between
the involved vertices and the vertex v we deduce that q1 must be adjacent to p2

and w. Again, in order to avoid induced houses, q2 must be adjacent to w1 and p3.
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Continuing this way, we eventually obtain that qt−1 would be adjacent to pt and
wt−2, while qt would be adjacent to x and wt−1; see Figure 4.1. The vertices v
and pt−1 are at distance three. Since x,wt−1 ∈ I(v, pt−1), we will find a common
neighbor z of the vertices x,wt−1 and pt−1. We assert that z 6= qt−1. Indeed, if x
and qt−1 were adjacent, we would get a path y, q1, q2, . . . , qt−1, x of length t = d(v, w)
between x and y, contrary to Claim 2. Consider the subgraph induced by the vertices
wt−1, wt−2, z, qt−1, and pt−1. Since the graph G is house free and the vertex pt−1

cannot be adjacent to wt−2 or wt−1, we deduce that z is adjacent either to wt−2 or to
qt−1. In both cases we will get that x and wt−1 must be adjacent, otherwise we obtain a
forbidden house induced by the vertices v, x, z, wt−1, wt−2 or v, x, z, wt−1, qt−1. Then,
however, the vertices x,wt−1, qt−1, pt and pt−1 induce a house. This final contradiction
shows that the function α is pseudopeakless. By Lemma 3.2 the ordering produced
by BFS is distance preserving.

We do not know if the assertion of Theorem 4.2 is true for all weakly modular
graphs. However, it is not true for meshed graphs. We take the 3-cube Q3 and its
dual graph (the 3-octahedron O3) and join any vertex of O3 to all vertices of Q3 which
belong to the respective face of Q3; see Figure 4.2. A straightforward analysis shows
that the resulting graph H is meshed. In Figure 4.2 we present a BFS ordering of H
which is not distance preserving. Namely, if we consider the vertices with numbers
10 and 11, then all their common neighbors get a larger number.

Corollary 4.3. For a graph G the following conditions are equivalent:

(i) for each isometric subgraph of G, the ordering of its vertices produced by BFS
is distance preserving;

(ii) G is a hereditary weakly modular graph.

Proof. Any cycle Cn, n ≥ 5 does not have a distance-preserving ordering. Figure
5.2 provides a BFS ordering of the vertices of a house which is not distance preserving.
Thus (i) → (ii). The converse follows from Theorem 4.2.

5. Domination elimination orderings of hereditary weakly modular graphs.
Next we will show that in hereditary weakly modular graphs and their subclasses the
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BFS and LBFS orderings have additional properties. First we need a lemma.
Lemma 5.1. Let v and w be two adjacent vertices of a hereditary weakly modular

graph G which are equidistant to u. If x and y are the fathers of v and w, then either
x and y are adjacent or coincide. In addition, if α(v) < α(w), then y is adjacent to v.

Proof. We proceed by induction on k = d(u, v). If d(u, v) = 1, then x = u = y
and we are done. So, let k > 1. Suppose by way of contradiction that d(x, y) > 1.
Since α(v) < α(w), according to BFS α(x) < α(y). Therefore, the vertices x and w
must be nonadjacent. We distinguish two cases.

Case 1. d(x, y) = 3.
Then any pseudomedian of the triple u, x, and y has either size 3 or size 1. In

either case such a pseudomedian consists of x, y and a vertex u′ at distance 3 from
x and y. From the properties of weakly modular graphs presented in section 2 we
deduce that d(v, u′) = d(w, u′) = 3. Since d(u′, u) = k − 4, we get a contradiction
with d(u, v) = d(u,w) = k. So, assume that the pseudomedian x′, y′, and u′ of the
vertices x, y, and u has size 1; see Figure 5.1. Then d(x′, u) = d(y′, u) = k − 2
and d(u′, u) = k − 3. Since v, x′ ∈ I(x, y), by the quadrangle condition there is a
common neighbor p of v, x′ and y. As G is house free, the vertices p and y′ must be
adjacent. But then the vertices x, v, x′, p, and y′ induce a house, because d(x, y) = 3
and d(x′, u) = d(y′, u) = k − 3.

Case 2. d(x, y) = 2.
Applying the triangle condition to the vertices x, y, w, we can find their common

neighbor p. In order to avoid an induced house, the vertices p and v must be adjacent,
too; see Figure 5.1. According to BFS α(p) > α(y). We assert that d(p, u) = k − 1.
Indeed, otherwise d(p, u) = k and x, y ∈ I(p, y). By the quadrangle condition there
is a common neighbor q of x and y at distance k − 2 from u. Then we get two
houses, induced by the vertices v, w, x, y, p, and q. So, let d(p, u) = k − 1. Consider
the fathers x′, p′, and y′ of the vertices x, p, and y, respectively. By the induction
assumption, d(x′, p′) ≤ 1 and d(p′, y′) ≤ 1. In addition, p′ must be adjacent to both
x and y, because α(x) < α(p) > α(y). Then, however, the vertices p′, x, v, w, y induce
a 5-cycle, which is impossible. So, d(x, y) ≤ 1.

Now, assume that y and v were nonadjacent. Since x and y are at distance k− 1
to u, by the triangle condition there is a common neighbor u′ of x and y at distance
k − 2 to u. As a result we will get a house, induced by v, w, x, y, and u′.

Corollary 5.2 (see [1, 18]). Bridged graphs are cop-win graphs. Moreover, any
ordering of a bridged graph G produced by BFS is a cop-win ordering.
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Proof. As in [18], by induction on i we will show that the vertex w = vi is
dominated in Gi by its father y. Pick an arbitrary neighbor v of w in Gi. If d(v, u) =
d(w, u), then y and v would be adjacent in view of Lemma 5.1. Otherwise, y, v ∈
I(w, u), and, by the quadrangle condition there is a vertex u′ adjacent to y and v and
at distance d(w, u) − 2 to u. Since G does not contain induced 4-cycles, the vertices
y and v must be adjacent.

Lemma 5.3. If Γ is an induced 6-cycle of a hereditary weakly modular graph
G, there is a vertex adjacent to all vertices of Γ. In particular, d(u, v) ≤ 2 for any
u, v ∈ Γ.

Proof. As Γ cannot be isometric, necessarily two opposite vertices of Γ, say u and
v, are at distance two. Let w be a neighbor of v in Γ. By weak modularity there is a
common neighbor x of u, v, and w. In order to avoid the forbidden induced house or
5-cycle, x must be adjacent to the remaining vertices of Γ.

For a vertex v with α(v) = i denote

N ′(v) = {w ∈ Ni(v) : d(w, u) < d(v, u)},

N ′′(v) = Ni(v)−N ′(v).

Lemma 5.4. Let v be a vertex of a hereditary weakly modular graph G at distance
k from u. Then all neighbors of v in I(v, u) are adjacent to some vertex v∗ at distance
k − 2 to u.

Proof. Let v∗ be a vertex of Sk−2(u) which is adjacent to a maximum number
of vertices of N ′(v). Assume by way of contradiction that there is a neighbor w of
v in I(v, u) that is not adjacent to v∗. Pick an arbitrary vertex z ∈ N(v) ∩ N(v∗).
As z, w ∈ I(v, u), by the quadrangle condition there is a common neighbor y 6= v∗

of z and w at distance k − 2 to u. And again, applying the quadrangle condition to
the vertices v∗, y ∈ I(z, u) we can find a common neighbor u′ of v∗ and y which is
one step closer to u. From the choice of the vertex v∗ we conclude that there exists a
vertex q ∈ N(v∗)∩N(v) which is not adjacent to y. As a result we will get an induced
6-cycle (v, q, v∗, u′, y, w). By Lemma 5.3 d(v, u′) = 2, which is a contradiction.

Corollary 5.5. Any ordering of the vertices of a hereditary modular graph G
produced by BFS is a domination elimination ordering.

Proof. Since G is bipartite, for any vertex v with α(v) = i we have Ni(v) = N ′(v).
By Lemma 5.4 we are done.

Therefore, the simplest instances of hereditary weakly modular graphs have domi-
nation elimination orderings which can be computed by BFS. As the following example
shows, this is not more true for all hereditary weakly modular graphs. Consider a
graph G = L(G1, G2) which consists of copies of the graphs G1 and G2 and all edges
xy, where x ∈ G1 and y ∈ G2. We shall say that G is a join of the graphs G1 and
G2. Notice that every such G is hereditary weakly modular, provided G1 and G2 do
not contain 5-cycles and houses as induced subgraphs. Moreover, if both G1 and G2

are HC-free graphs, then G is also HC-free. The graph L(Cn, Cm), n ≥ 6,m ≥ 6
is hereditary weakly modular; however, it does not have a domination elimination
ordering. We can dismantle all hereditary weakly modular graphs by relaxing the
domination condition. Namely, we shall say that an edge xy dominates a vertex w
whenever N [w] ⊆ N [x]∪N [y]. An ordering v1, v2, . . . , vn of the vertices of G is called
an edge-dominating elimination ordering if for every vi, i < n, there exists an edge
vjvk, j < i, k < i, which dominates the vertex vi in Gi.

Theorem 5.6. For a house-free graph G the following conditions are equivalent:
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(i) G and each isometric subgraph admit an edge-domination elimination order-
ing;

(ii) G is a hereditary weakly modular graph;
(iii) for each isometric subgraph of G, the ordering of its vertices produced by BFS

is an edge-dominating ordering.

Proof. (i) → (ii) and (iii) → (i) are evident.

(ii) → (iii). The hereditary property of G infers that it is sufficient to prove
the result only for the whole graph G. In the ordering produced by BFS consider
the current vertex v, where α(v) = i. If Ni(v) = N ′(v), according to Lemma 5.4
v is dominated by any vertex v∗. Then v∗ together with any p ∈ Ni(v) forms an
edge which dominates the vertex v. So, suppose that the set N ′′(v) is nonempty. By
Lemma 5.1 the father x of v will be adjacent to any vertex w ∈ N ′′(v). We assert
that the edge xw dominates the vertex v. Suppose the contrary: then there exists a
vertex z ∈ N ′(v) nonadjacent to both x and w. Let y be a common neighbor of z
and x one step closer to u. Then the vertices v, w, x, z, y induce a house, which is a
contradiction.

Next, we are interested in graphs with the property that each isometric subgraph
has a domination elimination ordering and this ordering can be computed by BFS or
LBFS.

Theorem 5.7. For a graph G the following conditions are equivalent:

(i) for each isometric subgraph of G, the ordering of its vertices produced by BFS
is a domination elimination ordering;

(ii) G does not contain the house, the graphs L1, L2 (Figure 5.2), and any cycle
Cn, n ≥ 5, as an isometric subgraph;

(iii) G is a hereditary weakly modular graph which does not contain the graphs L1

and L2 as induced subgraphs.

Proof. (i) → (ii) follows from Corollary 4.3, while (ii) → (iii) follows from the
characterization of hereditary weakly modular graphs presented in section 2.

(iii) → (i). As in the preceding theorem, it suffices to establish the result only
for the whole graph G. Consider a vertex v with α(v) = i. Let d(v, u) = k. Again, if
Ni(v) = N ′(v), by Lemma 5.4 v is dominated in Gi by some vertex v∗ at distance
k − 2 from u. So, we can suppose that the set N ′′(v) = Ni(v) − N ′(v) is nonempty.
According to the proof of Theorem 5.6, any edge xw, where w ∈ N ′′(v) and x is the
father of v in the tree Tu, dominates the vertex v. Assume that separately the vertices
x and w do not dominate the vertex v. Therefore, we can find two vertices p, q ∈ Ni(v)
such that p and x on the one hand, and q and w on the other hand, are nonadjacent.
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We assert that p 6= q. Indeed, otherwise the vertices v, w, x, v∗, p induce a house. As
x is adjacent to all vertices of N ′′(v), necessarily p ∈ I(v, u). So, p 6= q, p ∈ I(v, u),
and the vertices p and w are adjacent. If q ∈ N ′(v), the vertex q must be adjacent
to both x and p, otherwise we get a house induced by the vertices v, q, x, v∗, w or
by the vertices v, x, p, v∗, w. However, in this case the vertices v, w, x, p, q, v∗ induce
a forbidden subgraph L1. Now, let q ∈ N ′′(v). Again, the vertices p and q must be
adjacent, otherwise q, v, x, p, and v∗ induce a house. In this case we will get the second
forbidden subgraph L2.

Dahlhaus et al. [21] introduced the concept of a domination graph as a graph
with the property that each induced subgraph has a domination elimination ordering.
As follows from [21], HC-free graphs are exactly the house-free domination graphs.
Moreover, a domination elimination ordering of HC-graphs can be computed by MCS
or LBFS [21]. Further, we characterize house-free graphs with the property that any
LBFS ordering of each isometric subgraph is a domination elimination ordering. In
this case a graph can contain induced cycles of any length 6= 5. However, two restric-
tions on induced cycles are imposed. First, any induced cycle Cn, n ≥ 6 cannot be
isometric. Second, it cannot occur as a cycle in a bipyramid. A bipyramid bipyr(Cm)
is the graph L(Cm,K2), i.e., it consists of a cycle of length m and two nonadjacent
vertices which are adjacent to all vertices of this cycle. Figure 5.3 presents an LBFS
ordering of the bipyramid bipyr(C6), which is not a domination elimination ordering.

Theorem 5.8. Let G be a house-free graph. The following conditions are equiv-
alent:

(i) for each isometric subgraph of G, the ordering vk, vk−1, . . . , v1 of its vertices
produced by LBFS is a domination elimination ordering;

(ii) G does not contain any cycle Cm,m ≥ 5, and any bipyramid bipyr(Cm),m ≥
6 as an isometric subgraph;

(iii) G is a hereditary weakly modular graph which does not contain any bipyramid
bipyr(Cm),m ≥ 6, as an induced subgraph.

Proof. It suffices to establish that (iii) → (i), namely, that any LBFS ordering
of a hereditary weakly modular graph G without bipyramids bipyr(Cm),m ≥ 6 as an
induced subgraph is a domination elimination ordering. Let the notations remain as
before, only Ni(vj) = N(vj) ∩ {vi, vi+1, . . . , vn} and Gi = G(vi, . . . , vn). Again, we
suppose that the procedure LBFS has the vertex u as the starting point, i.e., α(u) = n.
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We proceed by induction on the number n of vertices of G. By Theorem 4.2 every Gi
is an isometric subgraph of G. Therefore, it suffices to prove that the vertex v with
α(v) = 1 is dominated by some vertex of G. Let d(v, u) = k. We can suppose that
k ≥ 2, otherwise v is dominated by u, and we are done. Throughout the proof for a
vertex p by p∗ we will denote a vertex at distance d(p, u) − 2 to u which is adjacent
to all vertices of N ′(p) (see Lemma 5.4).

Assume by way of contradiction that no vertex of G dominates the vertex v. Then
Lemma 5.4 implies that the set N ′′(v) = N(v) −N ′(v) is nonempty. By Lemma 5.1
the father f of v is adjacent to all vertices of N ′′(v). Therefore, we could find a vertex
f+ ∈ N ′(v) which is nonadjacent to f. Then any w ∈ N ′′(v) must be adjacent to f+,
otherwise the vertices w, v, f, f+, v∗ induce a house. Our proof requires a number of
auxiliary results and notations that we present next.

Claim 1. Let w, z ∈ Sk(u) be two adjacent vertices with α(z) > α(w), and let
N = N ′(w)∩N ′(z). If N contains two nonadjacent vertices, then N ′(w) ⊆ N ′(z) and
any vertex of N ′(z)−N ′(w) is adjacent to all vertices of N ′(w). Otherwise, if N is a
clique, then any vertex of N is adjacent to all vertices of N ′(w) ∪N ′(z).

Proof of Claim 1. Since d(w, u) = d(z, u) = k, by the triangle condition there is
a common neighbor of w and z at distance k − 1 to u, i.e., the set N is nonempty.
If N is a clique, but two vertices t ∈ N and s ∈ N ′(w) − N ′(z) are nonadjacent,
then z, w, t, s, and w∗ induce a house. So, suppose that N contains two nonadjacent
vertices x and y; however, the sets N ′(w) and N ′(z) are incomparable. Then we can
find vertices p ∈ N ′(w) − N ′(z) and q ∈ N ′(z) − N ′(w). By Lemma 5.4 there exists
vertices w∗ and z∗ at distance k − 2 to u, which are adjacent to the vertices p, x, y
and q, x, y, respectively; see Figure 5.4. Necessarily, p and q must be adjacent to both
x and y, otherwise we would get an induced house. First suppose that w∗ 6= z∗, i.e.,
the vertices w∗, q and z∗, p are nonadjacent. As w∗, z∗ ∈ I(x, u), by the quadrangle
condition there is a common neighbor u+ ∈ I(w∗, u)∩ I(z∗, u) of w∗ and z∗. In order
to avoid an induced house, the vertices w∗ and z∗ must be adjacent. If p and q
were nonadjacent, we will get a bipyramid bipyr(C6) induced by p, q and the 6-cycle
(w, z, y, z∗, w∗, x, w). Otherwise, if p and q are adjacent, the vertices p, q, z∗, w∗, and
u+ induce a house. So, let w∗ = z∗. However, then we get either an induced 5-cycle,
or, if p and q are adjacent, an induced house. The obtained contradiction implies that
N ′(w) and N ′(z) must be comparable. Since α(z) > α(w), by LBFS we deduce that
N ′(w) ⊆ N ′(z). Now, pick two arbitrary vertices s ∈ N ′(z) −N ′(w) and t ∈ N ′(w).
If s and t were nonadjacent, then the vertices z, w, s, t, and z+ induce a house, which
is impossible.

According to Claim 1 and LBFS, N ′(v) ⊆ N ′(w) for any w ∈ N ′′(v) (recall
that w is adjacent to nonadjacent vertices f and f+ of N ′(v)). Hence, for any vertex
p ∈ N ′(v) there is a vertex p+ ∈ N ′(v) that is not adjacent to p. Denote by S the
vertices t /∈ N [v] of G which are adjacent to all vertices of N ′(v). We let T be the
union of S and N [v].

Claim 2. Let w and z be two adjacent vertices of Sk(u). If α(z) > α(w) and
N ′(w) = N ′(v), then z ∈ T.

Proof of Claim 2. By the triangle condition there is a common neighbor p of w
and z at distance k − 1 to u. Since p ∈ N ′(v), we can find a vertex p+ ∈ N ′(v) that
is not adjacent to p. Then z and p+ must be adjacent, otherwise we will obtain an
induced house. By Claim 1 and because α(z) > α(w), we conclude that N ′(v) =
N ′(w) ⊆ N ′(z). Thus z ∈ T.

Claim 3. Every vertex t ∈ N ′′(v) is adjacent to some vertex z of S with α(z) >
α(t).
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Proof of Claim 3. Since t does not dominate the vertex v, there is a vertex
t+ ∈ N ′′(v) that is not adjacent to t. First, suppose that α(t+) > α(t). Then according
to LBFS in step α(t) the label of t must be larger than that of v. Therefore, we can
find a vertex z ∈ N(t) −N(v) with α(z) > α(t). We assert that z ∈ S. If z ∈ N ′(t),
then z would be adjacent to any vertex p ∈ N ′(v) ⊆ N ′(t), otherwise t, v, z, p, and t∗

induce a house. So, let z ∈ N ′′(t) and N ′(t) = N ′(v). By Claim 2 we conclude that
z ∈ S.

Now, assume that α(t) > α(t+). According to LBFS in step α(t) the labels of
the vertices t and v either coincide or t has a larger label. In the second case t will
be adjacent to a vertex z ∈ N(t) − N(v) with α(z) > α(t). By Claims 1 and 2 z
has the required property. So, consider either case. According to LBFS in step α(t)
the labels of all vertices q with α(t) > α(q) ≥ α(v) coincide with that of vertex t.
Moreover, all such q must be adjacent to t, because v and t are adjacent. Then we
get a contradiction, since α(t) > α(t+) > α(v), but t and t+ are not adjacent.

Claim 4. The subgraph G(T ) induced by T is an HC-free graph.
Proof of Claim 4. First, note that the subgraphs induced by N ′(v) and T −N ′(v)

are HC-free. Indeed, otherwise we will get a forbidden bipyramid induced by either
v, v∗ and a cycle of length ≥ 6 of G(N ′(v)) or by a similar cycle of G(T − N ′(v))
and the vertices f and f+. Now we are done, because G(T ) is the join of the graphs
G(N ′(v)) and G(T −N ′(v)).

From Claim 4 and Lemma 6 of [21] we obtain the following property of the
subgraph G(T ).

Claim 5. For each connected component C of G(S) = G(T − N [v]) there is a
vertex pC in C, such that

N(C) ∩N(v) = N(pC) ∩N(v).

Let w be the vertex with the greatest index i = α(w) over all α(p), p ∈ T0, where
T0 is the connected component of T ∩ Sk(u) containing the vertex v.

Claim 6. The vertex w is adjacent to a vertex q ∈ S ∩ (N ′(w)−N ′(v)).
Proof of Claim 6. First we will show that N ′(w) − N ′(v) 6= ∅. Suppose the

contrary, i.e., N ′(w) = N ′(v). Then in step i of LBFS the labels of the vertices w and
v must be equal to N ′(v). Indeed, otherwise we could find a vertex z ∈ N(w)−N(v)
with α(z) > i. Since d(z, u) = k, by Claim 2 we obtain that z ∈ S. Consequently,
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z ∈ T0, contrary to the choice of the vertex w. Hence, in step i the set N ′(v) represents
the label of each vertex of T0. It may be observed that the restriction of the function
α on the set T0 can be derived by applying LBFS to the graph G(T0). More exactly,
there is a numbering of the vertices of T0 produced by LBFS that is equivalent to α|T0 .
The graph G(T0) is hereditary weakly modular, because it is an induced subgraph of
the HC-free graph G(T ). By the induction assumption, the vertex v is dominated in
G(T0) by some vertex. However, then the same vertex still dominates v in the whole
graph G, contrary to our initial assumption.

Pick an arbitrary vertex q ∈ N ′(w) − N ′(v). We assert that q ∈ S. Let P be an
induced path connecting the vertices w and v inside T0. Recall that every vertex of
P is adjacent to all vertices of N ′(v). By Claim 1 we could find two adjacent vertices
t and s of P such that q ∈ N ′(t) − N ′(s). Again, Claim 1 implies that q must be
adjacent to all vertices of N ′(s) ⊇ N ′(v), i.e., q ∈ S.

Let the notations remain as before, and consider the connected component C∗

of G(S) containing the vertex q defined in Claim 6. Since by Claim 5 all vertices of
N(v) ∩ N(C) are adjacent to a vertex pC∗ ∈ C, our initial assumption infers that
N(v)−N(C∗) 6= ∅, otherwise pC∗ will dominate the vertex v. By Claim 3 any vertex
t ∈ N(v)−N(C∗) has a neighbor in some connected component Ct of the graph G(S).

First suppose that there still exists a component Ct that contains a vertex p at
distance k − 1 to u. Evidently, p can be selected to be adjacent to a vertex z ∈ T0.
Namely, either z is a vertex of Ct, or, if Ct ∩ T0 = ∅, we can let z = t. Consider
the vertices w∗ and z∗. They must be distinct and nonadjacent, because w∗ ∈ C∗

and z∗ ∈ Ct. Since w∗, z∗ ∈ I(f, u), there is a vertex u+ ∈ I(w∗, u) ∩ I(z∗, u) that
is adjacent to w∗ and z∗. Then, however, we get two houses induced by the vertices
q, f, w∗, z∗, u+, and p; see Figure 5.5.

Thus we can assume that each connected component Ct, t ∈ N(v) − N(C∗), is
entirely contained in the sphere Sk(u). In particular, N ′(z) = N ′(v) for any z ∈ ∪{Ct :
t ∈ N(v)−N(C)}. Among such vertices z take the vertex z+ with the greatest index
j = α(z+). We assert that in step j of LBFS the vertices z+ and v have equal labels.
Otherwise, there is a vertex s ∈ N(z+)−N(v) with α(s) > j. As s ∈ Sk(u), by Claim
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2 we conclude that s ∈ S. Since s /∈ N [v], necessarily s and z+ belong to a common
connected component Ct, contrary to the choice of the vertex z+.

Hence, in step j all vertices p ∈ T0 with α(p) ≤ j have one and the same label. It
consists of N ′(v) and all neighbors r of v in Sk(u) with the property that α(r) > j.
Denote the collection of such vertices r by R. Assume that R = ∅. Since the connected
component C∗ contains the vertex q ∈ Sk−1(u) − N ′(u) with α(q) > j, we conclude
that LBFS numbers all vertices of C∗ before z+. Therefore, in step j the label of
any vertex from N(C∗) ∩N(v) must be larger than that of z+, i.e., any such vertex
must be already numbered. This implies that R is nonempty. Moreover, since v is
not dominated, for any r ∈ R, there exists a vertex r+ ∈ R that is not adjacent to
r. On the other hand, at least one vertex of N ′′(v) must be outside R, otherwise z+

dominates v.
Finally, consider a new graph G′ obtained from the subgraph of G induced by

R∪{p ∈ T0 : α(p) ≤ j} by adding a new vertex y that has R as its neighborhood and
by removing all edges between vertices of R. Evidently, G′ is a HC-free graph, because
it is the join of an edgeless graph R and an HC-graph G({p ∈ T0 : α(p) ≤ j}) + y. It
may be observed that the ordering α of the vertices of the set R∪{p ∈ T0 : α(p) ≤ j}
may be obtained as a LBFS ordering of the vertices of G′. Indeed, LBFS numbers
the vertex y first—after that the vertices of R in accordance with α (recall that in
G′ all vertices of R are pairwise nonadjacent). Finally, it numbers the vertices from
{p ∈ T0 : α(p) ≤ j} exactly repeating the corresponding steps of the procedure LBFS
in G. Since G′ has less than n vertices, by the induction hypothesis the vertex v is
dominated in G′ by some vertex t. Evidently, t 6= y, because N ′′(v) − R 6= ∅. Since
G′ − y is a partial subgraph of G and N(v) is completely included in G′, we deduce
that t dominates the vertex v in the whole graph G. With this the proof of the theorem
is complete.

6. Lexicographic orderings of hypercubes. A d-dimensional hypercube Qd
(d-cube) is a graph whose vertices are all (0,1)vectors of length d, two vertices being
joined if they differ in exactly one coordinate. Clearly Qd is a bipartite d-regular
graph with n = 2d vertices and m = d · 2d−1 edges. In the following we assume that
only the adjacency matrix of Qd is available.

The usual shortest-path distance between any two vertices u and v of Qd is the
number of positions in which u and v differ (this distance is called the Hamming
distance between u and v). Any subcube of Qd is called a face of Qd. Any hypercube
is a median graph [30].

Let T be a rooted tree. Recall that the height of T is the largest distance from
the root to a leaf of T. The height of a vertex v is the height of the subtree of T with
root v. Then the leaves of T are exactly the vertices of height 0, while the root of T
is the unique vertex of maximum height.

Theorem 6.1. Let T be the spanning tree of the d-cube Qd constructed by LBFS.
Then the leaves of T induce in Qd a (d − 1)-cube. More generally, the vertices of
height h of T induce a (d− h− 1)-dimensional face of Qd.

Proof. Let u be the root of the tree T, i.e., α(u) = n. Denote by L and I = T −L
the leaves and the interior vertices of the tree T. First we will show that for any vertex
v ∈ I its neighbor v′ in Qd with the smallest number in the LBFS ordering is a leaf
of T and v is the father of v′. Suppose the contrary, and let v′ be the father of some
other vertex w. Consider the second common neighbor v′′ in Qd of v and w. Since
α(v′) < α(v′′), we obtain a contradiction with the fact that v′ is the father of w.

Therefore, v′ must be a leaf of T. In addition, since v is the father of some vertex
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z and α(v′) < α(z), by LBFS we conclude that v is also the father of v′. We will say
that the vertices v and v′ form a peripheral pair.

Consider the peripheral pair (u, u′). We can split Q into two disjoint (d − 1)-
cubes Q and Q′ with respect to the unique coordinate where u and u′ differ. Let us
assume that u ∈ Q and u′ ∈ Q′. Taking all edges with one end in Q and another
one in Q′ we will get a perfect matching of Qd. We assert that every peripheral pair
(v, v′) defines an edge in this matching with v ∈ Q and v′ ∈ Q′. Pick an arbitrary
vertex v ∈ I. We apply an induction argument on the distance d(u, v) departing from
d(u, v) = 0. The vertex v necessarily belongs to Q. Indeed, the father w of v being
closer to u lies in Q, while the leaf w′ is a vertex of Q′. Since v 6= w′ and w′ is a
unique neighbor of w in Q′, we deduce that v ∈ Q. Suppose by way of contradiction
that the vertex v′ also belongs to Q. Let x be the neighbor of v in Q′. According
to LBFS, in the step where we number x, the label of this vertex must be larger or
equal to the labels of vertices numbered later. At this moment label(x) consists of v
and all neighbors of x on shortest paths between x and u′. On the other hand, the
label label(v′) of v′ comprises all neighbors of v′ at distance d(u, v) to u. Evidently,
label(x)⊂ Q′ ∪ {v}, while label(v′) ⊂ Q. Pick an arbitrary vertex y ∈ label(x), y 6= v.
Let z be the neighbor of y in Q. Notice that z cannot be a leaf of T, otherwise the
peripheral pair consisting of z and its father would violate the induction assumption.
Hence, z ∈ I, whence by induction assumption (z, y) is a peripheral pair. Let t denote
the second common neighbor of the vertices z and v′ in Qd. Evidently, t ∈ label(v′),
because d(t, u) = d(v, u). Since y is the neighbor of z with the minimum number,
necessarily α(y) < α(t). Therefore, the label of v′ is larger than that of y, contrary to
the fact that y is numbered before v′. This shows that v′ ∈ Q′. Every interior vertex
is a member of at least one peripheral pair, whence I ⊆ Q and Q′ ⊆ L. Since the
father of any vertex of Q′ will be its unique neighbor in Q, we obtain that I = Q and
L = Q′, concluding the proof of the first assertion.

Next, observe that applying LBFS to the (d − 1)-cube Q we can construct the
same spanning tree of Q as the subtree of T induced by its interior vertices. It remains
to notice that all vertices of height h > 0 of T in the new tree have height h−1. So, to
establish the second assertion we can proceed by induction on the dimension d.

In order to recognize whether a given connected graph G is a d-cube, first we
construct by LBFS a spanning tree T of G. After that we arrange the vertices of G
according to their heights in T. Necessarily, G must have 2d−h−1 vertices of height
h. Starting with the root of T, for a current h we have to check if the edges of T
between the vertices of height h and their fathers define a perfect matching and an
isomorphism between the subgraph of G induced by the vertices of height h and the
subgraph induced by the vertices of height larger than h. The complexity of the given
step is proportional to the number of edges of the second subgraph (it contains exactly
(d− h− 1) · 2d−h−1 edges). Therefore, the total complexity is linear with respect to
the size of G. The graph G is the d-cube if and only if G passes each test. For another
linear test see [11]; some characterizations of hypercubes are given in [30].

In Figure 6.1 we present an ordering and a spanning tree of the 4-cube Q4 pro-
duced by the LBFS procedure. The leaves of this tree generate a three-dimensional
face of Q4.

We conclude with a BFS ordering of the 3-cube Q3 so that the leaves of the tree
T do not induce a face of Q3; see Figure 6.2.
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Abstract. Recently in several papers, graphs with maximum neighborhood orderings were
characterized and turned out to be algorithmically useful. This paper gives a unified framework for
characterizations of those graphs in terms of neighborhood and clique hypergraphs which have the
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1. Introduction. The class of chordal graphs is a by now classical and well-
understood graph class which is algorithmically useful and has several interesting
characterizations. In the theory of relational database schemes there are close relation-
ships between desirable properties of database schemes, acyclicity of corresponding
hypergraphs, and chordality of graphs which corresponds to tree and Helly properties
of hypergraphs [2], [5], [25]. Chordal graphs arise also in solving large sparse systems
of linear equations [28], [36] and in facility location theory [13].

Recently a new class of graphs was introduced and characterized in [20], [6], [21],
[39] which is defined by the existence of a maximum neighborhood ordering. These
graphs appeared first in [20] and [16] under the name HT–graphs but only a few
results have been published in [21]. [34] also introduces maximum neighborhoods but
only in connection with chordal graphs (chordal graphs with maximum neighborhood
ordering were called there doubly chordal graphs).

It is our intention here to attempt to provide a unified framework for charac-
terizations of those graph classes in terms of neighborhood and clique hypergraphs.
These graphs are dual (in the sense of hypergraphs) to chordal graphs (this is why we
call them dually chordal) but have very different properties—thus they are in general
not perfect and not closed under taking induced subgraphs. By using the hypergraph
approach in a systematical way new results are obtained, a part of the previous results
are generalized, and some of the proofs are simplified. The present paper improves
the results of the unpublished manuscripts [20] and [6].

Graphs with maximum neighborhood orderings (alias dually chordal graphs) are
a generalization of strongly chordal graphs (a well-known subclass of chordal graphs
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for which not only a maximum neighborhood but a linear ordering of neighborhoods of
neighbors is required—this leads to the fact that strongly chordal graphs are exactly
the hereditary dually chordal graphs, i.e., graphs for which each induced subgraph is
a dually chordal graph). Notice also that doubly chordal graphs are precisely those
graphs which are chordal and dually chordal.

Maximum neighborhood orderings are also algorithmically useful, especially for
domination-like problems and problems which are based on distances. Many prob-
lems remaining NP–complete on chordal graphs have efficient algorithms on strongly
chordal graphs. In some cases this is due to the existence of maximum neighbors (and
not to chordality). Therefore many problems efficiently solvable for strongly chordal
and doubly chordal graphs remain polynomial-time solvable for dually chordal graphs,
too. In the companion papers [18], [19], [9], [10] the algorithmic use of the maximum
neighborhood orderings is treated systematically. Dually chordal graphs seem to rep-
resent an important supplement of the world of classical graph classes.

One of our theorems shows that a graph G has a maximum neighborhood order-
ing if and only if the neighborhood hypergraph of G is a hypertree, i.e., it has the
Helly property and its line graph is chordal. Due to the self-duality of neighborhood
hypergraphs this is also equivalent to the α–acyclicity of the hypergraph which im-
plies a linear time recognition of the graph class. This contrasts with the fact that
the best known recognition algorithms for strongly chordal graphs have complexity
O(|E|log|V |) [35] and O(|V |2) [38].

There are several interesting generalizations of this class. Theorem 4 shows that
a graph G has a maximum neighborhood ordering if and only if the clique hypergraph
(or the disk hypergraph) of G has the Helly property and its line graph is chordal. It is
known from [4], [17] that G is a disk–Helly graph (i.e., a graph whose disk hypergraph
has the Helly property) if and only if G is a dismantlable clique–Helly graph, and in
[3] it is shown that G is an absolute reflexive retract if and only if G is a dismantlable
clique–Helly graph. Thus dually chordal graphs are properly contained in the classes
of disk–Helly and clique–Helly graphs.

The paper is organized as follows. In section 2 we give standard hypergraph
notions and properties. Section 3 is devoted to graphs with maximum neighbor-
hood ordering. There we define some types of hypergraphs associated with graphs
and present characterizations of dually chordal graphs, doubly chordal graphs, and
strongly chordal graphs via hypergraph properties. The results of this section are
from [20]. Section 4 deals with bipartite graphs with maximum neighborhood order-
ing. There we also describe relationships between graphs and bipartite graphs with
different types of maximum neighborhood orderings. A part of the results of this
section are from [6] and [22]. In section 5 some results confirming the duality between
chordal graphs and dually chordal graphs are established. We conclude with two dia-
grams which present relationships between classes of graphs, hypergraphs, and some
bipartite graphs.

2. Standard hypergraph notions and properties. We mainly use the hy-
pergraph terminology of Berge [7]. A finite hypergraph E is a family of nonempty
subsets (the edges of E) from some finite underlying set V (the vertices of E). The
subhypergraph induced by a set A ⊆ V is the hypergraph EA defined on A by the
edge set EA = {e ∩ A : e ∈ E}. The dual hypergraph E∗ has E as its vertex set and
{e ∈ E : v ∈ e} (v ∈ V ) as its edges. The 2-section graph 2SEC(E) of the hypergraph
E has vertex set V , and two distinct vertices are adjacent if and only if they are con-
tained in a common edge of E . The line graph L(E) = (E , E) of E is the intersection
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graph of E ; i.e., ee′ ∈ E if and only if e∩ e′ 6= ∅. A hypergraph E is reduced if no edge
e ∈ E is contained in another edge of E .

A hypergraph E is conformal if every clique C in 2SEC(E) is contained in an
edge e ∈ E . A Helly hypergraph is one whose edges satisfy the Helly property; i.e.,
any subfamily E ′ ⊆ E of pairwise intersecting edges has a nonempty intersection.

First we give a list of well-known properties of hypergraphs (for these and other
properties cf. [7]).

(i) Taking the dual of a hypergraph twice is isomorphic to the hypergraph itself;
i.e., (E∗)∗ ∼ E .

(ii) L(E) ∼ 2SEC(E∗).
(iii) E is conformal if and only if E∗ has the Helly property.

A hypergraph E is a hypertree (called arboreal hypergraph in [7]) if there is a tree
T with vertex set V such that every edge e ∈ E induces a subtree in T (T is then
called the underlying vertex tree of E). A hypergraph E is a dual hypertree if there is a
tree T with vertex set E such that for all vertices v ∈ V Tv = {e ∈ E : v ∈ e} induces
a subtree of T (T is then called the underlying hyperedge tree of E).

Observe that E is a hypertree if and only if E∗ is a dual hypertree.

A sequence C = (e1, e2, . . . , ek, e1) of edges is a hypercycle if ei ∩ ei+1(mod k) 6= ∅
for 1 ≤ i ≤ k. The length of C is k. A chord of the hypercycle C is an edge e with
ei∩ei+1(mod k) ⊆ e for at least three indices i, 1 ≤ i ≤ k. A hypergraph E is α–acyclic
if it is conformal and contains no chordless hypercycles of length at least 3. Note that
the notion of α–acyclicity was introduced in [5] in a different way but the notion given
above is equivalent to that given in [5] (cf. [29]).

In a similar way, a graph G is chordal if it does not contain any induced (chordless)
cycles of length at least 4.

Theorem 1.

(i) (See [23], [27].) E is a hypertree if and only if E is a Helly hypergraph and its
line graph L(E) is chordal.

(ii) (See [5], [25], [29].) E is a dual hypertree if and only if E is α–acyclic.

Due to the dualities between hypertrees and dual hypertrees, the conformality
and the Helly property, and the line graph of a hypergraph and the 2-section graph of
the dual hypergraph, Theorem 1 can be expressed also in other variants by switching
between a property and its dual.

A particular instance of hypertrees are totally balanced hypergraphs. A hyper-
graph is totally balanced if every cycle of length greater than two has an edge containing
at least three vertices of the cycle.

Theorem 2 (see [32]). A hypergraph E is totally balanced if and only if every
subhypergraph of E is a hypertree.

There is a close connection between totally balanced hypergraphs, strongly chordal
graphs and chordal bipartite graphs [1], [26], [11]; see [8] for a systematic treatment
of these relations. Motivated by these results, we will establish similar connections
between hypertrees, dually chordal graphs, and some classes of bipartite graphs.

Hypergraphs can be represented in a natural way by incidence matrices. Let E =
{e1, . . . , em} be a hypergraph and V = {v1, . . . , vn} be its vertex set. The incidence
matrix IM(E) of the hypergraph E is a matrix whose (i, j) entry is 1 if vi ∈ ej and
0 otherwise. The (bipartite vertex–edge) incidence graph IG(E) = (V, E , E) of the
hypergraph E is a bipartite graph with vertex set V ∪ E , where two vertices v ∈ V
and e ∈ E are adjacent if and only if v ∈ e. Note that the transposed matrix IM(E)T

is the incidence matrix of the dual hypergraph E∗, while IG(E) ∼ IG(E∗) if the sides
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of the bipartite graph are not marked.

Following [33] a matrix M is in doubly lexical order if rows and columns as 0-1-
vectors are in increasing order. Two rows r1 < r2 and columns c1 < c2 form a Γ if the

crossing points of these rows and columns define the submatrix [
1 1
1 0

]. An ordered

0-1 matrix M is supported Γ if for every pair r1 < r2 of rows and pair c1 < c2 of
columns which form a Γ there is a row r3 > r2 with M(r3, c1) = M(r3, c2) = 1 (r3

supports Γ).

A subtree matrix is the incidence matrix of a collection of subtrees of a tree T . A
totally balanced matrix is the incidence matrix of a totally balanced hypergraph.

Theorem 3. Let M be a 0-1 matrix.

(i) (See [33].) M is a subtree matrix if and only if it has a supported Γ−ordering.
(ii) (See [1], [31], [33].) M is a totally balanced matrix if and only if it has a Γ−

free ordering.

Due to the duality shown later, part (i) of this theorem provides a matrix char-
acterization of chordal graphs as well as dually chordal graphs by transposing the
incidence matrix.

3. Maximum neighborhood orderings in graphs. Let G = (V,E) be a finite
undirected simple (i.e., without loops and multiple edges) and connected graph. For
two vertices x, y ∈ V the distance dG(x, y) is the length (i.e., number of edges) of
a shortest path connecting x and y. Let I(x, y) = {v ∈ V : dG(x, v) + dG(v, y) =
dG(x, y)} be the interval between vertices x and y. By NG(v) = {u : uv ∈ E} and
NG[v] = NG(v) ∪ {v} we denote the open neighborhood and the closed neighborhood
of v, respectively. If no confusion can arise we will omit the index G. Let N 0(G) =
{N(v) : v ∈ V } and N (G) = {N [v] : v ∈ V } be the open neighborhood hypergraph
and the closed neighborhood hypergraph of G, respectively. Let also C(G) = {C : C is
a maximal clique in G} be the clique hypergraph of G.

It is easy to see that the following holds:

(i) 2SEC(C(G)) is isomorphic to G (and thus C(G) is conformal).
(ii) (N (G))∗ is isomorphic to N (G) (where it is assumed that the hypergraph

N (G) = {N [v] : v ∈ V } is a multiset) and the same holds for N 0(G).

Concerning clique hypergraphs of chordal graphs, from Theorem 1 we have the fol-
lowing well-known equivalence:

(iii) A graph G is chordal if and only if its clique hypergraph C(G) is α–acyclic if
and only if C(G) is a dual hypertree.

Let v be a vertex of G. The disk centered at v with radius k is the set of all
vertices having distance at most k to v: Nk[v] = {u : u ∈ V and d(u, v) ≤ k}. Denote
by D(G) = {Nk[v] : v ∈ V , k a positive integer} the disk hypergraph of G.

First we present some results establishing a connection between the closed neigh-
borhood, the clique, and the disk hypergraphs of a given graph G.

Let a maximal induced cycle of G be an induced cycle of G with a maximum
number of edges. Denote by l(G) the number of edges of a maximal induced cycle of
G.

Lemma 1. Let G be an arbitrary graph.

(i) l(L(D(G))) = l(L(N (G))). In particular, L(D(G)) is chordal if and only if
L(N (G)) is so.

(ii) l(L(N (G))) ≤ l(L(C(G))). In particular, if L(C(G)) is chordal, then L(N (G))
is so.

(iii) If N (G) is conformal, then (C(G))∗ is so.
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Proof. (i) Among all maximal induced cycles of the graph L(D(G)) choose a cycle

C = (Nr1 [v1], . . . , Nrk [vk], Nr1 [v1])

with a minimal sum s = r1 + . . . rk. We claim that C is formed by unit disks only;
i.e., r1 = r2 = · · · = rk = 1. Assume to the contrary that r1 ≥ 2.

Pick arbitrary vertices a ∈ Nr1 [v1] ∩ Nr2 [v2] and b ∈ Nrk [vk] ∩ Nr1 [v1]. Now
consider two neighbors v′1 ∈ I(a, v1) and v′′1 ∈ I(b, v1) of the vertex v1. If

Nr1−1[v′1] ∩Nrk [vk] = ∅, Nr1−1[v′′1 ] ∩Nr2 [v2] = ∅
holds then the disks

(Nr1−1[v′1], Nr2 [v2], . . . , Nrk [vk], Nr1−1[v′′1 ])

form an induced cycle with k + 1 edges, contradicting the maximality of C.
So assume for example that Nr1−1[v′1] ∩ Nrk [vk] 6= ∅. Then replacing the disk

Nr1 [v1] by Nr1−1[v′1] in the cycle C we obtain an induced cycle with k edges and total
radius sum s − 1. This again contradicts the choice of C. Thus C consists of unit
disks; i.e., C is an induced cycle of the graph L(N (G)).

(ii) Consider vertices v1, . . . , vk whose neighborhoods generate a maximal induced
cycle C in the graph L(N (G)). Let

B2 = N [v1] ∩N [v2], . . . , Bk = N [vk−1] ∩N [vk], B1 = N [vk] ∩N [v1].

In each set Bi pick a vertex bi such that the sum s = d(b1, b2) + · · · + d(bk−1, bk) +
d(bk, b1) is minimal. Now define a cycle C ′ of the graph L(C(G)) using the following
rules: if the vertices bi, bi+1(mod k) are adjacent, then add a clique Ki to C ′ which
contains the vertices bi, bi+1(mod k) and vi; otherwise add two cliques K ′i and K ′′i (in
this order) to C ′ which contain the edges vibi and vibi+1(mod k), respectively.

The cycle C ′ has at least k edges. Assume that C ′ is not induced; i.e., two non-
consecutive cliques K ′ and K ′′ of C ′ have a nonempty intersection. By the definition
of C ′ any clique of C ′ contains a center of some neighborhood from C. Since C is an
induced cycle the cliques K ′ and K ′′ contain centers of two consecutive neighborhoods
of C. Let us assume that v1 ∈ K ′ and v2 ∈ K ′′. Up to symmetry we have one of the
following possibilities: K ′ = K1 and K ′′ = K ′′2 or K ′ = K ′1 and K ′′ = K ′2 or K ′ = K ′1
and K ′′ = K ′′2 .

In all of these cases the inequality d(b1, b2) + d(b2, b3) ≥ 3 holds. Let b∗2 ∈
K ′ ∩K ′′ ⊂ B2. Since d(b1, b

∗
2) + d(b∗2, b3) = 2 this leads to a contradiction with the

choice of the vertices b1, . . . , bk. Hence C ′ is an induced cycle of L(C(G)) and its
length is at least k = l(L(N (G))).

(iii) By the duality properties of hypergraphs it is sufficient to show that C(G) is a
Helly hypergraph. Let F = {C1, . . . , Cm} be a family of pairwise intersecting cliques.
For each vertex v ∈ ⋃mi=1 Ci consider the closed neighborhood N [v]. Evidently, any
two such neighborhoods intersect. Therefore the vertices of the set

⋃m
i=1 Ci induce in

2SEC(N (G)) a clique. By the conformality of N (G) there exists a vertex w such that
N [w] contains the union

⋃m
i=1 Ci. Due to the maximality of the cliques C1, . . . , Cm

the vertex w belongs to all of them.

3.1. Characterization of dually chordal graphs. Let G = (V,E) be a graph.
A vertex v ∈ V is simplicial inG ifN [v] is a clique inG. LetGi = G({vi, vi+1, . . . , vn})
be the subgraph induced by {vi, vi+1, . . . , vn} and Ni[v] be the closed neighborhood
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of v in Gi. A linear ordering (v1, . . . , vn) of V is a perfect elimination ordering of G
if for all i ∈ {1, . . . , n}, Ni[vi] is a clique; i.e., vi is simplicial in Gi.

It is known that a graph G is chordal if and only if G has a perfect elimination
ordering. Moreover, every noncomplete chordal graph has two nonadjacent simplicial
vertices (see [28]).

A vertex u ∈ N [v] is a maximum neighbor of v if for all w ∈ N [v], N [w] ⊆ N [u]
holds (note that u = v is not excluded). A linear ordering (v1, v2, . . . , vn) of V is a
maximum neighborhood ordering of G if for all i ∈ {1, . . . , n}, there is a maximum
neighbor ui ∈ Ni[vi]; i.e.,

for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.

Note that graphs with maximum neighborhood orderings are in general not perfect.
Indeed, let G = (V,E) be any graph and x /∈ V be a new vertex. Then for G′ =
(V ∪ {x}, E ∪ {vx : v ∈ V }) the ordering (v1, . . . , vn, x) is a maximum neighborhood
ordering. Thus, e.g., the C5 with an additional dominating vertex (the wheel W5) has
a maximum neighborhood ordering and is not perfect.

Theorem 4. For a graph G the following conditions are equivalent:
(i) G has a maximum neighborhood ordering ;
(ii) there is a spanning tree T of G such that any maximal clique of G induces a

subtree in T ;
(iii) there is a spanning tree T of G such that any disk of G induces a subtree in T ;
(iv) N (G) is a hypertree (is a dual hypertree).

Proof. (i) =⇒ (ii). We proceed by induction on the number of vertices of the
graph G. Let x be the first vertex in a maximum neighborhood ordering of G. Let y
be a maximum neighbor of x; i.e., N2[x] = N [y]. If x = y, then x is adjacent to all
other vertices of G and the desired tree T could be a star with center x. Thus (ii) is
fulfilled. Assume now that x 6= y. By induction hypothesis there exists a spanning
tree of the graph G − x = G(V \ {x}) which satisfies condition (ii). Among all such
spanning trees choose a tree T in which y is adjacent with a maximum number of
vertices from N(x). We claim that y is adjacent with all vertices from N(x) \ {y}.

Assume the contrary and pick a vertex z ∈ N(x) which is nonadjacent to y in T .
In T consider a path y − · · · − v − z connecting vertices y and z. Denote by Tv with
v ∈ Tv and Tz with z ∈ Tz the connected components of T obtained by deleting an
edge (v, z). Adding to these subtrees a new edge (y, z) we transform the tree T into a
new tree T ′. Since y and z are adjacent vertices of G−x the tree T ′ is a spanning tree
of G − x. Now we show that T ′ fulfills the condition (ii), too. Let C be a maximal
clique of G− x. If z /∈ C, then C is completely contained in one of the subtrees Tv or
Tz; i.e., C induces in both trees T and T ′ one and the same subtree. So, suppose that
z ∈ C. Since N [z] ⊆ N [y] = N2[x] we have y ∈ C. Let u1, u2 be arbitrary vertices
from C. If both vertices u1 and u2 belong to one and the same subtree Tv or Tz, then
these vertices are connected in T and T ′ by one and the same path, and we are done.
Now, let u1 ∈ Tv and u2 ∈ Tz. In Tv the vertices u1 and y are connected by a path
l1, consisting of vertices from C. In a similar way, the vertices u2 and z are joined in
Tz by a path l2 ⊆ C. Gluing together the paths l1 and l2 and the edge yz we obtain
a path which connects the vertices u1 and u2 in T ′. Hence any clique C of G − x
induces a subtree in T ′; i.e., T ′ also satisfies condition (ii). This, however, contradicts
the choice of the spanning tree T . The contradiction shows that y is adjacent in T to
all vertices of N(x) \ {y}.

Consider a spanning tree T ∗ of G obtained from T by adding a leaf x adjacent to
y. Evidently T ∗ fulfills condition (ii) of the theorem; i.e., T ∗ is the required tree.
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(ii) =⇒ (iii). Let T be a spanning tree of G such that any clique of G induces a
subtree in T . We claim that any disk Nr[z] of G induces a subtree in T , too. In order
to prove this, it is sufficient to show that the vertex z and any vertex v ∈ Nr[z] may
be connected in T by a path consisting of vertices from Nr[z]. Let v = v1− v2−· · ·−
vk − vk+1 = z be a shortest path of G between v and z. By Ci we denote a maximal
clique of G containing the edge vivi+1, i ∈ {1, . . . , k}. From the choice of T it follows
that the vertices vi and vi+1 are connected in T by a path li ⊆ Ci. The vertices of

the set L =
⋃k
i=1 li induce a subtree T (L) of the tree T . Therefore the vertices v and

z may be connected in T (L) (and in T , too) by a path l. Since d(z, w) ≤ d(z, vi) ≤ r
for any vertex w ∈ Ci any clique Ci belongs to the disk Nr[z]. So our claim follows
from the following evident inclusions:

l ⊆ L ⊆
k⋃
i=1

Ci ⊆ Nr[z].

(iii) =⇒ (iv) is evident.
(iv) =⇒ (i). Suppose T is a tree with the same vertex set as G such that NG[v]

induces a subtree Tv of T for all vertices v in G. Consider T as a tree rooted at a
chosen vertex r. Every NG[v] has a unique vertex v∗ such that

dT (r, v∗) < dT (r, u) for all vertices u ∈ NG[v] \ {v∗},
which can be considered as the root of the subtree Tv of T . Sort the vertices of G into
v1, v2, . . . , vn such that

d(r, v∗1) ≥ d(r, v∗2) ≥ · · · ≥ d(r, v∗n).

We claim that this ordering is a maximum neighborhood ordering of G. Note that
v∗i ∈ Ni[vi]. For each vj ∈ Ni[vi] and vk ∈ Ni[vj ], vj is in both Tvi and Tvk . So v∗i and
v∗k are both ancestors of vj . Also, dT (r, v∗k) ≤ dT (r, v∗i ). Thus v∗i is in the path from
vj to v∗k in T . Since vj and v∗k are both in NG[vk]; i.e., in the subtree Tvk of T , v∗i is
also in Tvk ; i.e., v∗i ∈ NG[vk] and so vk ∈ Ni[v∗i ]. Thus v∗i is a maximum neighbor of
vi for 1 ≤ i ≤ n. This proves that v1, v2, . . . , vn is a maximum neighborhood ordering
of G.

This result was also presented in [21].
In [40] a linear time algorithm for recognizing α–acyclicity of a hypergraph is

given. Since dual hypertrees are exactly the α–acyclic hypergraphs by Theorem 4 we
have the following.

Corollary 1. It can be recognized in linear time O(|V |+ |E|) whether a graph
G has a maximum neighborhood ordering.

In [18], [9] we show that for a given dually chordal graph a maximum neighborhood
ordering can be generated in linear time, too.

From Theorem 4 it also follows that G has a maximum neighborhood ordering
if and only if C(G) is a hypertree. Recall that the graph G is chordal if and only
if (C(G))∗ is a hypertree. Thus graphs with maximum neighborhood ordering are
dual to chordal graphs in this sense. Therefore we call them dually chordal graphs.
The further results will confirm this term and will show the deepness of this duality.
Note that unlike for chordal graphs where the number of maximal cliques is linearly
bounded, this is not the case for dually chordal graphs.

Furthermore from Theorem 4 it follows that G has a maximum neighborhood
ordering if and only if D(G) is a hypertree. Using this fact in [9] we present efficient
algorithms for r–domination and r–packing problems on dually chordal graphs.
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The kth power Gk, k ≥ 1, of G has the same vertices as G, and two distinct
vertices are joined by an edge in Gk if and only if their distance in G is at most k.

Corollary 2. Any power of a dually chordal graph is dually chordal.
Proof. Let G be a dually chordal graph, and let Gk be some power of this graph.

A unit disk of Gk with center in v coincides with the disk Nk[v] of G. Therefore
N (Gk) is the family of all disks of radius k of the graph G. Since G is dually chordal
N (Gk) has the Helly property and L(N (Gk)) is chordal as an induced subgraph of
the chordal graph L(D(G)). By Theorem 4 it follows that Gk is dually chordal.

3.2. Doubly chordal, power–chordal, and strongly chordal graphs. A
vertex v of a graph G is simple [26] if the set {N [u] : u ∈ N [v]} is totally ordered
by inclusion. A linear ordering (v1, . . . , vn) of V is a simple elimination ordering of
G if for all i ∈ {1, . . . , n} vi is simple in Gi. A graph is strongly chordal if it admits
a simple elimination ordering. A k-sun [11], [14], [26] is a graph with 2k vertices for
some k ≥ 3 whose vertex set can be partitioned into two sets U = {u1, u2, . . . , uk} and
W = {w1, w2, . . . , wk} such that U induces a complete graph, W forms an independent
set, and ui is adjacent to wj if and only if i = j or i = j + 1(mod k).

Corollary 3. For a graph G the following conditions are equivalent:
(i) G is a strongly chordal graph;
(ii) G is a sun-free chordal graph;
(iii) G is a hereditary dually chordal graph; i.e., any induced subgraph of G is

dually chordal.
Proof. The equivalence of (i) and (ii) is contained in [11], [14], [26]. Since every

induced subgraph of a strongly chordal graph is strongly chordal we deduce that (i)
=⇒ (iii). Furthermore, any simple vertex v of G evidently has a maximum neighbor.
Finally (iii) =⇒ (ii) because induced cycles of length at least four and suns do not
contain a vertex which has a maximum neighbor.

By Lemma 1(iii) conformality of N (G) implies conformality of (C(G))∗. Moreover
in [16], [17] it has been shown that for chordal graphs N (G) is a Helly hypergraph
if and only if C(G) is so. By Lemma 1(ii) we also know that L(N (G)) is chordal if
L(C(G)) is chordal. The following result shows that for chordal graphs the converse
is also true.

Lemma 2. For a chordal graph G the following conditions are equivalent:
(i) G2 ∼ L(N (G)) is chordal ;
(ii) L(C(G)) is chordal.

Proof. (ii) =⇒ (i) follows from Lemma 1(ii). Conversely, assume that there is an
induced cycle Γ = (C1, . . . Cm, C1),m ≥ 4, of the graph L(C(G)). Let C =

⋃m
i=1 Ci.

G2(C) as an induced subgraph of the chordal graph G2 contains a simplicial vertex
x. Suppose that x ∈ C1. This means C2, Cm ⊆ N2[x]. Because of the simpliciality
of x in G2 for arbitrary vertices u ∈ C2 and v ∈ Cm we have d(u, v) ≤ 2. Let
C2 = {x1, . . . xs} and Cm = {y1, . . . yt}. We claim that any vertex of C2 has in G a
neighbor in Cm and vice versa. Assume to the contrary that this is not the case for
x1; i.e.,

d(x1, y1) = d(x1, y2) = · · · = d(x1, yt) = 2.

Since G is chordal there exists a common neighbor of the vertices x1 and y1, . . . , yt.
However, this contradicts the fact that Cm is a maximal clique of G. Thus our claim
is true.

In the clique C2 choose a vertex xi which is adjacent to a maximum number
of vertices from Cm. Suppose that xi is adjacent to y1, . . . , yl−1. Note that l ≤ t,
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otherwise C2 ∩ Cm 6= ∅. By our claim we conclude that yl is adjacent to some vertex
xj ∈ C2. A unique chord of the cycle (xi, yk, yl, xj , xi), k ∈ {1, . . . , l − 1} may be
only xjyk. Therefore xj is adjacent with y1, . . . , yl−1, yl, contradicting the choice of xi.
So, our initial assumption that Γ is an induced cycle of L(C(G)) leads to a contra-
diction.

A graph is power–chordal if all of its powers are chordal. For the next theorem
we need the following lemma.

Lemma 3. Let G be a noncomplete graph. If both graphs G and G2 are chordal,
then there exist two nonadjacent vertices of G which are simplicial in G and G2.

Proof. The assertion is evident when G2 is complete. Assume that G2 is noncom-
plete and let the assertion be true for all smaller graphs. Since G2 is chordal there are
two nonadjacent simplicial vertices in G2. If both vertices are also simplicial in G, we
are done. So, suppose that the simplicial vertex x of G2 has in G two nonadjacent
neighbors u and v. Consider a minimal (u − v)-separator F of the graph G. From
[15] it follows that F is a complete subgraph of G. Evidently x ∈ F . Let G(A) and
G(B) be connected components of G(V \ F ) containing u and v, respectively.

By the induction hypothesis either the subgraph G1 = G(A ∪ F ) contains a pair
of two nonadjacent vertices which are simplicial in G1 and G2

1 or G1 is a complete
graph. In the first case at least one of the obtained vertices is in A (since F induces a
complete subgraph). In the second case any vertex from A is simplicial in G1 = G2

1.

Summarizing we conclude that the set A contains a vertex y which is simplicial in
G1 and G2

1. It is evident that y is simplicial in G. Now we show that y is simplicial in
G2, too. It is enough to consider only the case when y is adjacent in G with a vertex of
F . For any vertex w /∈ A∪ F we have d(w, x) ≤ 2 if d(w, y) ≤ 2. Since y is simplicial
in G2

1 a similar implication also holds for any vertex u ∈ A ∪ F : if d(u, y) ≤ 2,
then d(u, x) ≤ 2. Hence for arbitrary vertices v and w such that d(y, w) ≤ 2 and
d(y, v) ≤ 2 we have analogous inequalities d(x,w) ≤ 2 and d(x, v) ≤ 2. Now, recall
that x is simplicial in G2. This implies that d(v, w) ≤ 2 and y is simplicial in G2.

In a similar way we obtain the existence of a vertex z ∈ B which is simplicial in
G and G2. It remains to notice that y and z are nonadjacent.

Theorem 5. For a graph G the following conditions are equivalent:

(i) G is power–chordal ;
(ii) G and G2 are chordal ;
(iii) there exists a common perfect elimination ordering of G and G2 (i.e., an

ordering(v1, . . . , vn) of V such that vi is simplicial in both graphs Gi and G2
i ,

i ∈ {1, . . . , n}).
Proof. In [24] it is shown that if Gk is chordal, then so is Gk+2. Consequently,

powers of chordal graphs are chordal provided that G2 is chordal; i.e., (i) ⇐⇒ (ii).
The implication (iii) =⇒ (ii) is evident. To prove that (ii) =⇒ (iii) we proceed by
induction on the number of vertices. By Lemma 3 there is a simplicial vertex v of
G and G2. It is easy to see that (G − v)2 = G2 − v; i.e., both graphs G − v and
(G − v)2 are chordal. Applying to these graphs the induction hypothesis we obtain
the required common perfect elimination ordering.

A vertex v of a graph G is doubly simplicial [34] if v is simplicial and has a
maximum neighbor. A linear ordering (v1, . . . , vn) of the vertices of G is doubly
perfect if for all i ∈ {1, . . . , n} vi is a doubly simplicial vertex of Gi. A graph G is
doubly chordal [34] if it admits a doubly perfect ordering. The following result justifies
the term “doubly chordal graphs.”

Corollary 4 (See [20], [34]). For a graph G the following conditions are equiv-
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alent:
(i) G is doubly chordal ;
(ii) G is chordal and dually chordal ;
(iii) both hypergraphs C(G) and (C(G))∗ are hypertrees.

Proof. From the previous results it is sufficient to show that (ii) =⇒ (i). Since G
and G2 are chordal, Theorem 5 ensures the existence of a vertex v which is simplicial
in G and G2. For any two vertices x, y ∈ N2[v] the inequality d(x, y) ≤ 2 is fulfilled.
Hence N [x]∩N [y] 6= ∅. Since N (G) is a hypertree the family of pairwise intersecting
disks {N [x] : x ∈ N2[v]} has a nonempty intersection. Let w be a vertex from
this intersection. Then w is a maximum neighbor of v. As we already mentioned
(G − v)2 = G2 − v. It remains to show that N (G − v) has the Helly property.
But this is obvious, because any neighborhood containing v contains the vertex w,
too.

From these results we conclude that powers of doubly chordal graphs are doubly
chordal. For strongly chordal graphs a similar result was established in [33]: Powers
of strongly chordal graphs are strongly chordal.

4. Maximum neighborhood orderings in bipartite graphs. LetG = (V,E)
be an arbitrary graph, and let v be a vertex of G. Following [3] the sets

HDodd(v) = {u ∈ V : d(u, v) ≤ k and d(u, v) is odd},

HDeven(v) = {u ∈ V : d(u, v) ≤ k and d(u, v) is even}
are called the half-disks centered at v with radius k. By HD(G) we denote the family
of all half-disks of G and call it the half–disk hypergraph of the graph G.

4.1. Bipartite graphs with maximum X–neighborhood ordering. For
bipartite graphs B = (X,Y,E) there are also standard hypergraph constructions:
NX(B) = {N(y) : y ∈ Y } denotes the X–sided neighborhood hypergraph of B (anal-
ogously define N Y (B)). Note that (NX(B))∗ is isomorphic to N Y (B) and the same
for X and Y exchanged. In addition, N 0(B) = NX(B) ∪N Y (B).

The half-disks of a bipartite graph B are defined as follows: for z ∈ X let
HDX

B (z, k) = {x : x ∈ X and d(z, x) ≤ k and d(z, x) even} and for z ∈ Y let
HDX

B (z, k) = {x : x ∈ X and d(z, x) ≤ k and d(z, x) odd} (the half-disks in
X). Analogously define the half-disks in Y . Again if no confusion can arise we
will omit the index B. The half–disk hypergraph HD(B) of the bipartite graph
B splits into two components: HDX(B) = {HDX(y, 2k + 1) : y ∈ Y and k a
positive integer} ∪ {HDX(x, 2k) : x ∈ X and k a positive integer}, called the X–
sided half–disk hypergraph (consisting of subsets of X), and HDY (B) (defined anal-
ogously) called the Y –sided half–disk hypergraph (consisting of subsets of Y ); i.e.,
HD(B) = HDX(B) ∪HDY (B).

A bipartite graph B = (X,Y,E) is called X–conformal [2] if for any set S ⊆ Y
with the property that all vertices of S have pairwise distance 2 there is a vertex
x ∈ X with S ⊆ N(x). B is X–chordal [2] if for every cycle C in B of length at
least 8 there is a vertex x ∈ X which is adjacent to at least two vertices in C whose
distance in C is at least 4 (a bridge vertex). Analogously define Y –chordality and
Y –conformality. In [2] it is also shown that the following connection holds.

Lemma 4. Let B = (X,Y,E) be a bipartite graph. Then B is X–chordal and
X–conformal if and only if N Y (B) is a dual hypertree if and only if NX(B) is a
hypertree.
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A vertex y ∈ N(x) of B = (X,Y,E) is a maximum neighbor of x if for all y′ ∈
N(x) N(y′) ⊆ N(y) holds. Let BYi = B(X ∪ {yi, yi+1, . . . , yn}) and Ni(x) be the
neighborhood of x ∈ X in BYi . A linear ordering (y1, . . . , yn) of Y is a maximum
X–neighborhood ordering of B if for all i ∈ {1, . . . , n} there is a maximum neighbor
xi ∈ N(yi) of yi; i.e.,

for all x ∈ N(yi) Ni(x) ⊆ Ni(xi) holds.

Analogously define a maximum Y –neighborhood ordering.
Theorem 6. Let B = (X,Y,E) be a bipartite graph. Then the following condi-

tions are equivalent:
(i) B has a maximum X–neighborhood ordering ;
(ii) B is X–chordal and X–conformal ;
(iii) NX(B) is a hypertree;

(iv) the X–sided half-disk hypergraph HDX(B) is a hypertree.
Proof. The equivalence (ii) ⇐⇒ (iii) follows from Lemma 4. The direction (iv)

=⇒ (iii) is obvious.
(i) =⇒ (ii). Let (y1, . . . , yn) be a maximum X–neighborhood ordering of Y .

Consider a chordless cycle C = (xi1 , yi1 , . . . , xik , yik), k ≥ 4. Assume that yi1 is
the leftmost Y –vertex of C in (y1, . . . , yn) which appears in this ordering in the jth
position: yi1 = yj . Since yik ∈ Nj(xi1) \Nj(xi2) and yi2 ∈ Nj(xi2) \Nj(xi1) the sets
Nj(xi1) and Nj(xi2) are incomparable with respect to set inclusion. Thus neither xi1
nor xi2 are maximum neighbors of yi1 . Let x be a maximum neighbor of yi1 = yj .
Then yi1 , yi2 , yik ∈ Nj(x) and x is a bridge vertex. (Note that x is even a neighbor of
three Y –vertices of C.) Thus B is X-chordal.

Now let S ⊆ Y be a subset of vertices of pairwise distance 2. Let y ∈ S be the
leftmost element of S in (y1, . . . , yn) and assume that y = yj . For all y′ ∈ S there
are common neighbors x′ ∈ X of y and y′. If x is a maximum neighbor of yj , then
S ⊆ Nj(x). Thus B is X–conformal.

(ii) =⇒ (i). Assume that B is X–chordal and X–conformal. By Lemma 4 the
graph G′ = 2SEC(N Y (B)) is chordal. Let (y1, . . . , yn) be a perfect elimination
ordering of G′. Thus NG′ [y1] is a clique; i.e., for all u, v ∈ NG′ [y1], u 6= v, there is
a common neighbor in X and so the distance between u and v is 2. Since B is X–
conformal there is an x ∈ X with NG′ [y1] ⊆ NB(x). Necessarily x is a neighbor of y1

in B and is also a maximum neighbor of y1 in B since for all x′ ∈ X with x′ ∈ NB [y1]
NB(x′) ⊆ NG′ [y1].

The same argument can be applied repeatedly to the graph BYi since G′ \ {y1} is
again chordal. Thus the perfect elimination ordering (y1, . . . , yn) of G′ is a maximum
X–neighborhood ordering of B and vice versa.

(iii) =⇒ (iv). Suppose that TN is a tree with vertex set X such that for all
yi ∈ Y , i ∈ {1, . . . , n}, N(yi) induces a subtree in TN , and let (y1, . . . , yn) be a
maximum X–neighborhood ordering of Y . We have to show that then also each
half–disk of HDX(B) induces a subtree in TN , too.

The proof is done along the maximum X–neighborhood ordering (y1, . . . , yn) of Y .
Let Yi denotes the subset {yi, . . . , yn}, and let Bi be the bipartite graph B restricted
to Yi. For Yn the assertion is obviously true since the only X–sided half-disks in this
case are the one-vertex sets {x}, x ∈ X, and the neighborhood N(yn). Obviously,
these sets induce subtrees of TN . Assume now that the half-disks of HDX(Bi+1)
induce subtrees in TN , i ≥ 1. We will show that then also the half-disks of HDX(Bi)
induce subtrees in TN . Without loss of generality let i = 1. Let x be a maximum
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neighbor of y1. In order to show that the half-disks of HDX(B) induce subtrees of
TN we describe their structure. Consider for example the half–disk centered at z with
radius k ≥ 2. We distinguish two cases.

Case 1. z ∈ N(y1). First suppose that the degree of z is 1; i.e., N(z) = {y1}.
Then HDX

B (z, k) = HDX
B2

(x, k−2)∪N(y1) as can be easily seen: for every vertex

w /∈ N(y1) we have d(x,w) = d(z, w)− 2 and thus w ∈ HDX
B2

(x, k− 2). Otherwise, if

the degree of z is larger than 1, then HDX
B (z, k) = HDX

B2
(z, k) ∪N(y1); indeed, for

every vertex w /∈ N(y1) there is a path of length d(z, w) which avoids the vertex y1.
Case 2. z /∈ N(y1).
If d(z, y1) > k, then HDX

B (z, k) = HDX
B2

(z, k). Otherwise, we obtain that

HDX
B (z, k) = HDX

B2
(z, k)∪N(y1). Furthermore in the latter case the vertex x belongs

to HDX
B2

(z, k); as HDX
B2

(z, k) contains a neighbor xj of y1 and since x is a maximum
neighbor of y1 the half–disk also contains x itself.

Thus in all cases either HDX
B (z, k) is the same as before or is a union of two

subtrees of TN which both contain x. Thus it is again a subtree of TN .
From the proof of the implication (ii) =⇒ (i) it follows also that (y1, . . . , yn) is

a maximum X–neighborhood ordering of B if and only if (y1, . . . , yn) is a perfect
elimination ordering of 2SEC(N Y (B)).

4.2. Graphs with b–extremal ordering. Now let G be again an arbitrary
graph. Lemma 1 gives a connection between the closed neighborhood and the disk
hypergraphs of a given graph G. The next lemma establishes a similar connection
between the open neighborhood hypergraph and the half–disk hypergraph of a graph
G.

Lemma 5. For any graph G l(L(HD(G))) = l(L(N 0(G))) holds. In particular,
L(HD(G)) is chordal if and only if L(N 0(G)) is so.

In a graph G a vertex v is dominated by another vertex u 6= v if N(v) ⊆ N(u). A
vertex v is b–extremal if it is dominated by another vertex and there exists a vertex w
such that N(N(v)) = N(w). The ordering (v1, . . . , vn) of V is a b–extremal ordering
of G if for all i ∈ {1, . . . , n} vi is b–extremal in Gi. It is quite evident that a graph
G admitting a b–extremal ordering must be bipartite. Indeed, consider the following
iterative coloring of G. Let the vertices vn and vn−1 be colored. Then for any i
(i < n− 1) if the vertex vi is dominated by vj , then vi gets the same color as vj .

Theorem 7. For a graph G the following conditions are equivalent:
(i) N 0(G) is a hypertree;
(ii) HD(G) is a hypertree;
(iii) G is bipartite, and G has a maximum X–neighborhood ordering and

a maximum Y –neighborhood ordering ;
(iv) G has a b–extremal ordering.

Proof. The equivalence of (i), (ii), and (iii) is an immediate consequence of The-
orem 6 and the fact that if N 0(G) is a hypertree, then G is bipartite (which has a
straightforward proof).

(i) =⇒ (iv). Let N 0(G) be a hypertree. Then G is bipartite, say, G = (X,Y,E).
Consider the chordal graphs GY = 2SEC(N Y (G)) and GX = 2SEC(NX(G)). Let
x ∈ X be a simplicial vertex of GX . Additionally suppose that x is an opposite vertex
in G for some v; i.e., x /∈ I(v, x′) for any vertex x′ of G. Since x is simplicial in GX the
distance between every two vertices from N(N(x)) is 2. By the Helly property there
is a vertex y ∈ Y such that N(y) = N(N(x)). Moreover, since x is an opposite vertex
for v and G is bipartite, necessarily N(x) ⊆ I(x, v). Consider the family of half-disks
consisting of open neighborhoods centered at vertices of N(x) and a half-disk centered
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at v with radius d(x, v) − 1. By the Helly property for half-disks there is a common
vertex z 6= x of these open neighborhoods. So N(x) ⊆ N(z). Hence any vertex x,
which is opposite in G and simplicial in GX or GY , is a b-extremal vertex of the graph
G.

Now we prove that such a vertex always exists. Let diam(G), diam(GX), and
diam(GY ) be the diameters of the graphs G, GX , and GY , respectively. First assume
that diam(G) is even; i.e., diam(G)=2k. Then max(diam(GX), diam(GY ))=k. Let
diam(GX)=k and let x′ and x′′ be a diametral pair in GX . Then d(x′, x′′) = 2k =
diam(G); i.e., any diametral pair of GX is a diametral pair of G, too. It is known [41]
that any chordal graph contains a diametral pair of simplicial vertices. Now assume
that diam(G) is odd; i.e., diam(G)=2k+1. Then max(diam(GX), diam(GY ))=k. Let
diam(GX)=k, and let x′ and x′′ be simplicial vertices which constitute a diametral
pair of GX . Then either x′ and x′′ are mutually opposite vertices in G or one of them
is an end of a diameter in G.

(iv) =⇒ (iii). If G = (V,E) has a b–extremal ordering (v1, . . . , vn), then by
arguments above G is bipartite: G = (X,Y,E). Assume that v1 ∈ Y . Let G′ =
G − v1 = (X,Y − v1, E

′) with a maximum Y –neighborhood ordering (x1, . . . , xr)
and a maximum X–neighborhood ordering (y1, . . . , ys). Then (v1, y1, . . . , ys) is also
a maximum X–neighborhood ordering of G: it is obvious that v1 has a maximum
neighbor in X. Furthermore, as we will show, (x1, . . . , xr) is still a maximum Y –
neighborhood ordering of G. Assume by way of contradiction that for x1 this is not
so. Let z be a maximum neighbor of x1 in G′, and assume that N(z) and N(v1)
are incomparable with respect to set inclusion. Since v1 is b–extremal there is a
vertex u ∈ Y \ {v1} such that N(v1) ⊆ N(u), contrary to the maximality of N(z)
in G′.

Recall [30] that a graph G is chordal bipartite if G is bipartite and any induced
cycle of G has length 4.

Corollary 5. For a graph the following conditions are equivalent:
(i) Every induced subgraph of G admits a b–extremal ordering ;
(ii) G is a chordal bipartite graph.

We conclude this section by establishing some relationships between dually chordal
graphs and their bipartite relatives. For this we recall two standard transformations
of graphs. The first transformation associates with a graph G = (V,E) the bipartite
graph B(G), called the bigraph of G. The vertex set of B(G) consists of two disjoint
copies V ′ and V ′′ of V, with v′ ∈ V ′ and w′′ ∈ V ′′ adjacent in B(G) if and only if v
and w either coincide or are adjacent in G. Equivalently, B(G) is the (vertex–closed-
neighborhood) incidence graph of G; i.e., B(G) = IG(N (G)). In a similar way we
define the bipartite graph BC(G) = IG(C(G)).

From Theorems 4, 6, and 7 we obtain the following result.
Corollary 6. Let G be a graph. Then G has a maximum neighborhood or-

dering if and only if B(G) has a maximum X–neighborhood ordering (maximum Y –
neighborhood ordering) if and only if B(G) has a b–extremal ordering.

Let B = (X,Y,E) be a bipartite graph. Then the graph splitX (B)=(X ∪ Y,EX)
is obtained from B by completing X to a clique. Assume that X is a maximal clique
in splitX(B), i.e., for no y ∈ Y X ⊆ N(y). Note that the set of maximal cliques in
splitX(B) is

C(splitX(B)) = {{y} ∪N(y) : y ∈ Y } ∪ {X}.

Lemma 6. Let B = (X,Y,E) be a bipartite graph.
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(i) NX(B) has the Helly property if and only if C(splitX(B)) has the Helly property
(analogously for Y instead of X).

(ii) L(NX(B)) is chordal if and only if L(C(splitX(B))) is chordal.

Thus NX(B) is a hypertree if and only if C(splitX(B)) is a hypertree.
The assertion (i) follows from the definition of NX(B) and C(splitX(B)). To

show (ii) let L = L(NX(B)) = ({N(y) : y ∈ Y }, E′) and (N(y1), . . . , N(yk)) be a
perfect elimination ordering of L. Then N(y1) is a simplicial vertex in L; i.e., all
N(y) intersecting N(y1) are pairwise intersecting (the elements in the intersection
are elements of X). Then for R = L(C(splitX(B))) (N [y1], . . . , N [yk], X) is a perfect
elimination ordering of R and vice versa.

Corollary 7. Let B = (X,Y,E) be a bipartite graph. Then B is X–chordal
and X–conformal if and only if splitX(B) is doubly chordal.

The proof of this result is a sequence of equivalences: B is X–chordal and X–
conformal if and only ifNX(B) is a hypertree if and only if C(splitX(B)) is a hypertree
if and only if splitX(B) is doubly chordal.

In section 2 we gave the notion of the incidence graph IG(E) of a hypergraph E .
In the particular case of one-sided neighborhood hypergraphs N V (IG(E))) = E and
N E(IG(E))) = E∗ hold.

Corollary 8. Let E be a hypergraph. Then E is a hypertree if and only if IG(E)
has a maximum X–neighborhood ordering if and only if splitV (IG(E)) has a maximum
neighborhood ordering.

5. The duality between chordal and dually chordal graphs. In this sec-
tion we take advantage of the previous results to explain the duality between chordal
and dually chordal graphs.

Theorem 8. Let G = (V,E) be a graph.
(i) G is chordal if and only if BC(G) has a maximum y–neighborhood ordering.
(ii) G is dually chordal if and only if BC(G) has a maximum X–neighborhood

ordering.
(iii) G is doubly chordal if and only if BC(G) has a X–neighborhood

ordering and a maximum Y –neighborhood ordering if and only if BC(G) has
a b–extremal ordering.

It is well known [12] that chordal graphs are exactly the intersection graphs of
subtrees of a tree. The next result shows that a dual property characterizes the class
of dually chordal graphs.

Theorem 9. Let G = (V,E) be a graph.
(i) (See [12]) G is chordal if and only if it is the line graph of some hypertree if

and only if it is the 2–section graph of some α–acyclic hypergraph.
(ii) G is dually chordal if and only if it is the line graph of some α–acyclic hyper-

graph if and only if it is the 2–section graph of some hypertree if and only if
it is the 2–section graph of paths of a tree.

(iii) G is doubly chordal if and only if it is the line graph of some α–acyclic hyper-
tree if and only if it is the 2–section graph of some α–acyclic hypertree.

Proof. To show (ii) let G be a dually chordal graph. By Theorem 4 E = C(G) is
a hypertree. Recall also that G = 2SEC(C(G)) = 2SEC(E). Let T be a representing
tree of E . We obtain the hypergraph E ′ of paths of the tree T from E by replacing
every subtree TC (C ∈ C(G)) by a collection of all paths connecting in T the leaves
of TC . Obviously, 2SEC(E)=2SEC(E ′).

Now assume that G is the 2–section graph of some hypertree E with representing
tree T . Consider a neighborhood N [v] in G. Since N [v] is a union of subtrees con-
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Fig. 1.

taining v, N [v] is a subtree of T ; i.e., N (G) is a hypertree. By Theorem 4 G is dually
chordal.

It is well known that there is a simple method to obtain an underlying hyperedge
tree for the clique hypergraph C(G) of a chordal graph G (the so-called clique–tree
[37]): Weight the edges of the intersection graph L(C(G)) by the size of the intersection
and find a maximum spanning tree on this graph.

For a dually chordal graph G there is a dual variant of this method (see [18]):
Weight every edge of the graph G = 2SEC(C(G)) by the number of maximal cliques
of G containing this edge and find a maximum spanning tree on this weighted graph.
Then G is dually chordal if and only if every maximum spanning tree on G is an
underlying vertex tree for C(G).

As it was shown in [33] the matrix MTM (MT the transpose of M) is totally
balanced provided that M is so. Unfortunately a similar property does not hold for
subtree matrices; see Figure 1. The graph Γ is dually chordal. So the incidence matrix
M = IM(C(Γ)) is a subtree matrix. The matrix MTM is the neighborhood matrix
M = IM(N (L(C(Γ)))) of the clique graph L(C(Γ)) of Γ. Since L(C(Γ)) is not dually
chordal MTM is not a subtree matrix. Nevertheless the following is true.

Corollary 9. If M is a subtree matrix then so is MMT .
Proof. Let EM be a hypertree whose incidence matrix is M . By Theorem 9

the graph G = 2SEC(EM ) is dually chordal. Note that the matrix MMT is the
neighborhood matrix IM(N (G)). Since N (G) is a hypertree (Theorem 4) MMT is
a subtree matrix.

The graph Γ of Figure 1 shows that the clique graph of a dually chordal graph
is not necessarily dually chordal. The results below characterize the clique graphs of
chordal, dually chordal, and doubly chordal graphs.

Subsequently we use the following notations: A graph G is clique–Helly if C(G)
has the Helly property. G is Helly chordal if G is chordal and clique–Helly. G is
clique–chordal if L(C(G)) is chordal.

Corollary 10. G is a Helly chordal graph if and only if G is the clique graph
of some dually chordal graph G′; i.e., G ∼ L(C(G′)).

Proof. By Theorem 4 the clique hypergraph C(G′) has the Helly property. By
Theorem 9 L(C(G′)) is chordal. On the other hand, as follows from [4, Theorem
3.2], cliques of the graph L(C(G′)) have the Helly property. Conversely, assume that
G is a Helly chordal graph. By Theorem 9 G is the line graph of some conformal
hypertree E . It is easy to see that any conformal and reduced hypergraph is the
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Fig. 2.

clique hypergraph of its 2–section graph. Then any conformal and reduced hypertree
is the clique hypergraph of some dually chordal graph. So it is sufficient to transform E
into such a hypergraph E ′ without changing its line graph. We obtain the hypergraph
E ′ from E by adding to each edge ei of E one new vertex ui incident to ei only.

Corollary 11 (see [39]). G is a dually chordal graph if and only if G is the clique
graph of some chordal graph if and only if G is the clique graph of some intersection
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Fig. 3.

graph of paths in a tree.

The proof follows from Theorem 9 by using similar arguments as in the proof of
Corollary 10.

Combining Corollaries 10 and 11 and Theorem 9 we obtain the following.

Corollary 12. G is a doubly chordal graph if and only if G is the clique graph
of some doubly chordal graph.

Our duality results are established using the clique hypergraph C(G) of a graph
G. The following four properties of this hypergraph play a crucial role:

- Conformality of C(G);
- Chordality of G = 2SEC(C(G));
- Helly property of C(G);
- Chordality of L(C(G)).

The conformality of C(G) is fulfilled for all graphs. Chordal graphs are a well–
investigated class; see, for instance, [28]. Clique–Helly graphs are characterized in [4],
[16], [17].

In different combinations the four conditions above characterize the graph classes
considered in this paper.

dually chordal = clique–Helly
⋂

clique–chordal
doubly chordal = clique–Helly

⋂
clique–chordal

⋂
chordal

Helly chordal = clique–Helly
⋂

chordal
Power–chordal = clique–chordal

⋂
chordal

We conclude with the hint to two diagrams (Figures 2 and 3) which show the
relations between graph classes and hypergraphs associated with these graphs.

6. Concluding remarks. We have shown the close relationship of graphs with
maximum neighborhood ordering and hypergraph properties as the Helly property
and tree-like representations of maximal cliques and neighborhoods. Thus in the
sense of hypergraph duality these graphs are dual to chordal graphs but have differ-
ent properties, especially they are in general not perfect. On the other hand maximum
neighborhood orderings turn out to be very useful for domination-like problems (see
[21], [34], [18], [6], [19]). In the papers [9], [10] the algorithmic use of maximum neigh-
borhood orderings is treated systematically.
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Abstract. For every string inclusion relation there are two optimization problems: find a longest
string included in every string of a given finite language, and find a shortest string including every
string of a given finite language. As an example, the two well-known pairs of problems, the longest
common substring (or subsequence) problem and the shortest common superstring (or supersequence)
problem, are interpretations of these two problems.

In this paper we consider a class of opposite problems connected with string noninclusion rela-
tions: find a shortest string included in no string of a given finite language and find a longest string
including no string of a given finite language. The predicate “string α is not included in string β”
is interpreted as either “α is not a substring of β” or “α is not a subsequence of β”. The main pur-
pose is to determine the complexity status of the string noninclusion optimization problems. Using
graph approaches we present polynomial-time algorithms for the first interpretation and NP-hardness
proofs for the second. We also discuss restricted versions of the problems, correlations between the
string inclusion and noninclusion problems, and generalized problems which are the string inclusion
problems for one language and the string noninclusion problems for another.

In applications the string inclusion problems are used to find a similarity between any structures
which can be represented by strings. Respectively, the noninclusion problems can be used to find a
nonsimilarity. Such problems occur in computational molecular biology, data compression, pattern
recognition, and flexible manufacturing. The above generalized problems arise naturally in all of
these applied areas. Apart from this practical reason, we hope that studying the string noninclusion
problems will yield deeper understanding of the string inclusion problems.

Key words. string inclusion, longest, shortest, common, subsequence, substring, supersequence,
superstring, polynomial-time algorithm, NP-hard problem

AMS subject classifications. 68Q20, 68Q25

PII. S0895480192234277

1. Introduction. An alphabet is a nonempty finite set; a symbol is an element
of the alphabet. Let A be an alphabet and Nm = {1, 2, ...,m}. Then any mapping α :
Nm → A is a string on A of length m and α(i) is the symbol at the ith position (the ith
symbol) of α, i ∈ Nm. We use the following notation: |α| = m, α = α(1)α(2)...α(m).

Let α and β be strings on A, m = |α|, n = |β|. If there is a mapping p : Nm → Nn
such that p(1) < p(2) < · · · < p(m) and α(i) = β(p(i)) for all i ∈ Nm, then α is a
subsequence of β, β is a supersequence of α, and p is the location of α in β. In this
case we write α ≤ β and call p(i) the ith component of p. Set p(0) = 0 and call a
location p minimal if

[ i ∈ Nm & p(i− 1) < j < p(i) ] ⇒ β(j) 6= β(p(i)),

i.e., p is componentwise minimal among locations of α in β. If there is a location p
such that i ∈ Nm−1 ⇒ p(i + 1) = p(i) + 1, then α is a substring of β, and β is a
superstring of α. In this case we write α E β and call the location p an insertion. If
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there is an insertion p such that p(1) = 1 or p(m) = n, then α is a prefix or a suffix of
β of length m, respectively. In these cases we write α = Prefm(β) or α = Suffm(β).

A string γ = αβ of length m + n on A is the concatenation of α and β if [i ∈
Nm ⇒ γ(i) = α(i)] & [j ∈ Nn ⇒ γ(m + j) = β(j)]. Let N0 = ∅. For convenience
we use the empty string ε identified by the mapping ε : N0 → A with the following
properties: |ε| = 0, εα = α = αε, ε ≤ α, ε E α, Pref0(α) = ε = Suff0(α) for every
string α on A. Set α0 = ε, α1 = α, α2 = αα, the square of α, αn = ααn−1, the nth
power of α. Let us say that a string α has periodicity k, where k is natural, if k < |α|
and there is a natural n such that α = [Prefk(α)]n. Call a string periodic if it has a
periodicity and nonperiodic otherwise. The period of a periodic string is its minimal
periodicity.

A language on an alphabet A is a nonempty set of strings on A, A∗ is the language
of all strings on A, An ={α ∈ A∗ : |α| = n}, A(n) ={ε} ∪ A1 ∪ A2 ∪ · · · ∪ An. Let L
be a finite language on A. Then |L| is the cardinality (the number of strings), ‖L‖ =∑
α∈L |α| is the length, bLc = minα∈L{|α|} is the thickness, dLe = maxα∈L{|α|} is

the height of L. An integer mapping t : L → NdLe with α ∈ L ⇒ t(α) 6 |α| is a
transversal of L. Numbers t(α) are components of t. Thus, a transversal t determines
the position t(α) in each string α of L.

2. Problem classification. For a given language one can consider string in-
clusion relations R interpreting the predicate “string α is included in string β”. For
example,

αRβ ⇐⇒ α ≤ β : α is included in β as a subsequence,(seq)

αRβ ⇐⇒ α E β : α is included in β as a substring.(str)

For a given string inclusion relation R ⊆ L2 we define: LR = {α ∈ A∗ : β ∈ L ⇒
αRβ}, LR = {α ∈ A∗ : β ∈ L⇒ βRα}, i.e., the set of all strings on A included in (or
including) every string of L, respectively. Herein we have the following two natural
problems.

String inclusion optimization problems.
(Sub) Find a longest string in LR and
(Sup) find a shortest string in LR.
Note that L≤ and L≤ are the sets of common subsequences and common superse-

quences; LE and LE are the sets of common substrings and common superstrings for
L. The string inclusion optimization problems in the interpretations (seq) and (str)
are the

(LCS) Longest common subsequence,
(LCSS) Longest common substring,

(SCS) Shortest common supersequence,
(SCSS) Shortest common superstring

problems. These problems are well known and applied in molecular biology, data
compression, and flexible manufacturing [9, 12, 13].

Example 2.1. For the language {413, 2343, 432} on the alphabet {1, 2, 3, 4}: LCS
= 43, SCS = 234132, LCSS = 4 or 3, SCSS = 41323432 or 23432413.

Every string inclusion relation R has a complement called the string noninclusion
relation R/ . For example,

αR/β ⇐⇒ α � β : α is not included in β as a subsequence,(seq)

αR/β ⇐⇒ α 5 β : α is not included in β as a substring.(str)
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Call α a nonsubsequence of β, β a nonsupersequence of α in the case (seq), and call
α a nonsubstring of β, β a nonsuperstring of α in the case (str). Together with the
sets LR and LR, we also consider the sets LR/ and LR/ of all strings on A included
in (or including) no string of L, respectively. For string noninclusion relations one
can consider opposite optimization problems formally exchanging the terms “longest,”
“shortest” and replacing R by R/.

String noninclusion optimization problems.
(Sub) Find a shortest string in LR/ and

(Sup) find a longest string in LR/.
Call L� and L� the sets of common nonsubsequences and common nonsuperse-

quences, L5 and L5 the sets of common nonsubstrings and common nonsuperstrings
for L, respectively. The string noninclusion optimization problems in the interpreta-
tions (seq) and (str) are the

(SCNS) Shortest common nonsubsequence,
(LCNS) Longest common nonsupersequence,

(SCNSS) Shortest common nonsubstring,
(LCNSS) Longest common nonsuperstring

problems. It is easy to see that, in contrast to the SCNS and SCNSS problems, the
LCNS and LCNSS problems can have no solution because L� and L5 may be infinite.

Example 2.2. For the language {111, 222, 1212, 2211} on the alphabet {1, 2},
SCNS = LCNS = 1122 or 1221 or 2112 or 2121, SCNSS = 112 or 122, and there is
no LCNSS because the string (121)k is a common nonsuperstring for every natural k.
However, for the language {11, 122, 21, 22} on the same alphabet, LCNS = LCNSS =
12.

The paper is devoted to these four problems. We assume that the language L
does not contain the empty string, is not empty, and is “inclusion free,” i.e.,

[α, β ∈ L & α is included in β ] =⇒ α = β.(F)

If (F) is false then we can delete α or β from L in the case (Sub) or (Sup), respectively.
Besides, for the case (Sup) we assume that the language L is “alphabetwise closed,”
i.e.,

∀a ∈ A ∃n(a) > 2 : an(a) ∈ L.(C)

If (C)1 is false, then (Sup) problems have no solution in the case an /∈ L for all natural
n, or all strings containing a can be deleted from L, and a can be deleted from A in
the case a ∈ L. The assumption (C) is not only necessary, but it is also sufficient
for the existence of an LCNS, because the length of any common nonsupersequence
does not exceed

∑
a∈A[n(a)− 1]. However, it is not sufficient for the existence of an

LCNSS, as shown in Example 2.2. Thus, the LCNSS search problem has a sense only
for languages, for which the following question has a positive answer.

LCNSS existence problem. Does there exist an LCNSS for L?

Below we consider the LCNSS problem as the union of the existence and search
problems.

1We use the same notation for symbols and one-symbol strings.
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String noninclusion optimization problems were apparently introduced in [14].
The same paper proposes the conjecture: if an LCNSS exists, then LCNSS length is
bounded by the language length.

In this paper we prove this conjecture and determine the complexity status of
string noninclusion optimization problems. We suggest polynomial-time algorithms
in the interpretation (str) and prove NP-hardness in the interpretation (seq). We also
show that the SCNS and LCNS problems in the case of bounded language cardinality
are solvable in polynomial time. Since the main purpose of this paper is to determine
the complexity status of the above problems, we present simple polynomial-time al-
gorithms, but not efficient ones. Related issues and applications are discussed as
well.

3. Longest common nonsuperstring problem. For a string set V without
the empty string on an alphabet A construct the directed graph GV with vertex set
V and arc set E determined by the rule:

(α, β) ∈ E ⇐⇒ Suff|α|−1(α) = Pref|α|−1(β).

The arc (α, β) arises when |α| 6 |β|+1 and there is a string in A∗ of length |β|+1 with
prefix α and suffix β. This string is denoted as [α, β]. Note that it is not necessarily
in V . In particular, if |α| = 1, then there are arcs from α to all other vertices of GV ;
Suff|α|−1(α) = β ⇒ (α, β) ∈ E.

Example 3.1. GEnglish has the arcs (word, order), (a, part), (there, here); herein
[word, order] = worder, [a, part] = apart, [there, here] = there.

For every route2 M = (σ1, σ2, ..., σk) in GV define the string

f(M) = σ1(1)σ2(1)...σk−1(1)σk

contained in {σ1, σ2, ..., σk}E. Informally speaking a string on A belongs to the image
of the mapping f if it can be “paved” by strings of V . Among insertions of σl in f(M),
where l ∈ Nk, we will distinguish the proper insertion pl(1) = l, i.e., the insertion
starting with position l of f(M).

Remark 3.1. Note that GAn is the well-known graph related to de Bruijn’s se-
quence [4], and the mapping f is a one-to-one correspondence between routes of length
k in GAn and strings of length n+ k − 1 on the alphabet A.

Now let S be the set of proper suffixes of L, i.e., all strings written as Suffn(α),
where α ∈ L, 0 < n < |α|. For every nonempty string ω on A define the route in GS

g(ω) = (σ1, σ2, ..., σ|ω|),

where σi is the longest string of S included in ω as a substring starting from the ith
position. Since (C) is true, a ∈ A ⇒ a ∈ S and so the choice of σi is always possible.
It is important to observe that the inequality |σi| 6 |σi+1| + 1 and the equality
Suff|σi|−1(σi) = Pref|σi|−1(σi+1) follow from the fact that σi and σi+1 are included
in ω as substrings starting from the ith and (i+ 1)th positions, respectively, and the
longest length requirement. Thus, the arc (σi, σi+1) exists in fact, i.e., the definition
of the route g(ω) is correct. It is easy to see that f(g(ω)) = ω.

Let ΓS be a subgraph of GS with vertex set S and arcs (α, β) with the property:
α is the longest prefix of [α, β] contained in L ∪ S, i.e., among suffixes of L there are
no prefixes of [α, β] longer than α.

2Unlike a path, a route can intersect itself.
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Example 3.2. If L = English, then the arc (ove, venir) of GS is not in ΓS since
ove = Suff3(love), venir = Suff5(souvenir), [ove, venir] = ovenir, but oven =
Pref4(ovenir) ∈ L. Neither is the arc (e, t) of GS in ΓS since e = Suff1(love),
t = Suff1(let), [e, t] = et = Pref2(et) = Suff2(net) ∈ S. However, the arc (ee, ea) is
in ΓS since ee = Suff2(tree), ea = Suff2(tea), [ee, ea] = eea, where eea /∈ L∪S 3 ee.

Below we show that ΓS is constructed so that there is a correspondence between
the set of routes in ΓS and the set of nonsuperstrings of L.

Lemma 3.1. (a) If M is a route in ΓS, then f(M) ∈ L5; (b) if ω ∈ L5, then
g(ω) is a route in ΓS.

Proof. Let (a) be false and M = (σ1, σ2, ..., σk) be a route in ΓS such that σ ∈ L
and σ E ϕ = f(M). Then we will find an arc in M , which cannot be an arc of ΓS .

Let p be an insertion of σ in ϕ, and let pl be the proper insertion of σl in ϕ, where
l ∈ Nk. Then p1(|σ1|) 6 p2(|σ2|) 6 · · · 6 pk(|σk|) = |ϕ|. This chain of inequalities
follows immediately from the definition of arcs of the graph GS .

Choose minimal natural j in Nk such that p(|σ|) 6 pj(|σj |) and show that ΓS does
not contain the arc (σj−1, σj). For this purpose we will find a string π ∈ L∪S, which is
a prefix of [σj−1, σj ] with |π| > |σj−1|. If p(1) > pj(1), then σ E σj , which contradicts
(F). If p(1) < pj(1), then p(1) 6 pj−1(1) and there is the chain of inequalities:

p(1) 6 pj−1(1) 6 pj−1(|σj−1|) < p(|σ|) 6 pj(|σj |).

This means that [σj−1, σj ] = ϕ(pj−1(1)...ϕ(pj(|σj |)) has the prefix

π = ϕ(pj−1(1))...ϕ(p(|σ|)),

a suffix of σ, which is longer than σj−1. But this contradicts the existence of the arc
(σj−1, σj) in ΓS .

Now let (b) be false, and for a string ω ∈ L5 the route g(ω) = (σ1, σ2, ..., σ|ω|)
in GS is not a route in ΓS . Then for some natural i ∈ N|ω|−1 the arc (σi, σi+1) is
not in ΓS . This means that [σi, σi+1] has a prefix π ∈ L ∪ S with |π| > |σi|. If
π ∈ S, then it contradicts the choice rule of σi in g(ω). If π ∈ L, then the inclusions

π E [σi, σi+1] E ω contradict ω ∈ L5.

Remark 3.2. Note that the last vertex of the route g(ω) is a one-symol suffix.
It is easy to show that the mappings f and g determine a one-to-one correspon-
dence between L5 and the set of routes in ΓS ending in one-symol suffixes. Be-
sides, an arbitrary route M = (σ1, σ2, ..., σk) in ΓS can be extended to the route
M ′ = (σ1, σ2, ..., σk, Suff|σk|−1(σk), Suff|σk|−2(σk), ..., Suff1(σk)).

Lemma 3.1 reduces a consideration of the LCNSS problem to the analysis of the
graph ΓS . Bounded length of common nonsuperstrings for L means bounded length
of routes in ΓS , i.e., ΓS is acyclic. Thus, the following theorem is proved.

Theorem 3.1. If the graph ΓS is acyclic, then M is the longest path in it iff
f(M) is an LCNSS for the language L. If M = (σ1, σ2, ..., σk) is a closed route in
ΓS, i.e., σ1 = σk, then for any natural n the string [Prefk−1(f(M))]n is a common
nonsuperstring for L and so there is no LCNSS for L.

Corollary 3.1. The LCNSS problem is solvable in polynomial time.

Proof. The number of proper suffixes of L, and so the construction time of ΓS , are
bounded by a polynomial in ‖L‖. Besides, the graph cycle existence and the acyclic
graph longest path problems are solvable in polynomial time [8].

Corollary 3.2. If an LCNSS exists for L, then |LCNSS| 6 |S|.
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This easy corollary from Theorem 3.1 proves the conjecture from [14], namely, if
an LCNSS exists for L, then |LCNSS| 6 ‖L‖. It is true because |S| 6 ‖L‖− |L|. The
estimate is exact as shown in the following example.

Example 3.3. For the language L = {11, 22, 12} on the alphabet {1, 2} we have:
|LCNSS| = |S| = 2, ‖L‖ = 6, |L| = 3, LCNSS=21.

The length of L is the natural size of string noninclusion problems. That is why
we use it to estimate problem complexities. On the other hand, as the following result
shows, if an LCNSS exists for L, then the cardinality and length of the language L
depend exponentially on its thickness.

Theorem 3.2. If an LCNSS exists for L, then

|L| > |A|
bLc

bLc and ‖L‖ > |A|bLc.

Proof. Let M = (σ1, σ2, ..., σk) be a closed route in the graph GAr , where r =
bLc. As the length of common nonsuperstrings is bounded, there is a natural n such
that [Prefk−1(f(M))]n is the superstring of a string ωM ∈ L. If another closed
route M ′ in the same graph has no common vertices with M , then the string ωM
and the corresponding string ωM ′ have no common substring of length r and so

ωM 6= ωM ′ . Thus to prove the first inequality it is sufficient to find at least |A|
r

r
pairwise nonintersecting closed routes in GAr . Define a function h : Ar → Ar taking
h(α) = α(2)α(3)...α(r)α(1). Set h0(α) = α and hn(α) = h(hn−1(α)) where n > 1.
Obviously, Mα = (α, h(α), h2(α), ..., hr(α)) is a closed route in GAr .

Let q be the period of α. Then Mα comprises r
q rounds of a cycle on q vertices.

Thus, vertex set Ar of GAr is covered by pairwise nonintersecting cycles Mα, α ∈ Ar,
and each cycle has at most r vertices. So the number of these cycles is at least |A|

r

r .
The second inequality follows from the first one because |L|bLc 6 ‖L‖.

Remark 3.3. Considering the cycles Mα in GAr we can suggest a trivial com-
binatorial proof of Fermat’s (little) theorem [2]: for any natural m, prime r divides
mr −m. Take an alphabet A with |A| = m. Since r is prime, the only periodicity
of a periodic string of length r is one. So with the exception of strings ar, where
a ∈ A, the other mr −m strings of Ar are distributed among r-vertex cycles Mα, i.e.,
mr −m ≡ 0(mod r).

Similar reasoning leads to the generalization of Fermat’s theorem to the case of
composite r, which was formerly unknown to the authors. Let r = pn1

1 pn2
2 ... pnll be

the decomposition of r into the product of prime powers, and let q be a divisor of r,
where q 6= r. Then all mq strings of length q raised to power of r

q form the set of all

periodic strings of length r with periodicity q (this set also contains all periodic strings
with periodicity q′, where q′ is a divisor of q). Implementing the inclusion-exclusion
principle, it is not difficult to show that the number of all nonperiodic strings of length
r is

m(r) =
∑

k1,k2,...,kl∈{0,1}
(−1)k1+k2+···+klmp

n1−k1
1 p

n2−k2
2 ...p

nl−kl
l .

So m(r) ≡ 0(mod r). In the case l = 1 this proposition coincides with Euler’s theorem.

4. Shortest common nonsubstring problem. Polynomial solvability of the
SCNSS (and LCSS) problem trivially follows from the fact that the total length of all
substrings of strings in L does not exceed ‖L‖3. Considering these substrings in a list
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ordered by length and lexicographically ordered among pieces of the same length, we
can easily find an SCNSS as the first lexicographic hole.3

5. Longest common nonsupersequence problem. As we have shown in the
second section, the LCNS existence problem reduces to checking the condition (C)
and so it is trivial. However, the LCNS search problem is essentially more difficult.
To show this, we need the following well-known NP-complete problem [3].

Independent set problem. Given an undirected graph G with vertex set V , edge
set E, and a natural k 6 |V |, does G have an independent set4 I ⊆ V of at least k
vertices?

Theorem 5.1. The LCNS search problem is NP-hard.

Proof. Let us show a reduction from the independent set problem to the LCNS
decision problem: given a finite language L on an alphabet A and a natural l, does
there exist a common nonsupersequence ω for L of length at least l? Set

A = V, l = k, L = {vv : v ∈ V } ∪ {uv, vu : {u, v} ∈ E}.

The symbol set of any common nonsupersequence for L is an independent set in G,
and the vertices of any independent set in G written in arbitrary order make a common
nonsupersequence for L. So I = {v1, v2, ..., vk} ⇔ ω = v1v2... vk.

Example 5.1. If V = {1,2,3,4,5}, E = {{1,2},{2,3},{2,5},{3,4},{3,5}}, k = 3, I =
{1,4,5}, then A = {1,2,3,4,5}, L = {11,22,33,44,55} ∪ {12,21,23,32,25,52,34,43,35,53},
l = 3, ω = 145.

Remark 5.1. From Theorem 5.1 proof follows that the LCNS search problem
remains NP-hard even if every string of L has length two. Besides, NP-hardness
proofs of the restricted version of the LCNS search problem with bounded alphabet
size have been proposed by Jiang [6] for the case |A| = 3 and by Zhang [15] for the
case |A| = 2. These nontrivial proofs also employ the reduction from the independent
set problem.

Now we show that LCNS can be found in polynomial time if the language cardi-
nality is bounded. Let #A = {#}∪A, where the symbol # does not belong to A, let
#L = {#α : α ∈ L}, and let V be the set of all transversals of #L. Define a directed
graph G with the vertex set V and arcs labelled by symbols of A. The arc (u, v)
labelled by A(u, v) exists iff u 6= v and u(α) + 1 = v(α) for strings α ∈ #L containing
A(u, v) in the [u(α) + 1]th position and u(α) = v(α) for other strings α ∈ #L.

Example 5.2. If A = {a, b}, #L = {#aa,#ab,#bb}, then u = 〈1, 1, 1〉,5 v =
〈2, 2, 1〉, w = 〈2, 3, 2〉 ∈ V ; (u, v), (v, w) are arcs labelled by A(u, v) = a, A(v, w) =
b; (u,w), (v, u) are not arcs.

It is easy to see that the graph G is acyclic. The vertex v0 ∈ V is called
a source iff ∀ω ∈ #L : v0(ω) = 1, and every vertex v ∈ V is called final iff
∃ω ∈ #L : v(ω) = |ω| and nonfinal otherwise. Let P be the set of all paths in
G starting from the source and having at least one arc, and let P ′ be the subset of
P consisting of paths containing no final vertices. Define a mapping f : P → A∗

taking the path P = (v0, v1, v2, ..., vk−1, vk) ∈ P to the string f(P ) by f(P ) =
A(v0, v1)A(v1, v2)...A(vk−1, vk).

Lemma 5.1. f is a one-to-one correspondence between P ′ and L�.

3The first string of A∗ that is not in the list.
4A set of pairwise nonadjacent vertices.
5We write t = 〈t(α1), ..., t(αn)〉 if t is a transversal of the language {α1, ..., αn}.
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Proof. Since labels of arcs going from the same vertex are different, the mapping
f is injective. Besides, L� ⊆ Im f due to the assumption (C): there is an arc labelled
by a that goes from a vertex v if v(#an(a)) 6 n(a), i.e., Im f contains all strings
including each symbol a from A at most n(a)− 1 times.

Now let P = (v0, v1, ..., vk) ∈ P, α ∈ L, tj = vj(#α) − 1, j = 0, 1, ..., k, and
π = Preftk(α). To prove the lemma it is sufficient to show that π is the longest prefix
of α included in f(P ) as a subsequence. Note that 0 6 tj − tj−1 6 1, where j ∈ Nk,
so one can define a mapping p : Ntk → Nk by the formula

p(i) = min
j∈Nk & i=tj

{j}, i ∈ Ntk .

It is easy to see that p determines a location of π in f(P ). Besides, this location is
minimal and α(tk + 1) 6= f(P )(j) if j > p(tk).

Lemma 5.1 reduces the LCNS search problem to the search for a longest path in
P ′. Note that G has no cycles and arcs from final vertices to nonfinal vertices. So
contracting all final vertices of G to a single terminal t and removing any loops that
arise, we obtain an acyclic graph Γ.

Theorem 5.2. (v0, v1, ..., vk, t) is a longest path in Γ from v0 to t iff f(v0, v1, ..., vk)
is an LCNS for L.

Corollary 5.1. If the cardinality of L is bounded, then an LCNS for L can be
found in polynomial time.

Proof. The number of transversals of the language #L, and so the number of ver-
tices in G, do not exceed ‖L‖|L| and there is a polynomial-time longest path algorithm
for acyclic directed graphs [8].

6. Shortest common nonsubsequence problem. To show the intractability
of the SCNS problem we need the following well-known NP-complete problem [3].

Vertex cover problem. Given an undirected graph G with vertex set V , edge set
E, and a natural k 6 |V |, does G have a vertex cover6 C ⊆ V of at most k vertices?

Theorem 6.1. The SCNS problem is NP-hard.
Proof. Let us show a reduction from the vertex cover problem to the SCNS

decision problem: given a finite language L on an alphabet A and a natural l, does
there exist a common nonsubsequence σ for L of length at most l? Set

A = V, l = k, L = { ζ |V |e : e ∈ E },
where ζe is any fixed string of length |V |−2 including all symbols of V except the ends
of the edge e. Then the symbol set of any common nonsubsequence for L of length
at most l is a vertex cover in G, and the vertices of any vertex cover in G written
in arbitrary order make a common nonsubsequence for L. So C = {v1, v2, ..., vk} ⇔
σ = v1v2... vk.

Example 6.1. If V = {1, 2, 3, 4, 5}, E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}}, k = 3, C =
{2, 3, 4}, then A = {1, 2, 3, 4, 5}, L = {ζ5

{i,i+1} : i ∈ N4}, ζ{1,2} = 345, ζ{2,3} =
145, ζ{3,4} = 125, ζ{4,5} = 123, l = 3, σ = 234.

Remark 6.1. In contrast to the LCNS search problem (see Remark 5.1) the SCNS
problem can be solved in polynomial time if strings of L are of bounded length. In
this case the list of all subsequences of strings of L is also bounded, so an SCNS can
be found in the same way as an SCNSS (see section 4). Employing the reduction from
the vertex cover set problem as well, nontrivial NP-hardness proofs of the restricted

6A set of vertices such that every edge is incident with at least one of the vertices.
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version of the SCNS problem with bounded alphabet size have been proposed by Jiang
[6] for the case |A| = 4 and by Middendorf [10] for the case |A| = 2.

Now we show that an SCNS can be found in polynomial time if the language
cardinality is bounded. Again let #A = {#} ∪ A, where # /∈ A, and #LA =
{#αλdLe+1 : α ∈ L }, where λ is a fixed string of length |A| including all symbols of
A. A position i in the string #αλdLe+1 of #LA is called external if i > |α| + 1 and
internal otherwise. A transversal t of a language K on A is called uniform and labeled
by A(t) if there exists a symbol A(t) in A such that α ∈ K ⇒ α(t(α)) = A(t).

Let V be a set of all uniform transversals of #LA. Define a directed graph G
with vertex set V and arcs (u, v) with

∀ω ∈ #LA : u(ω) < v(ω) & [u(ω) < j < v(ω) =⇒ ω(j) 6= A(v) ],

i.e., v is the componentwise minimal transversal among all uniform ones which are
componentwise larger than u. Let the arc (u, v) have the label A(v).

Example 6.2. If A = {a, b}, L = {aba, bba}, λ = ab, then dLe = 3; #LA =
{#abaabababab,#bbaabababab}; u = 〈1, 1〉, v = 〈2, 4〉, w = 〈3, 2〉, x = 〈4, 4〉 ∈ V ;
A(u) = #, A(v) = A(x) = a, A(w) = b; (u, v), (u,w), (w, x) are arcs; (u, x), (v, w),
(v, x) are not arcs.

We can see that the graph G is acyclic. The vertex v0 ∈ V with v0(ω) = 1 ∀ω ∈
#LA is called the source in G. A vertex v ∈ V is called external if ∀ω ∈ #LA the
component v(ω) is an external position of ω and internal otherwise.

Let P be the set of all paths in G starting from the source and having at least
one arc, and let P ′ be the subset of paths containing at least one external vertex
and at most dLe + 1 arcs. Define a mapping f : P → A∗ taking the path P =
(v0, v1, v2, ..., vk) ∈ P to the string f(P ) by f(P ) = A(v1)A(v2) ... A(vk).

Lemma 6.1. f is a one-to-one correspondence between P ′ and L� ∩ A(dLe+1).

Proof. Since labels of arcs going from the same vertex are different, the mapping
f is injective. Besides, A(dLe+1) ⊆ Im f due to λdLe+1 ∈ #LA≤. Now let P =
(v0, v1, ..., vk) ∈ P, ω ∈ #LA. Define p : Nk → N|ω| setting p(i) = vi(ω), i ∈ Nk.
This mapping determines the minimal location of f(P ) in ω, so f(P ) ∈ L� iff vk is

an external vertex.
Since the length of any SCNS does not exceed dLe + 1, Lemma 6.1 reduces the

SCNS search problem to the search for a shortest path in P ′. G has no cycles and
arcs going from external vertices to internal ones. So contracting all external vertices
to a single terminal t and removing any loops that arise, we obtain an acyclic graph
Γ.

Theorem 6.2. P is a shortest path in Γ from v0 to t iff f(P ) is an SCNS for
L.

Corollary 6.1. If the cardinality of L is bounded, then an SCNS for L can be
found in polynomial time.

Proof. The number of all transversals of #LA, and so the number of vertices of
G do not exceed ‖L‖ ( 2‖L‖+ 1 )|L|. Besides, the shortest path problem is polynomial
[8].

Remark 6.2. Unlike the other string inclusion and noninclusion problems consid-
ered above, the SCNS problem remains nontrivial if |L| = 1.

(SNS) Shortest nonsubsequence problem. Let a string σ contain all symbols of an
alphabet A. Find a shortest nonsubsequence η ∈ A∗ of σ.

We suggest a simple SNS algorithm without using shortest path procedure. Let
σ1 = σ and find the shortest prefix π1 of σ1 containing all symbols of A. Then
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σ1 = π1σ2. Repeat this operation with the string σ2, etc. After k iterations of this
operation we get σ1 = π1π2... πkσk+1, where σk+1 does not contain all symbols of A (it
may be that |σk+1| = 0). Set η = π1(|π1|)π2(|π2|) ... πk(|πk|)a, where a ∈ A\Im σk+1.
In other words, the string η consists of the last symbols of the prefixes obtained and
one more symbol which is not contained in σk+1.

Let us show that the string η is an SNS of σ. The rule of choosing the prefix
πi implies that the symbol πi(|πi|) appears in it only once in the last position. So
the mapping p : Nk → N|σ|, where p(i) = |π1| + |π2| + · · · + |πi|, determines the
minimal location of Prefk(η) in σ, and there is no symbol a in σk+1. Thus, η is a
nonsubsequence of length k + 1. Besides, there are no nonsubsequences shorter than
η because any string of length k is a subsequence of π1π2... πk.

7. Conclusion. The complexity status of the corresponding string inclusion and
noninclusion problems is different only for the SCSS/LCNSS pair: the SCSS prob-
lem is NP-hard [3], while the LCNSS problem is solvable in polynomial time. This
means that the string noninclusion problems studied here are more tractable and more
“regular” than the corresponding string inclusion problems, because their complex-
ity status is determined by an interpretation of the inclusion relation: (str) leads to
polynomial-time solvability and (seq) leads to NP-hardness.

On the other hand, the corresponding string inclusion and string noninclusion
problems can be solved by similar approaches. For example, the SCNS problem is
reducible to the problem of finding a shortest path in the directed graph from the
source to external vertices. Now call a transversal t an internal vertex if α ∈ #LA ⇒
t(α) has only internal positions. Then the LCS problem is reducible to finding a
longest path containing internal vertices only. The LCNS algorithm described above
can be similarly transformed to an SCS algorithm by modifying the definition of the
terminal and by interchanging longest and shortest path algorithms.

Note that the corresponding LCSS and SCNSS, SCSS and LCNSS problems can
also be solved by similar approaches. The LCSS and SCNSS problems are solved by
the list of substrings of L, and to solve the SCSS problem, we can avoid a transfor-
mation of the graph GS to ΓS as in the LCNSS case, and instead of it, add in GS the
vertices corresponding to all strings of L and reduce the SCSS problem to the search
for a shortest path containing all added vertices. This problem, however, is already
NP-hard [3].

Thus we can speak about some duality between the string inclusion and nonin-
clusion problems. It is interesting to investigate correlations between them because
in practice there are problems which occupy an intermediate place between the string
inclusion and noninclusion problems. An obvious example here is the shortest consis-
tent superstring problem arisen from data compression practice and DNA sequencing
procedures [7, 9, 12]. It involves, for two given languages of positive and negative
strings, finding the shortest possible string σ such that every positive string is a sub-
string of σ and no negative string is a substring of σ. Similar problems are found
in flexible manufacturing, where the alphabet and the language determine the sets
of technological operations and technology types fulfilled by a manufacturing system.
The inclusion relation means the possibility to fulfill one technology within another
one, and negative strings determine technological restrictions. The length of an SCNS
or an SCNSS measures manufacturing system flexibility in this case since any shorter
technology is fulfilled by the system [13, 14].

The shortest consistent superstring problem is one among many problems (with
two languages of positive and negative strings) which can be formally generated from it
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by varying the inclusion relations E and ≤, the specifications “sub” and “super”(they
may be different for positive and negative strings), and the criteria “shortest” and
“longest.” For example, the shortest distinguishing string-language problem formu-
lated by Middendorf [10] consists of finding a shortest string that is a subsequence
of a single positive string and a common nonsubsequence for a language of negative
strings. The NP-hardness of this problem has been proved by a reduction from the
SCNS problem [10]. However, the case with a single negative string, the shortest
distinguishing string-string problem, is solvable in polynomial time [5].

In practice there are string inclusion and noninclusion problems with a more
complex interpretation of the inclusion relation. For example,

αRβ ⇐⇒ α = γ1γ2...γn & β = π0γ1π1γ2π2...γnπn,

where π0, πi, γi ∈ A∗ for all i ∈ Nn, 1 ≤ n ≤ k and k is fixed. If k = 1, then R =E ;
if k < ∞, then R =≤. If k = 2, then α is included in β as a substring or as two
nonoverlapping substrings.

We suppose that studies of generalizations of the string noninclusion problems in
the case of an infinite language can produce interesting results related to avoidable
patterns in infinite sequences. Consider, for example, the LCNSS problem with the
language of squares {σσ : σ ∈ A∗}. Let A = {1, 2, ..., n}. In this case it is easy to
test, if n = 1, then LCNSS=1, if n = 2, then LCNSS=121 or 212, because there are
just seven common nonsuperstrings: ε, 1, 2, 12, 21, 121, 212. If n = 3, then there
is no LCNSS, because for any natural k the prefix Prefk(τ), where τ is the infinite
Thue’s sequence [11] avoiding squares, may be taken to be a common nonsuperstring.
For similar results, see [1, 16].

Acknowledgments. We thank Robert Irving, Tao Jiang, Pavel Pevzner, and
Louxin Zhang for useful discussions. We also thank Tao Jiang and the referees for
careful considerations and comments.

REFERENCES

[1] R. Bean, A. Ehrenfeucht, and G. F. McNulty, Avoidable patterns in strings of symbols,
Pacific J. Math., 85 (1979), pp. 261–294.

[2] H. M. Edwards, Fermat’s Last Theorem, Springer-Verlag, New York, 1977.
[3] M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman, San Fran-

cisco, CA, 1979.
[4] M. Hall, Jr., Combinatorial Theory, Blaisdel, Waltham, MA, 1967.
[5] J.-J. Hebrard, An algorithm for distinguishing efficiently bit-strings by their subsequences,

Theoret. Comput. Sci., 82 (1991), pp. 35–49.
[6] T. Jiang, Private communication, 1993.
[7] T. Jiang and M. Li, Approximating shortest superstrings with constraints, Theoret. Comput.

Sci., 134 (1994), pp. 473–491.
[8] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Win-

ston, New York, 1976.
[9] A. Lesk, ed., Computational Molecular Biology, Sources and Methods for Sequence Analysis,

Oxford University Press, Oxford, 1988.
[10] M. Middendorf, The shortest common non-subsequence problem is NP-complete, Theoret.

Comput. Sci., 108 (1993), pp. 365–369.
[11] A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville, MD,

1981.
[12] J. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD,

1988.
[13] V. G. Timkovsky, Discrete Mathematics in Engineering, Nauka, Moscow, 1992 (in Russian).



STRING NONINCLUSION OPTIMIZATION PROBLEMS 467

[14] V. G. Timkovsky, Complexity of common subsequence and supersequence problems and related
problems, Kibernetika, 5 (1989), pp. 1–13 (in Russian). English transl. in Cybernetics, 25
(1990), pp. 565–580.

[15] L. Zhang, On the approximation of longest common nonsupersequences and the shortest com-
mon nonsubsequences, Theoret. Comput. Sci., 143 (1995), pp. 353–362.

[16] A. I. Zimin, Blocking sets of terms, Math. Sbornik, 119 (1982), pp. 363–375 (in Russian).



PARTIAL INTERSECTION THEOREM AND FLOWS IN
ABSTRACT NETWORKS∗

MARTIN KOCHOL†

SIAM J. DISCRETE MATH. c© 1998 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 468–486, August 1998 009

Abstract. The aim of this paper is to introduce a general framework for various results regard-
ing constructions of matroids and (generalized) polymatroids—for instance, the basic operations on
(generalized) polymatroids and constructions of transversal matroids, gammoids, and their general-
izations. All of them are covered by the following theorem: If P1 and P2 are generalized polymatroids
in Rn ⊕ Rm and Rm, respectively, and P′1 is the set of the vectors from P1 whose projections to Rm
are in P2, then the projection of P′1 to Rn is a generalized polymatroid. An equivalent statement is
obtained using a flow model that has many common features with the concept of group-valued flows.
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1. Introduction. The Edmonds intersection theorem [E] gives a necessary and
sufficient condition for two matroids to have a common independent set of cardinality
at least d. A more advanced form of this theorem says that the linear system describ-
ing the intersection polytope of two polymatroids is totally dual integral. This result
generalizes plenty of classical min-max relations from combinatorics (for instance,
the Hall, Dilworth, and max-flow min-cut theorems) and is equivalent to many so-
phisticated theorems from combinatorial optimization (see, e.g., the survey article of
Schrijver [S3]). Various generalizations of this theorem are in [Fr], [KC], [M1], [M2],
[M3], [N3], [S3], [S4], [T], and [Wo].

A few similar results were obtained by Davies and McDiarmid [DMcD] who give
a necessary and sufficient condition for two strongly base orderable matroids, (which
form a proper subclass of matroids), to have k disjoint common independent sets of
cardinality at least d. This theorem can be used as a general framework for results
regarding compatible systems of representatives (see [K4] for more details).

In this paper we want to bring together the results regarding constructions of
(poly)matroids and generalized polymatroids (what are polyhedra bounded by sub-
and supermodular functions satisfying an additional condition) showing that the ma-
jority of them can be expressed in the framework of the partial intersection theorem
which says the following. Suppose P1 and P2 are generalized polymatroids in Rn⊕Rm
and Rm, respectively. Then there exists a generalized polymatroid P in Rn such that
an n-dimensional vector u is from P iff there exists an m-dimensional vector v from
P2 so that the direct sum of u and v is from P1.

In Section 4 an abstract generalized polymatroidal network flow model is intro-
duced. It is equivalent with the flow models from [K6], Hassin [Ha], Lawler and
Martel [LM1], [LM3], and generalizes the classical flow model of Ford and Fulkerson
[FF]. Moreover, it has plenty of common features with the concept of group-valued
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flows presented in [K7] and [K8]. Thus, in a certain sense, our model unifies the
concept of classical flows with the concept of group-valued flows.

The new flow model is used in Theorem 5, which is equivalent to the partial
intersection theorem, and says the following. Let G = (V (G), E(G)) be a directed
graph with a fixed vertex t so that with any arc x directed from u to v it contains an
arc −x directed from v to u and −(−x) = x. A flow in G is a mapping f : E(G)→ R
so that for any arc x, f(x) = −f(−x), and for any vertex v ∈ V (G) \ {t}, the
restriction of f on the set of arcs directed into v is in a given generalized polymatroid.
Then the restrictions of the flows on the set of arcs directed into t form a generalized
polymatroid. Similar results, Theorems 6 and 7, are presented in section 4. They are
formulated for flow models from Lawler and Martel [LM1], [LM3].

In the framework of Theorems 5, 6, and 7 the following operations on (gener-
alized) polymatroids and matroids can very easily be described: sum, discrete sum,
translation, dual, c-dual, restriction, truncation, (inverse) homomorphic image, and
intersections with a plank and a box. This will be discussed later in section 6. In
section 7, it is shown that Theorems 5, 6, and 7 generalize the theorem of Edmonds
and Fulkerson [EF] (saying that partial transversals of a finite system of finite sets
form a matroid), the constructions of gammoids from Perfect [Pe] and Pym [Py], the
linking systems of Schrijver [S2], and other results from transversal theory.

Some new results are presented in the last section. Primarily, we characterize the
polyhedron composed from the restrictions of all feasible flows on a fixed edge-cut
in the flow model from section 4. A similar characterization can be obtained for the
flow models from [Ha], [K6], [LM1], [LM3], and the classical flow model of Ford and
Fulkerson [FF].

As was pointed out previously, many operations on generalized polymatroids can
be described by a flow network. From the structure of this network we can determine
whether the operation gives the resulting polyhedron equal to a generalized or a quasi
polymatroid (which arises from a generalized polymatroid after reflexion of some of
the coordinates). An example of the latter case is the following: Let P1 and P2 be
generalized polymatroids in Rn ⊕ Rm and Rm ⊕ Rk, respectively. Take Q to be the
set of the direct sums u⊕ v where u ∈ Rn, v ∈ Rk and there exists w ∈ Rm so that
u⊕w is from P1 and w ⊕ v is from P2. Then Q is a quasi polymatroid in Rn ⊕ Rk,
but, in general, no generalized polymatroid.

2. Preliminaries. Throughout this paper, let RS (ZS) denote the collection of
the real (integer)-valued vectors indexed by a finite set S. For each u ∈ RS and s ∈ S
denote the sth coordinate of u by u(s). If u ∈ RS and X ⊆ S, u(X) is defined to be∑
s∈X u(s), and u|X denotes the restriction of u to X. For two vectors u ∈ RS and

u′ ∈ RS′ with S ∩ S′ = ∅, their direct sum u⊕ u′ ∈ RS∪S′ is defined by

(u⊕ u′)(s) =

{
u(s) if s ∈ S,
u′(s) if s ∈ S′.

Clearly, (u ⊕ u′)|S = u and (u ⊕ u′)|S′ = u′. For convenience, we suppose that
R∅ = {∅}, u⊕ ∅ = u, u|∅ = ∅, and u(∅) = 0.

If it is clear from the context that we are referring to a set rather than to an
element we abbreviate {x} to x. For example, X ∪ x means X ∪ {x} and ρ(x) means
ρ({x}).

Let ρ 2S → R ∪ {∞}, σ 2S → R ∪ {−∞} so that ρ(∅) = σ(∅) = 0 and for any
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X,Y ⊆ S,

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ),(1)

σ(X) + σ(Y ) ≤ σ(X ∪ Y ) + σ(X ∩ Y ),(2)

ρ(X)− σ(Y ) ≥ ρ(X \ Y )− σ(Y \X).(3)

(Equations (1) and (2) state that ρ and σ are submodular and supermodular, respec-
tively, and (3) states that ρ and σ are compliant.) Then the set (see [Fr], [Kov],
[KP])

P = {u ∈ RS ;σ(X) ≤ u(X) ≤ ρ(X) for every X ⊆ S}

is called a g-polymatroid (generalized polymatroid) on the ground set S. Formally, we
write P = (S, ρ, σ). If both ρ and σ are integer valued (i.e., are mappings to Z∪ {∞}
and Z ∪ {−∞}, respectively), then P is called integral.

If σ ≡ 0, then by (3), ρ is monotone and nonnegative (i.e., 0 ≤ ρ(X) ≤ ρ(Y )
if X ⊆ Y ⊆ S) and P is called a polymatroid. Moreover, if ρ(s) = 0 or 1 for any
s ∈ S and ρ is integral, then P is a matroid. If σ(X) = −∞ for any ∅ 6= X ⊆ S, we
get an extended polymatroid (see [GLS] or [S4]). If P is matroid or polymatroid, then
we formally write P = (S, ρ). Note that matroid (S, ρ) is usually identified with the
system of sets {X ⊆ S; ρ(X) = |X|} (see, e.g., [We], [A], [R], [NW]).

For convenience, we consider {∅} = 2∅ to be the g-polymatroid on ∅, i.e., {∅} =
(∅, ρ∅, σ∅) where, by definition, ρ∅(∅) = σ∅(∅) = 0.

Generalized polymatroids present a natural extension of polymatroids and pre-
serve a majority of their nice properties. They have been introduced independently by
Frank [Fr] and Kovalev [Kov] (see also [KP]). A detailed study of them can be found
in the survey article of Frank and Tardos [FT]. We now recall some basic results from
it. For instance, any nontrivial (integral) g-polymatroid contains an (integral) vector.
Moreover, for any X ⊆ S,

ρ(X) = max{u(X); u ∈ P},(4)

σ(X) = min{u(X); u ∈ P}.(5)

Note that in this paper we follow the usual min-max notation and suppose that if a
subset of R is not bounded above (below), then its maximum (minimum) is∞ (−∞).

The next theorem is equivalent to the Edmonds intersection theorem (see [Fr],
[S3]).

Theorem 1. Let P1 = (S, ρ1, σ1) and P2 = (S, ρ2, σ2) be two g-polymatroids.
Then the following linear system is totally dual integral:

σi(X) ≤ u(X) ≤ ρi(X) (i = 1, 2, X ⊆ S).(6)

Let us recall that a system Ax ≤ b of inequalities is totally dual integral (TDI )
if the minimum in the linear programming duality equation

max{wx; Ax ≤ b} = min{yb; y ≥ 0,yA = w}(7)

has an integral optimum solution for each integral objective function w for which the
minimum exists. Hoffman [Ho] and Edmonds and Giles [EG] showed that if Ax ≤ b
is TDI and b is integral, then the maximum in (7) also has an integral optimum
solution. Therefore, if P1 and P2 are integral g-polymatroids on S, then P1 ∩ P2 is
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an integral polyhedron, i.e., any of its faces contains an integral vector. Note that
the TDI property regards the linear system and not the polyhedron defined by this
system. See, e.g., [S5] for more details.

System (6) remains TDI if ρi and σi are defined on intersecting families (see [L1],
[L2], [S3], [S4], [Fr], [FT]). But we do not follow this approach because we deal with
constructions of polyhedra and not with TDI systems.

From Theorem 1 are the following corollaries (see, e.g., [K6], [FT]).

Corollary 1. Let P1 = (S, ρ1, σ1) and P2 = (S, ρ2, σ2) be two (integral) g-
polymatroids. Then they have an (integral) vector in common iff ρ1(X) ≥ σ2(X) and
ρ2(X) ≥ σ1(X) for any X ⊆ S.

Corollary 2. Let P1 = (S, ρ1, σ1) and P2 = (S, ρ2, σ2) be two g-polymatroids
having a vector in common. Then,

max{u(S); u ∈ P1 ∩ P2} = min
X⊆S

(ρ1(X) + ρ2(S \X)) ,

min{u(S); u ∈ P1 ∩ P2} = max
X⊆S

(σ1(X) + σ2(S \X)) .

Furthermore, if P1 and P2 are integral, then the maximal and minimal values of u(S)
can be obtained (if they are finite) for integral vectors.

If P1 ⊆ RS1 , then denote −P1 = {u ∈ RS1 ;−u ∈ P1}. Further, if P2 ⊆ RS2 and
S1∩S2 = ∅, then the direct sum of P1 and P2 is defined as P1⊕P2 = {u⊕v; u ∈ P1,v ∈
P2}. Clearly, −(−P1) = P1 and P1 ⊕ {∅} = P1. Furthermore, if P1 = (S1, ρ1, σ1) and
P2 = (S2, ρ2, σ2) are (integral) g-polymatroids, then so are −P1 = (S1,−σ1,−ρ1) and
P1 ⊕ P2 = (S1 ∪ S2, ρ, σ), where ρ(X1 ∪ X2) = ρ1(X1) + ρ2(X2) and σ(X1 ∪ X2) =
σ1(X1) + σ2(X2) for any X1 ⊆ S1, X2 ⊆ S2.

Example 1. Let ρ∞(∅) = σ∞(∅) = 0 and ρ∞(X) = ∞, σ∞(X) = −∞ for any
∅ 6= X ⊆ S. Then (S, ρ∞, σ∞) = RS is called the free g-polymatroid on S. Similarly,
the polymatroid (S, ρ∞) is called the free polymatroid on S. It contains the vectors
from RS with nonnegative coordinates.

Example 2. Let P = ({a, b}, ρ, σ) be a g-polymatroid such that ρ({a, b}) =
σ({a, b}) = 0 and ρ(x) = σ(x) =∞ for x = a, b. P is called the principal g-polymatroid
on {a, b}. Clearly, P = {u ∈ R{a,b}; u(a) = −u(b)}.

Example 3. If u ∈ RS , then Pu = {u} is a g-polymatroid (S, ρu, σu) so that
ρu(X) = σu(X) = u(X) for any X ⊆ S.

Two g-polymatroids P = (S, ρ, σ) and P′ = (S′, ρ′, σ′) are called isomorphic if
there exists a bijection ϕ : S → S′ such that for any X ⊆ S, ρ(X) = ρ′(ϕ(X)) and
σ(X) = σ′(ϕ(X)).

3. Partial intersection theorem.

Theorem 2. Let S, T be finite disjoint sets and P1 = (S ∪ T, ρ1, σ1), P2 =
(T, ρ2, σ2) be (integral) g-polymatroids. Suppose ρ1(Y ) ≥ σ2(Y ), ρ2(Y ) ≥ σ1(Y ) for
any Y ⊆ T . Then there exists an (integral) g-polymatroid P = (S, ρ, σ) such that for
any X ⊆ S,

ρ(X) = min
Y⊆T

(
ρ1(X ∪ Y )− σ2(Y )

)
,(8)

σ(X) = max
Y⊆T

(
σ1(X ∪ Y )− ρ2(Y )

)
,(9)

and an (integral) vector u ∈ RS is from P iff there exists an (integral) vector v ∈ P2

so that u⊕ v ∈ P1. P is called the partial intersection of P1 and P2.
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Proof. Let ρ, σ be the functions defined by (8), (9), respectively, and X,X ′ ⊆ S.
Choose Y, Y ′, Y ′′ ⊆ T so that ρ(X) = ρ1(X∪Y )−σ2(Y ), ρ(X ′) = ρ1(X ′∪Y ′)−σ2(Y ′),
and σ(X ′) = σ1(X ′∪Y ′′)−ρ2(Y ′′). Then using compliance, sub- and supermodularity
of ρi, σi, and (8), (9) we get

ρ(X) + ρ(X ′) = ρ1(X ∪ Y )− σ2(Y ) + ρ1(X ′ ∪ Y ′)− σ2(Y ′)
≥ ρ1(X∪X ′∪Y ∪Y ′) + ρ1((X∩X ′) ∪ (Y ∩Y ′))− σ2(Y ∪Y ′)− σ2(Y ∩Y ′)

≥ ρ(X ∪X ′) + ρ(X ∩X ′),
ρ(X)− σ(X ′) = ρ1(X ∪ Y )− σ2(Y )− σ1(X ′ ∪ Y ′′) + ρ2(Y ′′)

≥ ρ1((X\X ′) ∪ (Y \Y ′′))− σ1((X ′\X) ∪ (Y ′′\Y ))− σ2(Y \Y ′′) + ρ2(Y ′′\Y )

≥ ρ(X \X ′)− σ(X ′ \X).

Thus (1) and (3) are satisfied for any X,X ′ ⊆ S and (2) can be verified similarly
as (1). Moreover, ρ(∅) = σ(∅) = 0 because ρ1(Y ) ≥ σ2(Y ), ρ2(Y ) ≥ σ1(Y ) for any
Y ⊆ T . Therefore, P = (S, ρ, σ) is a g-polymatroid. By (8) and (9), if P1 and P2 are
integral, so then is P.

If v ∈ P2 and u⊕v ∈ P1, then for any X ⊆ S, Y ⊆ T , u(X)+v(Y ) ≤ ρ1(X ∪Y ),
v(Y ) ≥ σ2(Y ), i.e., u(X) ≤ ρ1(X ∪ Y ) − σ2(Y ). Thus, u(X) ≤ ρ(X) (X ⊆ S).
Similarly, u(X) ≥ σ(X) (X ⊆ S) and, therefore, u ∈ P.

For the converse, we prove that if u ∈ P, then there exists v ∈ P2 so that u⊕v ∈ P1

and, moreover, if P1, P2 and u are integral, then v can be chosen to be integral too.
We shall do it in two steps.

(a) Suppose P2 = {v} (i.e., v ∈ RT and ρ2(Y ) = σ2(Y ) = v(Y ) for any Y ⊆ T ).
If u ∈ P, then, by (8), for any X ⊆ S, Y ⊆ T , u(X) ≤ ρ(X) ≤ ρ1(X ∪Y )−v(Y ) and,
thus, u(X) + v(Y ) ≤ ρ1(X ∪Y ). Similarly, u(X) + v(Y ) ≥ σ1(X ∪Y ) and, therefore,
u⊕ v ∈ P1, which proves the theorem in this case.

(b) Suppose P2 is arbitrary and u ∈ P. Let Pu = {v ∈ RT ; u ⊕ v ∈ P1}.
From item (a) it follows that Pu is a g-polymatroid (T, ρu, σu) so that ρu(Y ) =
minX⊆S(ρ1(X∪Y )−u(X)) and σu(Y ) = maxX⊆S(σ1(X∪Y )−u(X)) for any Y ⊆ T
(note that we must “interchange” the role of S and T ).

Fix Y ⊆ T and choose X ⊆ S so that ρu(Y ) = ρ1(X ∪ Y )− u(X). Since u ∈ P,
we have u(X) ≤ ρ(X) and, by (8), ρ(X) ≤ ρ1(X ∪ Y )− σ2(Y ). Thus

ρu(Y ) = ρ1(X ∪ Y )− u(X) ≥ ρ1(X ∪ Y )− ρ(X)

≥ ρ1(X ∪ Y )− ρ1(X ∪ Y ) + σ2(Y ) = σ2(Y ).

Similarly, σu(Y ) ≤ ρ2(Y ). Therefore, for any Y ⊆ T , ρu(Y ) ≥ σ2(Y ) and σu(Y ) ≤
ρ2(Y ) and, by Corollary 1, Pu and P2 have a vector v in common. Thus, by the
definition of Pu, we have v ∈ P2 so that u⊕ v ∈ P1.

Furthermore, if P1 and u are integral, so then is Pu. If P2 is also integral, then,
by Corollary 1, v can be chosen to be integral, concluding the proof.

In the proof, we have used only Corollary 1 and the inequalities (1)–(3), though
we are aware that some known results can be used effectively too. (For instance, Pu

can be obtained after intersecting P1 with a suitable box and then applying restriction
to T (see Example 4 and [FT]). Similarly, P can be obtained.) But the aim of this
paper is not to prove Theorem 2, but to introduce it as a general framework for
constructions and operations. Therefore, we did not use the results which should be
later presented as consequences of this theorem.

The next example is simple and transparent.
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Example 4. Let P = (S, ρ, σ) be a g-polymatroid and X ⊆ S. Then the partial
intersection of P and RS\X is called the restriction (or projection) of P to X and
denoted by P|X = (X, ρ|X,σ|X). By Theorem 2 and Example 1, ρ|X (σ|X) is a
restriction of ρ (σ) to 2X and P|X = {u|X; u ∈ P}.

4. Flows in abstract networks. All graphs displayed in this paper are finite
and may have multiple edges but no loops. Each edge gives rise to two oppositely
directed edges called arcs. For an arc x, we denote by −x the reverse arc arising from
the same edge. The set of all arcs of a graph G = (V (G), E(G)) will be denoted by
D(G), i.e., |D(G)| = 2|E(G)|. For any U ⊆ V (G), ∆U denotes the set of arcs directed
from V (G) \ U to U (we write ∆v if U = {v}).

An abstract g-polymatroidal flow network N (abstract network) is a graph G where
each vertex v of G is accompanied with a polymatroid Pv = (∆v, ρv, σv). N is called
integral if any Pv is integral. A chain in N is any f ∈ RD(G) satisfying f(−x) = −f(x)
for any arc x of G. A chain f in N is called flow in N if for any vertex v of G,
f |∆v ∈ Pv, i.e., σv(X) ≤ f(X) ≤ ρv(X) for any X ⊆ ∆v. If a chain (flow) in N
is integer valued, then it is called integral. A U -value of a chain f is f(∆U ) for any
U ⊆ V (G). A vertex v of G is called inner if ρv(∆v) = σv(∆v) = 0. Otherwise, it is
called outer.

Suppose X ⊆ D(G). Then, −X = {x;−x ∈ X}. X is called symmetric (asym-
metric) if −X = X (−X ∩ X = ∅). If A ⊆ E(G), then D(A) denotes the set of
arcs rising from the edges of A (for instance, D(E(G)) = D(G) and D(e) is the cou-
ple of arcs arising from an edge e of G). If U ⊆ V (G), then −U = V (G) \ U (i.e.,
−∆U = ∆−U ). By a U -cut of N we mean a triple (U,A,B) so that A = A′ \∆−U ,
B = B′ \∆U , where the couple A′, B′ is a partition of D(G) into two symmetric sets.
The upper capacity of the U -cut (U,A,B) is defined as

cup(U,A,B) =
∑
v∈U

ρv(∆v ∩A)−
∑
v∈−U

σv(∆v ∩B).

The lower capacity of the U -cut (U,A,B) is defined

clow(U,A,B) =
∑
v∈U

σv(∆v ∩A)−
∑
v∈−U

ρv(∆v ∩B).

Clearly, cup(U,A,B) = −clow(−U,B,A). Note that we allow U , A, or B to be empty.
The next theorem characterizes the abstract networks admitting flows. Theorem

4 is the max-flow min-cut theorem for our model.
Theorem 3. Let N be an (integral) abstract network on a graph G. Then the

following conditions are equivalent:
(a) N admits an (integral) flow.
(b) Every V (G)- and ∅-cut of N has nonnegative upper capacity.
(c) Every V (G)- and ∅-cut of N has nonpositive lower capacity.
Proof. For any e ∈ E(G), let Pe = (D(e), ρe, σe) be the principal g-polymatroid

on D(e). Take P1 = (D(G), ρ1, σ1) =
⊕

e∈E(G) Pe and P2 = (D(G), ρ2, σ2) =⊕
v∈V (G) Pv. Then f is a flow in N iff f ∈ P1 ∩ P2. By Corollary 1, the inter-

section of P1 and P2 is nonempty iff ρ1(X) ≥ σ2(X) and ρ2(X) ≥ σ1(X) for any
X ⊆ D(G). Trivially this holds if −X 6= X, because then ∞ = ρ1(X) = −σ1(X) (see
Example 2). Thus, these conditions remain to verify only for symmetric X. But then
ρ1(X) = σ1(X) = 0, and, therefore, (a), (b), and (c) are equivalent.

Theorem 4. Let N be an abstract network on a graph G admitting a flow and
U ⊆ V (G). Then the maximal (minimal) U -value of a flow in N is equal to the
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minimal upper (maximal lower) capacity of a U -cut in N . Furthermore, if N is
integral and the maximal (minimal) U -value of N is finite, then there exists integral
flow in F with the maximal (minimal) U -value.

Proof. For any v ∈ −U , let Pv be the g-polymatroid on −∆v isomorphic with
−Pv under the isomorphism x 7→ −x, and for any e ∈ E(G), let Pe be the principal
g-polymatroid on D(e). Let EU and E−U be the sets comprising the edges with both
ends in U and −U , respectively. Take D′ = D(G) \∆−U and

P1 = (D′, ρ1, σ1) =

 ⊕
e∈E−U

Pe

⊕(⊕
v∈U

Pv

)
,

P2 = (D′, ρ2, σ2) =

(⊕
e∈EU

Pe

)
⊕
( ⊕
v∈−U

Pv

)
.

Then f is a flow in N iff f = f |D′ ∈ P1 ∩ P2 and the U -value of f is equal to
f(D′). Therefore, by Corollary 2, the maximal U -value of a flow in N is equal to
minX⊆D′(ρ1(X) + ρ2(D′ \ X)). Using the arguments from the proof of Theorem
3, we can show that X \ ∆U must be symmetric and that ρ1(X) + ρ2(D′ \ X) =
cup(U,X,D′ \X). Thus the maximal U -value is equal to the minimal upper capacity
of a U -cut. Similarly, the property for the minimal U -value can be checked. The
conditions for integrality follows from Corollary 2.

Suppose N is an abstract network on a graph G, U ⊆ V (G) and f is a flow in
N . Then f |∆U is called a U -transversal of N . The set of all U -transversals of N is
called a U -gammoid of N . (If U = {v}, then we speak about a v-transversal and a
v-gammoid of N .) In section 7 we show that these notions generalize transversals and
gammoids, which are known from transversal theory.

Theorem 5. Let N be an (integral) abstract network on a graph G with a
collection of g-polymatroids Pv = (∆v, ρv, σv) (v ∈ V (G)). Suppose F admits a flow
and has an outer vertex t such that Pt = R∆t . Let G \ t denote the graph obtained
from G after removing the vertex t and all its neighboring edges. Then the t-gammoid
of N is an (integral) g-polymatroid P = (∆t, ρ, σ) such that

ρ(X) = max {f(X); f is an (integral) flow in N}
= min
Z⊆E(G\t)

∑
v∈V (G\t)

−σv(∆v ∩ (−X ∪D(Z))),

σ(X) = min {f(X); f is an (integral) flow in N}
= max
Z⊆E(G\t)

∑
v∈V (G\t)

−ρv(∆v ∩ (−X ∪D(Z)))

for any X ⊆ ∆t. Furthermore, if N is integral, then any integral t-transversal of N
can be extended into an integral flow in N .

Proof. Let P1 and P2 be defined as in the proof of Theorem 3. Take P′2 =
(D(G) \∆t, ρ

′
2, σ
′
2) =

⊕
v∈V (G)\t Pv = P2|(D(G) \∆t). Then the t-gammoid of N is

the partial intersection of P1 and P′2, and by Theorem 2, it is equal to P = (∆t, ρ, σ)
so that for any X ⊆ ∆t,

ρ(X) = min
Y⊆D(G)\∆t

(ρ1(X ∪ Y )− σ′2(Y )).

Also, from the properties of P1 and Example 2, it follows that we should consider only
the cases if X ∪ Y is symmetric, i.e., Y = −X ∪D(Z) where Z ⊆ E(G \ t). Then the
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formula for ρ(X) from Theorem 5 is valid. A similar situation holds for σ(X). The
conditions for integrality follow from Theorem 2.

Take the abstract network N1 from Fig. 1 so that Pu, Pv, Pt are isomorphic with
−P1, P2, R∆t , respectively. Then the t-gammoid of N1 is just the partial intersection
of P1 and P2, and Theorem 2 follows from Theorem 5. Thus these two statements are
equivalent.

Examples 5 and 6 will be used in the next section. The latter presents an appli-
cation of Theorem 5.

Example 5. Let P = (S, ρ, σ) be a g-polymatroid and S′ = S ∪ s′, s′ /∈ S. Define
ρ′ : 2S

′ → R ∪ {∞}, σ′ : 2S
′ → R ∪ {−∞} such that

ρ′(X) = ρ(X), σ′(X) = σ(X) if X ⊆ S,(10)

ρ′(X) = −σ(S \X), σ′(X) = −ρ(S \X) if s′ ∈ X ⊆ S′.
By (1)–(3), P′ = (S′, ρ′, σ′) is a g-polymatroid. We call it the 0-extension of P to S′.
Clearly, P′ = {u ∈ RS′ ; u|S ∈ P and u(s′) = −u(S)} (see also Fujishige [F2, Theorem
3.58]).

Example 6. Let P1 = (S1, ρ1, σ1), P2 = (S2, ρ2, σ2) be g-polymatroids, S1∩S2 = ∅,
ρ1(S1) ≥ σ2(S2) and ρ2(S2) ≥ σ1(S1). Then there exists a g-polymatroid P1 ª= P2 =
(S1 ∪ S2, ρ, σ) so that P1 ª= P2 = {u ⊕ v; u ∈ P1,v ∈ −P2,u(S1) = −v(S2)} and for
any X ⊆ S1, Y ⊆ S2,

ρ(X ∪ Y ) = min{ρ1(X)− σ2(Y ),−σ1(S1 \X) + ρ2(S2 \ Y )},(11)

σ(X ∪ Y ) = max{σ1(X)− ρ2(Y ),−ρ1(S1 \X) + σ2(S2 \ Y )}.
It can be obtained as follows. Take the edge e from the graph from Fig. 2 and denote
by eu and ev the arcs arising from e and directed to u and v, respectively. Suppose
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S1 = ∆u \eu, S2 = ∆v \ev. Consider the abstract network N2 on the graph from Fig.
2 so that Pu and Pv are the 0-extensions of −P1 and P2, respectively, and Pt = R∆t .
Then the t-gammoid of N2 is isomorphic with P1 ª= P2 and (11) follows from Theorem
5 and the equations in (10). Clearly, P1 ª= P2 = −(P2 ª= P1).

5. Connections with other flow models. An orientation of a graph G is a di-
rected graph (digraph)G′ arising fromG after endowing all of its edges by orientations.
Then G is called the underlying graph of G′. Note that E(G′) is a maximal asymmet-
ric subset of D(G) (i.e., E(G′) ∩ (−E(G′)) = ∅ and E(G′) ∪ (−E(G′)) = D(G)) and
V (G) = V (G′). If U ⊆ V (G′), then ∆−U denotes the set of arcs from E(G′) directed
from U to V (G′) \ U and ∆+

U = ∆−V (G′)\U .

Suppose N is an abstract network in a graph G. If G′ is an orientation of G,
then any chain (flow) in N is uniquely determined by its values on the arcs of G′.
Moreover, we can check that f is a chain (flow) in N iff f ′ = f |E(G′) is a flow
(feasible flow) in a quasi polymatroidal flow network on G′ (defined in [K6]). Thus
these two flow models are equivalent. This fact gives meaning to several notions we
have introduced before. For instance, if v is an inner vertex of the abstract network N
(i.e., ρv(∆v) = σv(∆v) = 0) and f is a flow in N , then the sum of the values of f ′ on
the arcs from G′ entering v is equal to the sum of the values of f ′ on the arcs from G′

leaving v (in terms from [K6], v is balanced). This corresponds with the situation that
the flow f ′ “enters and leaves” the network in the outer vertices and “comes through”
the inner vertices. Furthermore, the U -value of f is equal to f ′(∆+

U ) − f ′(∆−U ). In
this context it is clear that Theorem 4 is, in fact, the max-flow min-cut theorem for
abstract networks.

Let us stress a similarity with the concept of group-valued flows on graphs as
presented in [K7] and [K8]. In these papers, what we mean by an abstract network is
a couple (G,S) where S ⊆ V (G) is a set of outer vertices. The vertices from V (G)\S
are called inner. Let A be an additive Abelian group. Then an A-chain in (G,S) is
any mapping ϕD(G)→ A so that ϕ(−x) = −ϕ(x) for any arc x of G. A boundary of
ϕ is ∂ϕV (G)→ A so that ∂ϕ(v) =

∑
x∈−∆v ϕ(x). An A-chain is said to be an A-flow

if ∂ϕ(v) = 0 for every inner vertex v of (G,S). Using the language of homology, the
A-chains and A-flows in (G,S) correspond to 0-chains in G and to relative 1-cycles
mod S with coefficients in A, respectively. We have used an analogical terminology
for abstract g-polymatroidal flow networks and dealt with chains and flows (though
following the notation used in combinatorial optimization we should call them “flows”
and “feasible flows,” respectively, as we have done in [K6]). Note that the A-flows in
(G, ∅) correspond with the usual definition of A-flows in G as presented, e.g., in the
survey article of Jaeger [J] (in fact, it suffices to consider the restrictions of A-flows
on an orientation of G).

Now we shall introduce the flow model from Lawler and Martel [LM3]. A g-
polymatroidal flow network F is a digraph G′ with a source s, a sink t, and a collection
of g-polymatroids P+

v = (∆+
v , ρ

+
v , σ

+
v ), P−v = (∆−v , ρ

−
v , σ

−
v ) (v ∈ V (G′)). We call F

integral if all P+
v , P−v are integral. By an (integral) chain in F we mean any vector in

RE(G′) (ZE(G′)). A chain f in F is said to be a flow in F if

f(∆+
v ) = f(∆−v ) for any v ∈ V (G′), v 6= s, t,

σ+
v (X) ≤ f(X) ≤ ρ+

v (X) for any v ∈ V (G′) and X ⊆ ∆+
v ,

σ−v (X) ≤ f(X) ≤ ρ−v (X) for any v ∈ V (G′) and X ⊆ ∆−v .

If f is a flow in F , then vf = f(∆−s ) − f(∆+
s ) is called the value of f . Moreover,
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if U ⊆ V (G′), then f |(∆+
U ∪ ∆−U ) is called a U -transversal of F . The set of all

U -transversals of F is called a U -gammoid of F .

In the proof of the next theorem we show that this model can be expressed in the
framework of flows in abstract networks. But in order to formulate this theorem we
need another class of polyhedra from [K6].

If S1 and S2 are disjoint finite sets and P = (S1 ∪ S2, ρ, σ) is a g-polymatroid,
then Q = {u ⊕ v; u ⊕ −v ∈ P,u ∈ RS1 ,v ∈ RS2} is called a quasi polymatroid
(q-polymatroid) on the ordered couple of ground sets (S1, S2). Formally, we write
Q = (S1, S2, ρ, σ) and P is called the underlying g-polymatroid of Q. Q is called
integral if P is integral. More details are in section 8.

Theorem 6. Let F be an (integral) g-polymatroidal flow network on a digraph G′

with a source s, a sink t, and a collection of g-polymatroids P+
v = (∆+

v , ρ
+
v , σ

+
v ), P−v =

(∆−v , ρ
−
v , σ

−
v ) (v ∈ V (G′)). Suppose P+

t = R∆
+
t , P−t = R∆

−
t , and F admits a flow.

Let G′ \ t denote the digraph obtained from G′ after removing t and all its neighboring
arcs. Then the t-gammoid of F is an (integral) q-polymatroid Q = (∆+

t , ∆
−
t , ρ, σ)

where

ρ(X) = max
{
f(X∩∆+

t )− f(X∩∆−t ); f is an (integral) flow in F}
= min
U⊆V (G′)
s∈U,t/∈U

min
Y⊆E(G′\t)

(∑
v∈U
−σ+

v (∆+
v ∩ (X ∪ Y )) + ρ−v (∆−v ∩ (X ∪ Y ))

+
∑

v∈V (G′)\(U∪t)
ρ+
v (∆+

v \ (X ∪ Y ))− σ−v (∆−v \ (X ∪ Y ))

)
,

σ(X) = min
{
f(X∩∆+

t )− f(X∩∆−t ); f is an (integral) flow in F}
= max
U⊆V (G′)
s∈U,t/∈U

min
Y⊆E(G′\t)

(∑
v∈U
−ρ+

v (∆+
v ∩ (X ∪ Y )) + σ−v (∆−v ∩ (X ∪ Y ))

+
∑

v∈V (G′)\(U∪t)
σ+
v (∆+

v \ (X ∪ Y ))− ρ−v (∆−v \ (X ∪ Y ))

)

for any X ⊆ ∆t. Furthermore, if F is integral, then any integral t-transversal of F
can be extended into an integral flow in F .

Proof. For any v ∈ V (G′), let P̃−v be the g-polymatroid on −∆−v isomorphic with
P−v under the isomorphism x 7→ −x. Take an abstract network N3 on the underlying

graph G of G′ so that Pv = (∆v, ρv, σv) = P+
v
ª
=
P̃−v for any v ∈ V (G) \ {s, t} (see

Example 6) and Ps = P+
s ⊕−P−s , Pt = P+

t ⊕P−t . Let Q and P be the t-gammoids of F
and N3, respectively. Then u ∈ Q iff (u|∆+

t )⊕ (−u|∆−t ) ∈ P. Therefore, by Theorem
5, Q is a q-polymatroid (∆+

t , ∆
−
t , ρ, σ) so that for any X ⊆ ∆+

t ∪∆−t (see also (11)),

ρ(X) = min
Z⊆E(G\t)

∑
v∈V (G\t)

−σv(∆v ∩ (X ∪D(Z)))

= min
Y⊆E(G′\t)

(
−σ+

s (∆+
s ∩ (X ∪ Y )) + ρ−s (∆−s ∩ (X ∪ Y ))

+
∑

v∈V (G′)\{s,t}
min

{−σ+
v (∆+

v ∩ (X ∪ Y )) + ρ−v (∆−v ∩ (X ∪ Y )) ,
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ρ+
v (∆+

v \ (X ∪ Y ))− σ−v (∆−v \ (X ∪ Y ))
})

= min
Y⊆E(G′\t)

min
U⊆V (G′)
s∈U,t/∈U

(∑
v∈U
−σ+

v (∆+
v ∩ (X ∪ Y )) + ρ−v (∆−v ∩ (X ∪ Y ))

+
∑

v∈V (G′)\(U∪t)
ρ+
v (∆+

v \ (X ∪ Y ))− σ−v (∆−v \ (X ∪ Y ))

)
.

The rest of the proof is either trivial or follows directly from Theorem 5.
Note that if G′ has an oriented loop e, then we can subdivide it by a new vertex ve

and take P+
ve and P−ve to be the free g-polymatroids. Since P+

ve
ª
=
P̃−ve is the principal

g-polymatroid, we get that Theorem 6 holds also if G′ has oriented loops.
We shall apply this result for networks where ∆−t = ∅. Then Q becomes a g-

polymatroid (∆+
t , ρ, σ) so that ρ and σ satisfy the formulas from Theorem 6.

If we have a g-polymatroidal flow network F where all P+
v and P−v are polyma-

troids, we get a polymatroidal flow network introduced by Lawler and Martel [LM1].
Now we can simplify Theorem 6.

Theorem 7. Let F be an (integral) polymatroidal flow network on a digraph
G′ with a source s, a sink t, and a collection of polymatroids P+

v = (∆+
v , ρ

+
v ), P−v =

(∆−v , ρ
−
v ) (v ∈ V (G′)). Let P+

t be the free polymatroid on ∆+
t and ∆−t = ∅. Then, the

t-gammoid of F is an (integral) polymatroid P = (∆+
t , ρ) such that

ρ(X) = max {f(X); f is an (integral) flow in F}

= min
U⊆V (G′)
s∈U,t/∈U

min
Z⊆∆−U

(∑
v∈U

ρ−v (∆−v ∩ (X ∪ Z))

+
∑

v∈V (G′)\(U∪t)
ρ+
v (∆+

v ∩ (∆−U \ Z))

)

for any X ⊆ ∆+
t . Furthermore, if F is integral, then any integral t-transversal of F

can be extended into an integral flow in F .
Proof. Now σ+

v ≡ 0 and σ−v ≡ 0 for any v ∈ V . Thus, by Theorem 6,

ρ(X) = min
U⊆V (G′)
s∈U,t/∈U

min
Y⊆E(G′\t)

(∑
v∈U

ρ−v (∆−v ∩ (X ∪ Y ))(12)

+
∑

v∈V (G′)\(U∪t)
ρ+
v (∆+

v \ (X ∪ Y ))

)
.

Let S and T be the sets of arcs from G′ with both ends in U and −U (= V (G′) \U),
respectively. If u ∈ U and w ∈ −U , then from the monotonicity of ρ+

w and ρ−u we get

ρ−u (∆−u ∩ (X ∪ Y )) ≥ ρ−u (∆−u ∩ (X ∪ (Y \S))),

ρ+
w(∆+

w \ (X ∪ Y )) ≥ ρ+
w(∆+

w \ (X ∪ Y ∪ T )).

Thus the minimum in (12) occurs if T ⊆ Y ⊆ E(G′) \ S, i.e., Y can be changed only
on the set ∆+

U ∪∆−U . Furthermore, let R = Y ∩∆+
U . Then,

∆−u ∩ (X ∪ Y ) = ∆−u ∩ (X ∪ (Y \R)),

∆+
w \ (X ∪ Y ) = ∆+

w \ (X ∪ (Y \R)),
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and the minimum in (12) occurs if Y ∩ ∆+
U = ∅, i.e., T ⊆ Y ⊆ E(G′) \ (S ∪ ∆+

U ).
Therefore, we can take Z ⊆ ∆−U and transform (12) into the formula described in
Theorem 7.

6. Operations on polymatroids. Theorems 5, 6, and 7 can be used as general
frameworks for describing almost all operations on matroids, polymatroids, and g-
polymatroids. We give two transparent examples.

Example 7. Take the operation sum of g-polymatroids (see Frank and Tardos
[FT]). Let P1 = (S, ρ1, σ1) and P2 = (S, ρ2, σ2) be two g-polymatroids. Then the sum
of P1 and P2 is the g-polymatroid P1 + P2 = (S, ρ1 + ρ2, σ1 + σ2) and u ∈ P1 + P2 iff
there exists u1 ∈ P1 and u2 ∈ P2 so that u = u1 + u2 (i.e., u(s) = u1(s) + u2(s) for
any s ∈ S). Furthermore, if P1, P2, and u are integral, then u1 and u2 can be chosen
to be integral.

Clearly, P1 + P2 is the t-gammoid of the g-polymatroidal flow network F1 on the
digraph from Fig. 3 provided P−v is isomorphic with P1, P−w is isomorphic with P2

and, in all other cases, P+
u (P−u ) is a free g-polymatroid on ∆+

u (∆−u ). The properties
of P1 + P2 are consequences of Theorem 6. For instance, by Theorem 6 and equation
(4), for any X ⊆ S,

ρ(X) = max {f(X); f is an (integral) feasible flow in F1}
= ρ1(X) + ρ2(X).

Example 8. Now we describe the operation on polymatroids called c-dual. It
was introduced by McDiarmid [McD] (see also [We], [F2]). Let P = (S, ρ) be a
polymatroid and c ∈ RS such that c(X) ≥ ρ(X) for any X ⊆ S. Then the c-dual of P
is the polymatroid Pc = (S, ρc), where ρc(X) = c(X)−ρ(S)+ρ(S\X) for any X ⊆ S.
Furthermore, u ∈ Pc iff there exists y ∈ P such that y(S) = ρ(S)and y ≤ c− u (i.e.,
y(s) ≤ c(s)− u(s) for any s ∈ S).

Then Pc is the t-gammoid of the g-polymatroidal flow network F2 on the digraph
from Fig. 4 having the following properties: P+

v is isomorphic with P, e has the upper
and the lower capacities equal to ρ(S) (i.e., P−v = P+

s = {ρ(S)}), c = (c1, . . . , cn),
and e′i has the upper and lower capacities ci and 0, respectively (i.e., P+

ui = (∆+
ui , ρ

+
ui

)
satisfies ρ+

ui(∆
+
ui) = ci, i = 1, . . . , n). All other constrained polymatroids are free.

Note that only e has nonzero lower capacity and, therefore, the flow network is g-
polymatroidal and not polymatroidal. But the t-gammoid is, in fact, a polymatroid.
By Theorem 6,

ρc(X) = max {f(X); f is an (integral) feasible flow in F2} .
Let X = {ei1 , . . . , eik}. Using the greedy algorithm (see, e.g., [We]) we can arrange a
flow g in F2 so that g({e′′i1 , . . . , e′′ik}) = ρ(S)− ρ(S \X) and g({e′i1 , . . . , e′ik}) = c(X).
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Then g({ei1 , . . . , eik}) = c(X)− ρ(S) + ρ(S \X). Furthermore, for any flow f in F2,
f({e′′i1 , . . . , e′′ik}) ≥ ρ(S)− ρ(S \X) and f({ei1 , . . . , eik}) ≤ c(X)− f({e′′i1 , . . . , e′′ik}) ≤
c(X)− ρ(S) + ρ(S \X). Thus, ρc(X) = c(X)− ρ(S) + ρ(S \X).

In Examples 7 and 8 we have described two operations using (4), (5), and Theo-
rem 6. Similarly, other basic operations on matroids and (generalized) polymatroids
can be described—for instance, sum, discrete sum, translation, truncation, (inverse)
homomorphic image, intersections with a plank and a box. For definitions see Welsh
[We], Aigner [A], Fujishige [F2], and Frank and Tardos [FT]. We have deleted a
more detailed description because we believe that the above examples are sufficiently
transparent and convincing.

7. Transversals, gammoids, and linking systems. In this section we show
that Theorem 7 generalizes some results from transversal theory, especially the con-
structions of transversal matroids and gammoids. First we recall some known notions.
By a uniform matroid of rank k we mean (S, ρ), where ρ(X) = min{k, |X|} for any
X ⊆ S. If k = |S|, then we get the free matroid on S. Note that a matroid (S, ρ) is
identified with the set {X ⊆ S; ρ(X) = |X|} in this section (see, e.g., [O], [We]).

Let A = (Ai : i ∈ I) be a finite system of subsets of a finite set S. A subset X of S
is called a partial transversal of A if there exists a bijection α : X → I ′ ⊆ I such that
x ∈ Aα(x) for any x ∈ X. By the theorem of Edmonds and Fulkerson [EF], the system
of partial transversals of A form a matroid on S. Matroids of this kind are called
transversal matroids. Clearly, the partial transversals of A are the t-transversals of
the following polymatroidal flow network: Take a bipartite digraph with partition of
vertices S, I such that if v ∈ S and i ∈ I, then there exists a (v, i) arc iff v ∈ Ai. Add
a source s, a sink t, the arcs (s, v) for every v ∈ S, and the arcs (i, t) for every i ∈ I.
Let P−s be the free matroid on ∆−s , P+

t be the free polymatroid on ∆+
t , and all other

constraints are uniform matroids of rank 1.

Gammoids generalize the transversal matroids and were introduced by Perfect
[Pe] and Pym [Py] (see also Welsh [We] and Aigner [A]). They are constructed as
follows: Take a digraph G′. For two subsets X, Y of V (G′) we say that X can be
linked into Y if for some bijection ϕ : X → Y we can find vertex disjoint paths
(Pv : v ∈ X) in G′ such that Pv has terminal vertex v and initial vertex ϕ(v). Then,
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for any digraph G′ and any subsets S, T of V (G′), the set

LS(G′, T ) = {X ⊆ S;X can be linked into a Y ⊆ T}

is the collection of independent sets of a matroid on S. Matroids arising in this way
are called gammoids. It is known that transversal matroids form a proper subclass of
gammoids. See Welsh [We] or Aigner [A] for more details.

But LS(G′, T ) is isomorphic with the t-gammoid of a polymatroidal flow network
F3 defined as follows: Let G′′ be the digraph arising from G′ after adding two new
vertices s, t and the arcs directed from s to every v ∈ S and from every v ∈ T to
t. Let s be the source and t be the sink of F3. Let P−s be the free matroid on ∆−s ,
P+
t be the free polymatroid on ∆+

t , and all other constraints are uniform matroids of
rank 1. Then the t-gammoid of F3 is isomorphic with LS(G′, T ). Thus Theorem 7
generalizes the results of Edmonds and Fulkerson [EF], Perfect [Pe], and Pym [Py],
and the notions of t-transversals and t-gammoids generalize the notions of transversals
and gammoids, respectively.

In [K1], [K2], [K3], and [K5] we have generalized several results from transversal
theory. Some of them can be covered by Theorem 7. For instance, [K5, Theorem 3]
is, in fact, Theorem 7 restricted to polymatroidal flow networks on digraphs G′ of the
following type: The vertex set of G′ consists of four sets V1 = s, V2 = S, V3 = T ,
V4 = t, and, furthermore, for every i = 1, 2, 3 and every x ∈ Vi, y ∈ Vi+1, there exists
just one arc directed from x to y and there are no other arcs in G′. On the other
hand it is an easy task to prove that Theorem 7 is equivalent with [K5, Theorem 3].

Another very interesting generalization of transversals and gammoids was pre-
sented by Schrijver [S2] using linking systems. A similar approach was introduced in
Kung [Ku]. The linking system is a triple (S, T, Λ) where S and T are finite sets and
Λ is a set of couples (X,Y ) satisfying |X| = |Y |, X ⊆ S, Y ⊆ T , and other special
conditions which we do not repeat here, because for us the fact (see [S2, Theorem 3.2])
that {Y ∪S\X; (X,Y ) ∈ Λ} form a system of the basis of a matroid (S∪T, ρΛ) with a
base S is more important (note that B ⊆ S∪T is a base if ρΛ(S∪T ) = ρΛ(B) = |B|).
If (S, ρ) is a matroid and (S, T, Λ) a linking system, then the set

{Y ⊆ T ; (X,Y ) ∈ Λ for a set X ⊆ S satisfying |X| = ρ(X)}

is again a matroid (see [S2, Theorem 3.3]. But this matroid is the t-gammoid of the
g-polymatroidal flow network F4 on the digraph from Fig. 5 so that P−v = (S∪T, ρΛ),
P−u = (S, ρ), P+

v = {ρΛ(S ∪ T )}, P+
ui , P

−
ui , P

+
vj , P

−
vj (i = 1, . . . , k, j = 1, . . . , r) are all

uniform matroids of rank 1 and all other constraints are free g-polymatroids. Thus
Theorem 6 generalizes the constructions based on [S2, Theorem 3.3]. Note that the
characteristic vectors of linking systems form a quasi polymatroid (to show this we
can use a similar network as depicted in Fig. 5). Thus Theorem 3.3 from [S2] is also
a direct corollary of Theorem 2. Analogously as polymatroids generalize matroids,
polylinking systems generalize linking systems and have been introduced in Schrijver
[S1] (see also the discussion in the last chapter).

Lawler and Martel [LM2] have used polymatroidal flow networks for formulating
many problems from combinatorial optimization. In sections 6 and 7 we have shown
that Theorems 5, 6, and 7 can play a similar role.

8. Properties of U-gammoids. If Q = (S1, S2, ρ, σ) is a q-polymatroid equal
to a g-polymatroid on the ground set S1 ∪ S2, then Q is called improper. Otherwise,
it is called proper. For instance, if P1 and P2 are g-polymatroids on S1 and S2
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respectively, then P1⊕P2 is an improper q-polymatroid on (S1, S2) with the underlying
g-polymatroid P1 ⊕ (−P2). Furthermore, if S2 = ∅, then Q = P1, i.e., every g-
polymatroid is a q-polymatroid.

If P = ({a, b}, ρ, σ) is the principal g-polymatroid on {a, b}, then Q = (a, b, ρ, σ)
is called the principal q-polymatroid on (a, b). By Example 2, Q = {u ∈ R{a,b}; u(a) =
u(b)}.

Lemma 1. The principal q-polymatroid Q on {a, b} satisfies:
(a) Q is a proper q-polymatroid.
(b) Q cannot be obtained as an intersection of two g-polymatroids on {a, b}.
Proof. If a g-polymatroid P = ({a, b}, ρ, σ) contains Q, then, by (4), (5), and

Example 2, P = R{a,b}. This fact implies the statement.
As pointed out in section 6, all basic operations on g-polymatroids can be de-

scribed in the framework of Theorem 6, i.e., for any operation there exists a g-poly-

matroidal flow network F ′ with a source s, a sink t, ∆−t = ∅, and P+
t = R∆

+
t so that

the t-gammoid of F ′ is the resulting polyhedron of the operation.
On the other hand, any network F from Theorem 6 describes an operation on

the g-polymatroids P+
v , P−v (v ∈ V (G) \ t) so that the result of the operation is the

t-gammoid of F . But if ∆+
t 6= ∅ 6= ∆−t , then the t-gammoid is a q-polymatroid. It

is natural to ask whether it is a proper q-polymatroid. We deal with this problem in
the next statement. A weak circuit C ′ in a digraph G′ is any orientation of a circuit
C from the underlying graph G of G′, i.e., E(C ′)∪ (−E(C ′)) = D(C). A circuit in G
is any connected subgraph with all vertices of degree two.

Proposition 1. Let G′ be a digraph with a source s and a sink t. Then there

exists a g-polymatroidal flow network F on G′ with P+
t = R∆

+
t , P−t = R∆

−
t , so that

the t-gammoid of F is a proper q-polymatroid iff G′ contains a weak circuit C ′ having
an arc from ∆+

t and an arc from ∆−t .
Proof. Necessity. Let G′ have a weak circuit C ′ with the above property. Suppose

G′ = C ′. Then choose F as follows: If v ∈ V (G′) and |∆+
v | = |∆−v | = 1, then P+

v and
P−v are free g-polymatroids, and if |∆+

v | = 2 (|∆−v | = 2) then P+
v (P−v ) is the principal

g-polymatroid on ∆+
v (∆−v ). Then the t-gammoid of F is the principal q-polymatroid;

thus, by Lemma 1, it is proper.
If G′ 6= C ′, then take F such that the arcs not contained in C have capacity zero

and the arcs from C are constrained as in the previous case. Then the t-gammoid
of F is a direct sum of the principal q-polymatroid and the zero vector; thus it is a
proper q-polymatroid (because its restriction is a proper q-polymatroid).

Sufficiency. Suppose G′ does not contain a cycle C ′ with the above property.
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Then G′ must contain two subdigraphs, G′1 and G′2, such that V (G′1) ∩ V (G′2) = t,
E(G′1) ∩ E(G′2) = ∅, E(G′1) ∪ E(G′2) = E(G′), ∆+

t ⊆ E(G′1) and ∆−t ⊆ E(G′2). If F
is a g-polymatroidal flow network on G′, then take F1 and F2 to be its restrictions to
G′1 and G′2, respectively. Then the t-gammoids of F1 and F2 are g-polymatroids on
∆+
t and ∆−t , respectively. Thus the t-gammoid of F is an improper q-polymatroid (it

is direct sum of the t-gammoids of F1 and F2).
In the next example we show that there are very natural and simple operations

on g-polymatroids with the resulting polyhedron equal to a q-polymatroid.
Example 9. Let S, T , R be finite pairwise disjoint sets and P1 = (S ∪ R, ρ1, σ1),

P2 = (T ∪ R, ρ2, σ2) be (integral) g-polymatroids. Suppose ρ1(Z) ≥ σ2(Z), ρ2(Z) ≥
σ1(Z) for any Z ⊆ R. Then there exists an (integral) q-polymatroid Q = (S, T, ρ, σ)
such that for any X ⊆ S, Y ⊆ T ,

ρ(X ∪ Y ) = min
Z⊆R

(
ρ1(X ∪ Z)− σ2(Y ∪ Z)

)
,

σ(X ∪ Y ) = max
Z⊆R

(
σ1(X ∪ Z)− ρ2(Y ∪ Z)

)
.

Vector u ∈ RS∪T (u ∈ ZS∪T ) is from Q iff there exists a vector v ∈ RR (v ∈ ZR) such
that (u|S)⊕v ∈ P1 and (u|T )⊕v ∈ P2. Q is the t-gammoid of the g-polymatroidal flow

network F5 on the digraph from Fig. 6, where P−u = P1, P+
v = P2, P−v = P+

s = R∆+
s ,

and P+
u = P−s = R∆−s . The formulas for ρ and σ follows from Theorem 6. If R = ∅,

then Q = P1⊕P2. If R 6= ∅, then, by Proposition 1, Q can be a proper q-polymatroid.
For instance, if R, S, T are singletons and P1, P2 are principal g-polymatroids, then
Q is the principal q-polymatroid on (S, T ).

From the results of Nakamura [N1], [N2], it follows that any q-polymatroid is a
universal polymatroid (or, equivalently, the greedy algorithm always works on it). But
the opposite implication does not hold. For instance, we can check that the convex
hull of {±e1,±e2} is a universal polymatroid in R2 but no q-polymatroid (see [N1]
for more details).

Note that by [GLS] there exists a polynomial algorithm that finds the maximum
of any objective function over the polytope arising as an intersection of finite number
of q-polymatroids (or universal polymatroids). But to find an optimal integral vector
from an intersection of a g-polymatroid and a q-polymatroid is NP-hard. This follows
from results of Chandrasekaran and Kabadi [CK]. On the other hand if Q1 and Q2

are two integral q-polymatroids on the same couple of ground sets (S1, S2), then this
problem has a polynomial algorithm because the following statement immediately
follows from Theorem 1.
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Corollary 3. Let Q1 = (S1, S2, ρ1, σ1) and Q2 = (S1, S2, ρ2, σ2) be two q-poly-
matroids. Then the following linear system is totally dual integral:

σi(X ∪ Y ) ≤ u(X)− u(Y ) ≤ ρi(X ∪ Y ), (i = 1, 2, X ⊆ S1, Y ⊆ S2).

Also, now, if Q1 and Q2 are integral q-polymatroids on (S1, S2), then Q1 ∩Q2 is
an integral polyhedron.

Suppose N is an abstract network on a graph G, U ⊆ V (G) and W = V (G) \ U .
Let GU (GW ) be the graph obtained from G after contracting the set U (W ) into
one new vertex u (w) and deleting the loops incident with u (w). Take NU (NW )
to be the abstract network on GU (GW ) so that Pu = R∆u (Pw = R∆w) and Pv be
the same as in N for any v ∈ W (v ∈ U). Let PU (PW ) be the u-gammoid of NU
(w-gammoid of NW ). By Theorem 5, PU and PW are g-polymatroids. Note that
∆u = ∆U = −∆W = −∆w. Let PW be the g-polymatroid isomorphic with −PW
under the isomorphism x 7→ −x. Then the U -gammoid of N is the intersection of PU
and PW . Thus we can conclude.

Theorem 8. Let N be an (integral) abstract network on a graph G, U ⊆ V (G)
and W = V (G) \ U . Then the U -gammoid of N is the (integral) polyhedron arising
as intersection of the (integral) g-polymatroids PU and PW . Furthermore, if N is
integral, then any integral U -transversal can be extended into an integral flow from
N .

In the proof of Theorem 6 we have shown that g-polymatroidal flow networks are
special cases of abstract networks. Then, from Proposition 1 and Corollary 3 follows
the next statement.

Proposition 2. If F is an (integral) g-polymatroidal flow network on a digraph
G′ and U ⊆ V (G′), then the U -gammoid of F can be obtained as an intersection of
two (integral) q-polymatroids on (∆+

U , ∆
−
U ). Furthermore, if F is integral, then any

integral U -transversal can be extended into an integral flow from F .
Note that using Lemma 1 and the ideas from the proof of Proposition 1 we can

show that if G′ contains a weak circuit C ′ having arcs from ∆+
U and ∆−U , then there

exists a g-polymatroidal flow network on G′ so that its U -gammoid cannot be obtained
as an intersection of two g-polymatroids.

Clearly, the classical flow model is just a special case of g-polymatroidal flow
networks. Therefore, Proposition 2 gives information about the behavior of flows on
edge cuts in the classical model, too.

9. Concluding remarks. By Fujishige [F1] (see also [FT], [F2], [S3]), g-poly-
matroids are the projections of base polyhedra on a basis hyperplane. Therefore, g-
polymatroids are not a substantial generalization of polymatroids and also Theorem 1
is equivalent to the Edmonds intersection theorem. Similarly, the flow model presented
in section 4 is equivalent not only to the models from [K6], [LM3] but also to the model
from [LM1].

But g-polymatroids are the most suitable polyhedra for expressing Theorem 2.
Define, for example, an operation partial intersection of polyhedra P1 in RS∪T and
P2 in RT to be a polyhedron P = {u ∈ RS ; u ⊕ v ∈ P1 for a v ∈ P2}. Then The-
orem 2, in fact, says that the class of (integral) g-polymatroids is closed under the
operation of partial intersection. Furthermore, this operation unifies and generalizes
other operations and constructions as have been shown in the paper. Such a simple
formulation cannot be used if we deal with polymatroids (if P1 and P2 are polyma-
troids, then P = P1|S, and this cannot play such an universal role as Theorem 2). If
we want to have an analogous universal tool for constructing polymatroids, we must
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deal with polylinking systems of Schrijver [S1], which form a class of polyhedra for-
mally different from the class of polymatroids. But in Theorem 2, we deal only with
g-polymatroids.

Similarly, the flow model from section 4 is the most suitable model for formulating
Theorems 5 and 8. For instance, formulation of Theorem 6 and Proposition 2 are more
clumsy because we must use q-polymatroids.

Acknowledgment. The author expresses thanks to S. Poljak and the unknown
referees for many valuable comments.
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Abstract. We present an off-line method for routing a linear complement permutation on a
hypercube. The routing has the virtue of being congestion-free. Our method is purely algebraic,
and the routing involves row reducing an invertible matrix to the identity by means of special row
operations.

Key words. hypercube, routing, congestion-free, linear complement permutation

AMS subject classifications. 05C, 68

PII. S0895480196301461

1. Introduction. In a previous paper [7] we obtained congestion-free routings
for bit permute complement (BPC) permutations on a hypercube. Routings for such
permutations were also studied by Z. Liu and J.-H. You [3], and by D. Nassimi and
S. Sahni [4, 5]. Using the conceptual framework of our earlier paper [6], we obtain
congestion-free routings for any linear complement (LC) permutation on a hypercube.
An LC permutation is one in which an n-bit string (expressed as a column vector)
is multiplied on the left by an invertible n × n matrix over GF(2), and then certain
specified bits of the resulting column vector are complemented. Alternatively, an LC
permutation amounts to an affine map (a linear map followed by a translation) of the
n-cube Qn ' Zn2 . Since a bit permute (BP) permutation π is a linear permutation
whose associated matrix M is the permutation matrix obtained by permuting the rows
of the identity matrix, every BPC permutation is an LC permutation. Algorithms
for routing LC permutations have been given by Boppana and Raghavendra [1] and
by Zemoudeh and Sengupta [9]. However, these routings are not congestion-free. At
certain stages of the routing, some nodes will contain two messages, while others
have none. F. T. Leighton [2, Problem 3.191, p. 758] considers the routing of linear
permutations and suggests a method somewhat similar to the one we present here.

2. Preliminaries. By Qn we mean the n-dimensional hypercube. π will denote
a permutation of V (Qn), the nodes of Qn. By d(x, y) we mean the (Hamming)
distance in Qn between nodes x and y. By the weight of x we mean the number of 1’s
in the n-tuple x, i.e., d(x, 0). For any subset B of {1, 2, . . . , n}, the complementation
σB is the permutation of Qn defined by σB(x) = x +

∑
i∈B ei, where {e1, . . . , en}

denotes the standard basis of Zn2 = Qn.
We now recall some definitions from [6].
[6, Definition 1.4]. k(π) = max{d(x, π(x))|x ∈ V (Qn)}.

∆ = {π ∈ Perm(Qn)|k(π) = 1}.
[6, Definition 1.1]. t∆(π) = min{t|π ∈ ∆t}, where ∆t is the set of all t-fold

products of elements of ∆.
As explained in the introduction of [6], a representation of π as an element of

∆t can naturally be identified with a t-step congestion-free routing of π, where by
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congestion-free we mean that at no time does any node contain more than one message.
Thus, t∆(π) is the minimum number of steps in a congestion-free routing of π. Clearly,
any routing of π requires at least k(π) steps (in a single step a message can stay put or
else travel a distance of 1), and so t∆(π) ≥ k(π). The purpose of this paper is to show
that for π any linear complement permutation of the nodes of Qn, congestion-free
routings are easy to construct. Moreover, each step of such a routing is again a linear
complement permutation.

A few words about notation are necessary. We shall express permutations as
products of cycles and denote by (1, 2, . . . ,m) the cycle which maps i to i + 1 for
1 ≤ i ≤ m − 1, and m to 1. We multiply cycles from right to left so that cycle
multiplication behaves exactly like composition of functions.

3. LU decompositions and routings.
Definition 3.1. For any invertible n × n matrix M with entries in GF (2), let

πM be the permutation of the nodes of Qn defined by πM (x) = M · x (thinking of x
as an n× 1 column vector).

Lemma 3.2. Let A be an n×n matrix such that I+A is invertible. Suppose that
for all x ∈ Qn, weight(A · x) ≤ 1. Then A has at most one nonzero row. If that row
is the ith, then Aii = 0. Conversely, if A has at most one nonzero row, then for all
x ∈ Qn, weight(A · x) ≤ 1.

Proof. Suppose that Ai, the ith row of A, is not zero. Suppose that Aik 6= 0 and,
for some j and l with j 6= i, Ajl 6= 0. If k = l, then weight(A · ek) ≥ 2. If k 6= l, then
weight(A · (ek + el)) ≥ 2, so no other row of A is nonzero.

Next, suppose that Aii 6= 0. Then (I +A)ii = 0. Therefore, the ith row of I +A
is a sum of some subset of the other rows of A. Hence the rows of I + A are linearly
dependent, contradicting the assumed invertibility of I +A.

Now, for the converse assume that the ith row of A is nonzero, and all other rows
are zero. For any x ∈ Qn, for j 6= i, the jth component of the column vector A · x is
zero. Thus weight(A · x) ≤ 1.

Corollary 3.3. If M 6= I and M is invertible, then πM ∈ ∆ ⇔ I + M has
exactly one nonzero row, and if that row is the ith, then Mii = 1. Conversely, if
I +M has row i as its unique nonzero row, and if Mii = 1, then M is invertible.

Proof. Let A = I +M . Then M = I +A, and the result follows from Lemma 3.2.
For the last assertion, note that by the hypotheses, M and I agree in every row except
(possibly) the ith, and Mii = 1. Computing det(M) by expanding along rows, it is
easy to see that det(M) = 1, and so M is invertible.

Corollary 3.4. If πM ∈ ∆, then M−1 = M .
Proof. We may assume that M 6= I. Let A = I +M . Then since I +A = M , by

Lemma 3.2 A has exactly one nonzero row, say the ith, and Aii = 0. Hence A2 = 0,
and so

M2 = (I +A)2 = I +A2 = I.

Hence M−1 = M .
Lemma 3.5. k(πM ) = n⇔ the vector [1, 1, . . . , 1]T ∈ range(I +M).
Proof. k(πM ) = n⇔ for some x ∈ Qn, d(x, πM (x)) = n. Now

d(x, πM (x)) = weight(x+M · x) = weight((I +M)x),

and since the only vector of weight n is [1, 1, . . . , 1]T , the result follows.



ROUTING LINEAR COMPLEMENT PERMUTATIONS ON A HYPERCUBE 489

Corollary 3.6. If both M and I +M are invertible, then k(πM ) = n.
Proof. If (I + M) is invertible, then range(I + M) = Qn, so the result follows

from Lemma 3.5.
Lemma 3.7. Let A be a nonzero n × n matrix. Then weight(ei + A · x) ≤ 1 for

all x ⇔ A has at most two nonzero rows, one of which is the ith, and if there is a
second nonzero row, it is equal to the ith.

Proof. (⇒) First suppose that row i of A is zero, and suppose that row j is
nonzero. Say Ajk 6= 0. Then A · ek is the kth column of A and therefore has a 1 in
the jth row. It also must have a 0 in the ith row. Hence weight(ei + A · ek) ≥ 2,
contradicting the hypothesis. So row i is nonzero. Next we will show that if row j is
also nonzero, then it is equal to row i. The ith component of ei + A · x is 1 + Ai · x,
where Ai denotes the ith row of A, and the jth component is Aj · x. Since ei +A · x
has weight ≤ 1, Ai · x = 0⇒ Aj · x = 0. Thus,

nullspace(Ai) ⊆ nullspace(Aj),

and since both subspaces have dimension n − 1, they are equal. Hence so are their
orthogonal complements. However, these are just {0, Ai} and {0, Aj}. Therefore, Aj
and Ai must be equal. Thus, any two nonzero rows of A must be equal. Lastly,
we must show that no more than two rows of A can be nonzero. So suppose that
Aj = Al = Ai 6= 0. Then for some q, Ajq = Alq = Aiq 6= 0. Let x = eq. Then A · x is
the qth column of A, which has at least three 1’s. Hence ei + A · eq has at least two
1’s, contradicting the hypothesis. Therefore, A has at most two nonzero rows.

(⇐) If Ai is the only nonzero row of A, then for all x, A ·x is either 0 or ei. Hence
ei +A · x is either ei or 0. On the other hand, if Aj = Ai and all other rows of A are
zero, then if α = Ai · x, the jth entry of ei + A · x is α and the ith is 1 + α. Since
exactly one of these is nonzero, and all other entries are zero, weight(ei + A · x) =
1.

Corollary 3.8. If B 6= ∅ and M 6= I, then σBπM ∈ ∆⇔ B = {i}, for some i,
and I +M has at most two nonzero rows, one of which is the ith, and if I +M has
a second nonzero row, it is equal to the ith.

Proof. (⇐) σ{i}πM (x) = ei+M ·x, so d(x, σ{i}πM (x)) = weight(ei+(I+M)(x)).
Let A = I + M . Then d(x, σ{i}πM (x)) = weight(ei + A · x). Since A satisfies the
conditions of Lemma 3.7, k(σ{i}πM ) = 1.

(⇒) It suffices, by Lemma 3.7, to show that |B| = 1. Since σBπM ∈ ∆,
d(0, σBπM (0)) = 1, i.e., weight (

∑
j∈B eB) = 1. Hence |B| = 1.

Remark. Suppose that φ is an LC permutation and φ ∈ ∆. Let M be an invertible
n × n matrix such that M 6= I. If φ = πM , then φ moves messages along edges of
only one dimension. If φ = σ{i}πM , then φ moves messages along edges of at most
two different dimensions.

Suppose that φ = πM and that the unique nonzero row of I + M is the ith.
Then if x is adjacent to φ(x), the edge 〈x, φ(x)〉 has the same dimension as the edge
〈0, x + φ(x)〉 = 〈0, (I + M) · x〉, which is i. Now suppose that φ = σ{i}πM . By
Corollary 3.8, I + M has precisely two nonzero rows, which are equal and one of
which is the ith. If the other is the jth, then the nonzero components of any edge
〈x, φ(x)〉 are the ith and the jth. Hence these are the dimensions of the edges along
which φ moves messages.

We should point out that as with any member of ∆, k(φ) = 1, i.e., for all x,
d(x, φ(x)) = 1. So for each message x, x and φ(x) are adjacent, and thus φ moves x
only along the single edge 〈x, φ(x)〉.
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Lemma 3.9. Suppose that A is an n × n matrix whose two nonzero rows are
equal. Let M = I +A. The following are equivalent:

(1) M is invertible;
(2) A2 = 0;
(3) M2 = I;
(4) M−1 = M .
Proof. (1)⇒ (2) If Ai = Aj = R 6= 0 are the two nonzero rows of A, then (A2)i =

(A2)j = R ·A are the only two (possibly) nonzero rows of A2. Now R ·A = (Ri+Rj)R,
where Rk denotes the kth entry of R. So A2 = (Ri +Rj)A. Now the scalar Ri +Rj
is either 0 or 1, so A2 is either A or 0. If A2 = A, then A(I +A) = 0, and since I +A
is assumed to be invertible, A = 0, contrary to our hypothesis. Hence A2 = 0.

(2) ⇒ (3) If A2 = 0, then M2 = (I +A)2 = I +A2 = I.
(3) ⇒ (4) and (4) ⇒ (1) are both obvious.
We now state a result whose proof is contained in the proof of (1) ⇒ (2) of the

preceding lemma.
Lemma 3.10. Let A be an n× n matrix whose only nonzero rows are rows i and

j, which are both equal to R = [R1, . . . , Rn]. Then A2 = 0⇔ Ri = Rj.
Corollary 3.11. Let A be as in Lemma 3.10 and M = I + A. Assume that

Aii = Aij. Then
(i) M is invertible.
(ii) If Aii = 0, then (σ{i}πM )−1 = σ{i}πM .

(iii) If Aii = 1, then (σ{i}πM )−1 = σ{j}πM .
Proof. (i) follows immediately from Lemmas 3.9 and 3.10.
(ii) Suppose that Aii = 0. Then A · ei = ith column of A = 0. Hence M · ei =

(I +A) · ei = ei. So

σ{i}πM (σ{i}πM (x)) = σ{i}πM (ei +M · x) = ei +M · ei +M2 · x.

By Lemma 3.9, M2 = I, so

(σ{i}πM )2(x) = ei +M · ei + x = ei + ei + x.

Thus, (σ{i}πM )2 = I.
(iii) Now suppose that Aii = 1. Then A·ei = ei+ej . Hence M ·ei = ei+(ei+ej) =

ej . So

σ{j}πM (σ{i}πM )(x) = ej +M · ei + x = ej + ej + x = x.

Hence (σ{j}πM )(σ{i}πM ) = I.
Combining Corollaries 3.4, 3.8, and 3.11 we have the following.
Corollary 3.12. (1) φ ∈ ∆⇒ φ−1 ∈ ∆.
(2) For any k, φ ∈ ∆k ⇒ φ−1 ∈ ∆k.
Proof. (1) Let φ ∈ ∆. If φ = πM , then M−1 = M and so (πM )−1 = πM−1 = πM ,

and thus φ−1 ∈ ∆. If φ = σ{i}πM , then by Corollary 3.11, φ−1 is either σ{i}πM or
σ{j}πM . Thus, by Corollary 3.8, φ−1 ∈ ∆.

(2) Let φ = φ1φ2 · · ·φk, where each φi ∈ ∆. Then

φ−1 = (φk)−1 · · · (φ2)−1(φ1)−1.

By (1), each (φi)
−1 ∈ ∆, and so φ ∈ ∆k.
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Examples. (1) Let M =
[

1 1 1
1 0 0
1 0 1

]
. Then πM (

[
1
0
1

]
) =

[
0
1
0

]
, so k(πm) = 3.

M =

 1 0 0
0 1 0
0 1 1

 ·
 1 0 0

1 1 1
0 0 1

 ·
 1 1 1

0 1 0
0 0 1


so πM ∈ ∆3.

(2) Let M =
[

1 0 0
1 1 1
0 1 0

]
. Then A = I +M =

[
0 0 0
1 0 1
0 1 1

]
, so for all x, weight(A ·

x) ≤ 2. Since weight(A · e3) = 2, k(πM ) = 2.

M =

 1 0 0
0 1 0
1 1 1

 ·
 1 0 0

1 1 1
0 0 1

 .
Then πM = πM2

πM1
, so πM ∈ ∆2.

(3) Let M =
[

1 0 0
0 0 1
1 1 0

]
. Then A = I +M =

[
0 0 0
0 1 1
1 1 1

]
, so for all x, weight(A ·

x) ≤ 2. Since weight (A · e2) = 2, k(πM ) = 2.

M =

 1 0 0
0 0 1
0 1 0

 ·
 1 0 0

1 1 0
0 0 1

 = M2 ·M1.

Now σ{2}πM1
, σ{3}πM2

∈ ∆, and πM2
· σ{2} = σ{3} · πM2

. Hence

πM = (σ{3}πM2) · (σ{2}πM1) ∈ ∆2.

Proposition 3.13. If the invertible n× n matrix M has an LU decomposition,
then M11 = 1. Furthermore, if M = LU , then M−1 = U−1L−1 and (M−1)nn = 1.

Proof. First note that since M is invertible, so are L and U , and thus each has
only 1’s on its main diagonal. Since L is lower triangular, L1, the first row of L is
e1. Since U is upper triangular, U1, the first column of U , is eT1 , the transpose of
e1. Hence M11 = L1 · U1 = e1 · eT1 = 1. For the second statement, the inverse of an
upper triangular matrix with 1’s on the main diagonal has the same form, and the
corresponding statement is true for a lower triangular matrix with 1’s on the main
diagonal. Hence (M−1)nn = (U−1)n · (L−1)n = en · eTn = 1.

Definition 3.14. For any n×n matrix M , let M{i} denote the (i− 1) by (i− 1)
upper left minor of M , i.e., the (i−1)×(i−1) submatrix obtained from M by deleting
row k and column k for all k ≥ i.

Proposition 3.15. If M = LU , then M{n} = L{n}U{n}.
Proof. Note that L{n} is lower triangular, U{n} is upper triangular, and both

have 1’s on their main diagonals. Let 1 ≤ i, j ≤ n− 1. Then for i < k ≤ n, Lik = 0,
and for j < k ≤ n, Ukj = 0. Hence

(M{n})ij = Mij = Li · Uj =
∑

k≤min{i,j}
LikUkj = (L{k}U{k}).

Corollary 3.16. If M = LU , then for all k ≤ n, M{k} = L{k}U{k}.
Proof. This follows by repeated application of Proposition 3.15, since

(M{n}){k} = M{k}.
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Corollary 3.17. If M = LU , then there exists a D ∈ D = {B|πB ∈ ∆} such
that the last row of DM is en. Furthermore, D = I +A, where the only nonzero row
of A (if A 6= 0) is the nth and Ann = 0. Hence D is lower triangular, as is DL, and
DM has an LU decomposition.

Proof. By Proposition 3.13, (M−1)nn = 1. Since I = M−1M ,

en = (nth row of M−1)M = a1M1 + · · ·+ an−1Mn−1 +Mn.

Let D = I + A, where A is the matrix whose only nonzero row is the nth, which is
equal to (a1, a2, . . . , an−1, 0). Then D is lower triangular, and hence so is DL. The
last row of DM is en. Finally, DM = (DL)U is the LU decomposition of DM .

Lemma 3.18. Let D = I + A, where the only nonzero row of A is the kth, and
suppose that Akk = 0. Then πD changes only the kth bit of an n-tuple. The same is
true for σ{k}πD.

Proof. Let x be an n-tuple and let 1 ≤ i ≤ n, i 6= k. Then πD(x) = D·x = x+A·x,
where Ai is the ith row of A. Since i 6= k, Ai = 0, and so the ith component of D · x
is xi. This proves the first assertion. The second follows since σ{k}, complementation
of the kth bit, has the same property.

We come now to the main result of this section.

Theorem 3.19. For n ≥ 2, if the invertible n × n matrix M has an LU de-
composition, then M = DnDn−1 · · ·D1, where Di has all 1’s on the main diagonal,
and if Di is not the identity matrix I, it differs from I only in the ith row. Hence
πM ∈ ∆n, i.e., there is an n-step routing for πM . Moreover, in the ith step, only
edges of dimension i are used.

Proof. First suppose that n = 2. By Proposition 3.13, M =

[
1 x
y z

]
. Since

M is invertible, x and Z cannot both be 0. If x = 0, then z = 1 and so M =[
1 0
y 1

]
∈ D and thus πM ∈ ∆ ⊆ ∆2. If x = 1 and z = 0, then M =

[
1 1
1 0

]
. Let

D2 =

[
1 0
1 1

]
. Then D2M =

[
1 1
0 1

]
= D1 ∈ D. Hence M−1 = D1D2, and so

M = D−1
2 D−1

1 = D2D1 ∈ D2. Thus, πM = πD2πD1 ∈ ∆2. Finally, if x = z = 1, then

M =

[
1 1
0 1

]
∈ D, and so πM ∈ ∆ ⊆ ∆2.

Now assume that n ≥ 3. We shall show that there exist n×nmatricesD1, D2, . . . , Dn

such that for each i, Di ∈ D, Di has only 1’s on the main diagonal and differs from
I, if at all, only in row i, and D1D2 · · ·DnM = I. We argue inductively. Since
M = LU , it follows from Corollary 3.17 that there exists an n × n matrix Dn ∈ D
such that Dn has all 1’s on its main diagonal and differs from I (if at all) only in row
n, and M1 = DnM has last row = en. Now suppose that Dn−1, Dn−2, . . . , Dn−k ∈ D
have been found so that each Dn−i has only 1’s on its main diagonal, differs from
I only in row n − i, and so that the last k rows of Mk = Dn−k · · ·DnM agree with
the last k rows of the identity matrix I. By Corollary 3.16, (Mk){n−k} has an LU
decomposition. Thus, by Corollary 3.17 there is an (n− k − 1)× (n− k − 1) matrix
D ∈ D such that the last row of D · (Mk){n−k} is the last row of the (n− k)× (n− k)

identity matrix. In other words, 0n−k−11 is the sum of certain rows of (Mk){n−k},
one of which is the last row. We must show that 0n−k−110k, the (n− k)th row of the
n × n identity matrix, can be expressed as the sum of the (n − k)th row of Mk and
certain other rows of Mk. Let Rj be the jth row of (Mk){n−k}, and let Sj be the jth
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row of Mk. Then for 1 ≤ j ≤ n− k, the jth row of (Mk) is

Sj = Rj , xj1, xj2, . . . , xjk = Rj0
k +

k∑
i=1

xjiSn−k+i.

Therefore, Rj0
k = Sj +

∑k
i=1 xjiSn−k+i. We are assuming that the last k rows of

Mk are the same as the last k rows of the identity matrix, and that 0n−k−11 =
Rn−k +

∑n−k−1
j=1 εjRj , where each εj ∈ {0, 1}. It follows that

0n−k−110k = Rn−k0k +
n−k−1∑
j=1

εjRj0
k

= Sn−k +
k∑
i=1

xn−k,iSn−k+i +
n−k−1∑
j=1

εj

(
Sj +

k∑
i=1

xjiSn−k+i

)
.

Thus the (n− k)th row of the n× n identity matrix equals

Sn−k +

n−k−1∑
j=1

εjSj +

k∑
i=1

xn−k,i +

n−k−1∑
j=1

εjxji

Sn−k+i.

In other words, the (n − k)th row of the identity matrix can be expressed as the
sum of the (n − k)th row of Mk and certain other rows of Mk. Let Dn−k−1 ∈ D
be the matrix obtained from the identity matrix by replacing the (n − k)th row by
(ε1, . . . , εn−k−1, 1, αn−k+1, . . . , αn), where

αn−k+i = xn−k,i +
n−k−1∑
j=1

εjxji.

Then Mk+1 = Dn−k−1Mk agrees with the identity matrix in its last k − 1 rows.
Thus, we have established the inductive step, and so the desired D1, D2, . . . , Dn all
exist. It follows that DnDn−1 · · ·D1M = I and so M = D1D2 · · ·Dn. Hence πM =
πD1πD2 · · ·πDn ∈ ∆n. The final assertion is a consequence of Lemma 3.18.

Lemma 3.20. Let Di be an n×n matrix with 1’s on the main diagonal and suppose
that Di differs from the identity matrix only in row i. Then σ{i}πDi = πDiσ{i}, and
if j 6= i,

σ{j}πDi =

{
πDiσ{j} if (Di)ij = 0,
σ{i}πDiσ{j} if (Di)ij = 1.

Proof. Since the ith column of Di is ei, the ith column of the identity matrix,

(πDiσ{i})(x) = Di · (x+ ei) = Di · x+Di · ei = Di · x+ ei = (σ{i}πDi)(x),

so σ{i}πDi = πDiσ{i}. Now assume that j 6= i. We have

(πDiσ{j})(x) = Di · (x+ ej) = Di · x+Di · ej = Di · x+ jth column of Di.
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The jth column of Di is either ej or ej + ei, according to whether the (i, j)th entry
of Di is 0 or 1. Hence πDiσ{j} is either σ{j}πDi or σ{i}σ{j}πDi . If the latter, then by
multiplying byσ{i} on the left we get σ{i}πDiσ{j} = σ{j}πDi .

Theorem 3.21. Let S ⊆ {1, 2, . . . , n} and let σS denote the permutation which
complements those bits which belong to S. Let M be any n× n matrix which has an
LU decomposition. Then the LC permutation σS ◦ πM belongs to ∆n. The ith step in
the n-step routing of σS ◦ πM is either πDi or σ{i}πDi , where Di ∈ D differs from the
identity matrix only in row i, and so only edges of dimension i are used during this
step.

Proof. If S = ∅, Theorem 3.19 applies. So assume S 6= ∅. By Theorem 3.19,
M = D1D2 · · ·Dn, where each Di has 1’s on the main diagonal and differs from I only
in row i (if at all). Let ϕ = (σAnπDn) · · · (σA1

πD1
), where each Ai is either ∅ or {i}.

Note that by Lemma 3.18, the ith factor, (σAiπDi), changes only the ith component
of any n-tuple. Thus, such a factorization of ϕ expresses ϕ as an element of ∆n, and
provides a routing in which only edges of dimension i are used during step i. Now σS
is the product (in any order) of those σ{i} for which i ∈ S. To prove the theorem, it
suffices, therefore, to show that for any k ∈ {1, 2, . . . , n}, σ{k}ϕ has a factorization of
the same form. However, by Lemma 3.20, for i 6= k, σ{k}(σAiπDi) = σAi(σ{k}πDi) =
either σAi(σ{i}πDi)σ{k} or (σAiπDi)σ{k}. Since Ai ⊆ {i}, σAi · σ{i} = σBi , where

Bi =

{ {i} if Ai = ∅,
∅ if Ai = {i}.

Thus, σ{k}(σAkπDk) = either (σAiπDi)σ{k} or (σBiπDi)σ{k}. Thus, we can keep
moving σ{k} past each factor, replacing Ai by Bi until we get to σAkπDk . Then
σ{k}(σAkπDk) = σBkπDk . Hence

σ{k}ϕ = (σBnπDn) · · · (σBkπD{k})(σAk−1
πDk−1

) · · · (σA1
πD1

),

thereby proving the claim.

4. Row permutations. Not every invertible matrix M has an LU decompo-
sition. Sometimes it is necessary first to permute the rows of M . This is the case,
for example, with permutation matrices, that is, matrices obtained from the identity
matrix by a permutation of its rows. However, as is well known (see, for example,
[8]), for any invertible M , there is a permutation matrix P such that PM = LU . Now
there are some such matrices M for which πM has a routing of the type discussed in
Theorem 3.19.

Example 4.1. Let M =
[

0 1 1
0 1 0
1 0 1

]
. Clearly M does not have an LU decomposi-

tion since M11 = 0. However, if P is the permutation matrix which interchanges rows
1 and 3, then PM does have an LU decomposition. Nevertheless, we can express M
as an element of D3. To see this, we shall row-reduce M to the identity matrix by a
sequence of three row operations, each of which corresponds to an element of D.

M → D1M =

 1 1 0
0 1 0
0 0 1

 0 1 1
0 1 0
1 0 1

 =

 0 0 1
0 1 0
1 0 1



→ D2D1M =

 1 0 1
0 1 0
0 0 1

 0 0 1
0 1 0
1 0 1

 =

 1 0 0
0 1 0
1 0 1
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→ D3D2D1M =

 1 0 0
0 1 0
1 0 1

 1 0 0
0 1 0
1 0 1

 = I.

Example 4.2. Let M =
[

0 1 1
1 1 1
1 1 0

]
. Again, M has no LU decomposition. The

following sequence of three row operations, each corresponding to an element of D,
reduces M to the identity.

(1) R1 ← R1 +R2, (2) R3 ← R2 +R3, (3) R2 ← R1 +R2 +R3.

Example 4.3. Let M =

[
1 1 0 1
0 1 1 1
1 0 1 1
1 1 1 1

]
. Then M−1 =

[
0 1 0 1
0 0 1 1
1 0 0 1
1 1 1 0

]
. We claim

that πM−1 ∈ ∆4. The following sequence of row operations reduces M−1 to the
identity.

(1) R4 ← R1 +R2 +R3 +R4, (2) σ{2} ◦
(
R2 ← R3 +R4

R3 ← R2 +R4

)
,

(3) σ{2} ◦
(
R1 ← R2

R2 ← R1

)
, (4) R2 ← R2 +R4

Note that by Corollary 3.8, steps (3) and (4) correspond to elements of ∆. Since each
of the operations (1)−(4) is its own inverse, performing them in reverse order reduces
M to the identity.

Definition 4.4. An n× n matrix C is of type I if it differs from the identity in
only one row and has all 1’s on its main diagonal. C is of type II if it differs from
the identity in exactly two rows, say rows i and j, Ci + Cj = ei + ej, and all entries
on its main diagonal are 1’s. C is of type III if it differs from the identity in exactly
two rows, and the matrix obtained by interchanging these two rows is of type II.

Lemma 4.5. Any n× n matrix C of type I, II, or III is invertible.
Proof. Suppose C is of type I and differs from I only in row i. Then since Cii = 1

by hypothesis, it follows from Corollary 3.3 that C is invertible.
Next, suppose that C is of type II. Then Ci+ei = Cj+ej , and Cii = Cjj = 1. Let

A = I +C. Then Ai = Aj , and so Aij = Ajj = 1 +Cjj = 0, while Aii = 1 +Cii = 0.
Hence Aii = Aij . Thus, by Corollary 3.11, C is invertible.

Finally, if C is of type III, then C = PC ′, where P = P−1 is a permutation
matrix and C ′ is a matrix of type II. So C is a product of invertible matrices and
therefore is invertible.

Proposition 4.6. Let M0 be an n× n invertible matrix. There is a sequence of
matrices C1, C2, . . . , Cn with each Ci of type I or III, such that Cn · · ·C2C1M0 = I.

Proof. Let R1 be the first row of M−1
0 . Then R1M0 = e1. If R11 = 1, let C1 be

the matrix whose first row is R1, and which agrees with I in all other rows. Thus, C1

is of type I. If R11 = 0, let i1 be the least i such that R1i = 1. Let C1 be the matrix
whose first row is R1, i1th row is R1 + e1 + ei, and which agrees with I in all other
rows. Thus C1 is of type III. In either case, C1M0 = M1 has first row equal to e1.

Now assume that k ≥ 2 and that for all j < k, Cj has been chosen and CjMj−1 =
Mj agrees with I in its first j rows. We shall define Ck. Let Rk be the kth row of
(Mk−1)−1. Then RkMk−1 = ek. Since Mk−1 agrees with I in its first k− 1 rows, the
same is true for (Mk−1)−1. The rows of the latter matrix are linearly independent, and



496 MARK RAMRAS

thus so are the first k rows. Therefore, Rk is not a linear combination of {e1, . . . , ek−1}.
Hence for some i ≥ k, Rki = 1. Let ik be the least such i. If ik = k (so that Rkk = 1),
let Ck be the matrix whose kth row is Rk, and which agrees with I in all other rows.
Then Ck is of type I. If ik > k, let Ck be the matrix whose kth row is Rk, ikth row is
Rk + ek + eik , and which agrees with I in all other rows. Then Ck is of type III. In
either case, CkMk−1 = Mk agrees with I in its first k rows.

So by induction, we obtain the desired sequence C1, . . . , Cn and since Mn agrees
with I in all n rows, CnCn−1 · · ·C1M0 = Mn = I.

Note. If C is of type I, then πC ∈ ∆. Also, σ{i}πC ∈ ∆, where the row of C
which differs from I is the ith. On the other hand, if C is of type III, then πC /∈ ∆.
However, σ{i}πC , σ{j}πC ∈ ∆, where the two rows of C which differ from I are rows
i and j.

Lemma 4.7. Let C be an n×n matrix with 1’s on the main diagonal, and suppose
that C differs from I only in rows i and j. Assume further that Ci+Cj = ei+ ej and
Cij = 0 = Cji. Let F = PC, where P is the permutation matrix which interchanges
rows i and j. Let k 6= i, j. Then

(1) πCσ{i} = σ{i}πC .
(2) πFσ{i} = σ{j}πF .
(3) if Cik = 0, then πCσ{k} = σ{k}πC .
(4) if Cik = 1, then πCσ{k} = σ{i,j,k}πC .
(5) if Fjk = 0, then πFσ{k} = σ{k}πF .
(6) if Fjk = 1, then πFσ{k} = σ{i,j,k}πF .
Proof. To establish the identity A = B, it suffices to prove that for an arbitrary

column vector x, Ax = Bx.
(1) πCσ{i}x = C(ei + x) = Cei + Cx. Now Cei is the ith column of C, which is

ei. Hence πCσ{i}x = ei + Cx = σ{i}πCx.
(2) πFσ{i} = πPπCσ{i} = πP (σ{i}πC), where the second equality follows from (1).

But since P interchanges rows i and j, πPσ{i} = σ{j}πP . Hence πFσ{i} = σ{j}πF .
(3) and (4) Cik = Cjk; by hypothesis, Cik + Cjk = eik + ejk and, since k 6= i, j,

eik = ejk = 0.
For (3), assume that Cik = 0. Then Cjk = 0, also. So kth column of C = ek, and

thus Cek = ek. Therefore,

πCσ{k}x = C(ek + x) = ek + Cx = σ{k}πCx.

For (4), assume that Cik = 1. Then Cjk = 1, also. If q /∈ {i, j, k}, then Cqk = 0.
Thus the kth column of C is ei + ej + ek. Hence

πCσ{k}x = C(ek + x) = ei + ej + ek + Cx = σ{i,j,k}πCx.

(5) Assume Fjk = 0. Then (PC)jk = 0. Since left multiplication by P inter-
changes rows i and j, Cik = 0. Then by (3), we have |piCσ{k} = σ{k}πC . Hence

πFσ{k} = πPπCσ{k} = πPσ{k}πC .

But since the kth column of P is ek, πPσ{k} = σ{k}πP , and so πFσ{k} = σ{k}πPπC =
σ{k}πF .

(6) Assume Fjk = 1. Then (PC)jk = 1. Now PC is the matrix obtained from C
by interchanging rows i and j, so Cik = 1. Hence by (4), πCσ{k} = σ{i,j,k}πC . So

πFσ{k} = πPπCσ{k} = πPσ{i,j,k}πC = σ{i,j,k}πPπC = σ{i,j,k}πF .
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Note. The hypotheses of Lemma 4.7 are symmetric in i and j, so each of (1)− (6)
remains true when i and j are interchanged.

Theorem 4.8. Let M be an invertible n×n matrix, and let J (M) be the subset of
{1, 2, . . . , n} such that j ∈ J (M)⇔M differs from I in row j. Then πM ∈ ∆|J (M)|.
In fact, if S ⊆ J (M), then σSπM ∈ ∆|J (M)|.

Proof. The first assertion is a special case of the second since, when S = ∅, σS is
the identity map. Let J = J (M). We shall prove the second assertion by induction
on |J |. First suppose that |J | = 1, and suppose that J = {j}. Then for i 6= j, row
Mi = ei. Since M is invertible, its rows are linearly independent, and so in particular,
Mj /∈ span{ei|i 6= j}. Hence Mjj = 1. Therefore, πM ∈ ∆. Also, by Corollary 3.8,
σ{j}πM ∈ ∆.

Now suppose that |J | ≥ 2 and that the result is true for all invertible matrices M ′

such that |J (M ′)| < |J | and for all subsets S′ of J ′ = J (M ′). Let S be any subset
of J and let k be any element of J . Thus, Mk 6= ek and for i /∈ J , Mi = ei. Let R be
the kth row of M−1. There are two cases according to whether Rk = (M−1)kk = 1
or 0.

Case 1. (M−1)kk = 1. Let C be the matrix whose kth row is R and which agrees
with I in all other rows. Then since Ckk = 1, all entries on the main diagonal of C are 1
and so by Corollaries 3.3, 3.4, and 3.8, both πC and σ{k}πC belong to ∆ and C−1 = C.
Let M ′ = CM . Then M ′ agrees with I in those rows in which M does, and also in
row k. Hence J ′ = J (M ′) = J \ {k}, and so |J ′| = |J (M)| − 1. Let S′ = S ∩J ′, so
that S is either S′ or S′ ∪ {k}. By the induction hypothesis, σS′πM ′ ∈ ∆|J |−1. Now
M = C−1M ′ = CM ′, so σS′πM = σS′πCπM ′ . By Lemma 3.20, σS′πC is either πCσS′
or σ{k}πCσS′ (according to whether the weight of row Ck is even or odd). So σS′πM
is either πCσS′πM ′ or (σ{k}πC)σS′πM ′ . Hence σS′πM ∈ ∆|J |−1+1 = ∆|J |. On the
other hand, σSπM = σ{k}σS′πM = σ{k}σS′πCπM ′ . Thus, σSπM is either σ{k}πCπM ′
or πCπS′πM ′ . Since both πC and σ{k}πC belong to ∆, and πS′πM ′ ∈ ∆|J |−1, in either

case we have σSπM ∈ ∆|J |.
Case 2. We may now assume that for all k ∈ J , Rk = (M−1)kk = 0. Choose

any k ∈ J and any l such that Rl = 1. Let C be the matrix whose kth row is R,
whose lth row is R + ek + el, and which agrees with I in all other rows. Then as in
the proof of Proposition 4.6, C is of type III, and if M ′ = CM , then M ′k = ek and
J ′ = J (M ′) = J \ {k}. Let S′ = S ∩ J ′. Thus, by induction σS′πM ′ ∈ ∆|J |−1. By
Lemma 3.9, C−1 = C. So M = CM ′ and thus σSπM = σSπCπM ′ . Suppose first that
S = ∅. Then σS = I and πM = πCπ

′
M . There are two possibilities for l: (i) l ∈ J (M ′)

and (ii) l /∈ J (M ′). Suppose that l ∈ J (M ′). Then by our induction hypothesis,
σ{l}πM ′ ∈ ∆|J

′| = ∆|J |−1. Now

πCπM ′ = (σ{k}σ{k})πCπM ′ = σ{k}(πCσ{l})πM ′ = (σ{k}πC)(σ{l}πM ′),

and since σ{k}πC ∈ ∆, it follows that πCπM ′ ∈ ∆1+|J ′| = ∆|J |−1. So now suppose
that l /∈ J ′. Thus M ′l = el. We claim that Ml 6= el. Suppose the contrary. We
compute M ′l .

el = M ′l = el(CM) = (elC)M = (M−1
k + ek + el)M

= (M−1
k )M +Mk +Ml = ek +Mk +Ml.

Thus, if Ml = el, we have el = ek +Mk +el, and hence Mk = ek. But this contradicts
the assumption that k ∈ J (M). Hence Ml 6= el and so l ∈ J (M). Therefore,
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|J (M ′)| = |J | − 2 and so by our induction hypothesis, σ{l}πM ′ ∈ ∆|J |−2. Now

πM = (σ{k}σ{k})πCπM ′ = (σ{k}πC)σ{l}(πM ′).

Since both σ{k}πC and σ{l} belong to ∆, it follows that πM ∈ ∆2+(|J |−2) = ∆|J |.
Now suppose that S 6= ∅. We may assume that k ∈ S. Then σS = σ{k}σS′ ,

so σSπM = σ{k}σS′πCπM ′ , which is either σ{k}πCσS′πM ′ or σ{k}σ{k,l}πCσS′πM ′ =
σ{l}πCσS′πM ′ . Since both σ{k}πC and σ{l}πC belong to ∆, in either case we have

σSπM ∈ ∆1+|J ′| = ∆|J |.
This completes the induction step, thereby proving the theorem.
Example 4.9. Let

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
Then M−1 = M . Note that I+M = J , the matrix all of whose entries are 1’s. Hence
d(e1,Me1) = weight([1, 1, 1, 1]) = 4, and so k∆(πM ) = 4. Now using the fact that
(M−1)11 = 0 and (M−1)12 = 1, we have

C =


0 1 1 1
1 0 1 1
0 0 1 0
0 0 0 1

 and M ′ = CM =


1 0 0 0
0 1 0 0
1 1 0 1
1 1 1 0

 .
πM = πCπM ′ = πC(σ{3}σ{3})πM ′ = (πCσ{3})(σ{3}πM ′). But σ{3}πM ′ ∈ ∆ and
πCσ{3} = σ{1,2,3}πC = σ{2,3}(σ{1}πC) ∈ ∆2 ·∆ = ∆3. Hence πM ∈ ∆4.

Our next example shows that k(πM ) can be less than |J (M)| and that πM can
be routed by LC permutations in fewer than |J (M)| steps.

Example 4.10. Let

M =


0 0 1 1
1 0 0 1
0 1 0 0
0 0 1 0

 .
Gauss–Jordan elimination shows that M is invertible and that

M−1 =


1 1 0 1
0 0 1 0
0 0 0 1
1 0 0 1

 .
Now

I +M =


1 0 1 1
1 1 0 1
0 1 1 0
0 0 1 1

 .
Since this has four nonzero rows, |J (M)| = 4. On the other hand, row reduction shows
that (I + M)X = [1, 1, 1, 1]T has no solution, so that [1, 1, 1, 1]T /∈ range(I + M). It
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follows from Lemma 3.5 that k(πM ) ≤ 3. Since the third column of I +M has weight
3, it follows that k(πM ) = 3.

Now by Lemma 4.7, part (2),

πM = (σ{3}πC3)(σ{2}πC2)(πC1),

where C1 =


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

, C2 =


0 1 0 1
1 0 0 1
0 0 1 0
0 0 0 1

, and C3 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

By Corollaries 3.3 and 3.8, each of these three factors belongs to ∆, and so we have
a 3-step routing of πM by LC permutations.

Remark. Removing the restriction to LC permutations allows us an alternate
3-step routing of πM as follows. For compactness of notation, we shall denote each
x1x2x3x4 by the integer i ∈ {0, 1, . . . 15} whose binary representation is x1x2x3x4.
Then πM = (1, 12, 6, 11)(2, 9, 8, 4)(3, 5, 14, 15)(10, 13), and πM = π3 ◦ π2 ◦ π1, where

π1 = (0, 2, 10, 8)(1, 5, 13, 9, 11, 3)(6, 14, 15, 7),

π2 = (1, 5, 4, 6, 7, 3)(12, 14, 15, 13)(8, 9)(10, 11),

π3 = (0, 4, 12, 14, 6, 2)(8, 10)(9, 13, 15, 11).

It is straightforward to check that for 1 ≤ i ≤ 3, k(πi) = 1 and so πi ∈ ∆.
Proposition 4.11. For any invertible matrix M , if t(πM ) denotes the minimum

number of steps in a congestion-free routing of πM in which each factor is an LC
permutation, then 2/3(|J (M)|) ≤ t(πM ) ≤ |J (M)|.

Proof. By Theorem 4.8, the minimum number of steps in a routing of πM by LC
permutations is less than or equal to |J (M)|. Thus it suffices to show that if πM is
the product of j LC permutations, each of which is in ∆, then |J (M)| ≤ 3j/2. So
suppose that πM = ϕj ◦ · · · ◦ ϕ2 ◦ ϕ1, where each ϕq ∈ ∆. Then ϕq = σAqπCq , where
either Aq = ∅ or Aq = {iq} and Cq differs from I in at most two rows, one of which
is row iq. Let Jq = J (Cq). We claim first that there is at most one q such that
|Jq| = 2 and for all p 6= q, Jq ∩ Jp = ∅. Suppose the contrary. Then for some q1 and
q2, Jq1 = {j1, k1}, J2 = {j2, k2}, and each of these sets is disjoint from the other and
from Jp for all p 6= q1, q2. Since for l = 1, 2, ϕql = σAqlπCql ∈ ∆, and |Jql | = 2, we
have Aql = {iql} and iql ∈ Jql . Say iql = jl. Since each Jql is disjoint from all other
Jp, it follows from Lemma 4.7 that πM = σ{iq1 ,iq2}σBπM = σ{iq1 ,iq2}∆BπM , for some
subset B disjoint from {iq1 , iq2}, where ∆ denotes the symmetric difference. Now the
B in the representation of ϕ as σBπN is unique.

For ϕ(0) = σB(0) =
∑
i∈B ei, and since the {ei|1 ≤ i ≤ n} are a basis of Zn2 ,

this determines the set B. Hence {iq1 , iq2}∆B = ∅, which is impossible since {iq1 , iq2}
is disjoint from B. What this means is that the union of any pair of the subsets
Jq has at most three elements. Since J (M) ⊆ ⋃jq=1 Jq, it follows that |J (M)| ≤
3j/2.

Remark. The lower bound in Proposition 4.11 is tight. For example, let j = 3k
and let the permutation θ of {1, 2, . . . , j} be the product of k disjoint 3-cycles, say
(1, 2, 3)(4, 5, 6) · · · (3k − 2, 3k − 1, 3k).

Let P be the j × j permutation matrix whose ith row is eθ(i). We claim that

πP ∈ ∆2k so that t(πP ) ≤ 2k = 2j/3. Proposition 4.11 gives the reverse inequality,
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and so t(πP ) = 2j/3. Our claim will follow once we show that if θ′ is any 3-cycle
and if P ′ is the corresponding permutation matrix, then πP ′ ∈ ∆2. To prove this
claim, we may assume, with no loss in generality, that θ′ = (1, 2, 3). Let Pqr denote
the j × j permutation matrix obtained from I by interchanging rows q and r. Then
πP ′ = (σ{3}πP13)(σ{1}πP12) ∈ ∆2.

Our final result is that every LC permutation has an n-step congestion-free rout-
ing.

Corollary 4.12. Let M be any invertible n× n matrix and let T be any subset
of {1, 2, . . . , n}. Then σTπM ∈ ∆n.

Proof. Let S = T ∩ J (M) and T ′ = T \ S. Then σTπM = σT ′(σSπM ). By
Theorem 4.8, σSπM ∈ ∆|J (M)|. Now σT ′ ∈ ∆|T

′| and |T ′| = |T | − |S|. So σTπM ∈
∆|J (M)|+|T |−|S|. But

|J (M)|+ |T | − |S| = |J (M) ∪ T | ≤ n.

Hence σTπM ∈ ∆n.
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Abstract. The purpose of this paper is to find fault-tolerant fixed routings in some families of
digraphs that have been widely considered into the design of interconnection networks. A routing
ρ in a digraph G assigns to each pair of vertices a fixed path (called a route) between them. For a
given set of faulty vertices and/or arcs, the vertices of the surviving route digraph are the nonfaulty
vertices and there is an arc between two vertices if and only if there are no faults on the route between
them. The diameter of the surviving route digraph measures the fault tolerance of the routing. In
this work, sufficient conditions are found for a digraph to have a routing such that for any set of
faults with a bounded number of elements the diameter of the surviving route digraph is at most 3.
These results are applied to prove the existence of routings with this property in the generalized de
Bruijn and Kautz digraphs, the bipartite digraphs BD(d, n), and general iterated line digraphs.
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1. Introduction. Interconnection networks are usually modeled by graphs, di-
rected or not, in which the vertices represent the switching elements or processors.
Communication links are represented by edges if they are bidirectional and by arcs if
they are unidirectional. Communication between nodes can be done through paths
that have been fixed in advance, especially if the nodes have no information about
the topology of the network.

The reader is referred to Chartrand and Lesniak [3] for the graph theoretical
concepts which are not defined here. Directed graphs are usually called digraphs for
short. Here we are concerned with digraphs only. All digraphs will be supposed to
be strongly connected. In this paper, a path of length t between vertices x and y of a
digraph G will be a sequence x0 = x, x1, . . . , xt−1, xt = y, where (xi−1, xi) is an arc
of G. The vertices and arcs in a path are not necessarily different. For any set A of
vertices of a digraph G, let Γ+

l (A) be defined recursively by Γ+
l (A) = Γ+(Γ+

l−1(A))
beginning with

Γ+
1 (A) = Γ+(A) =

⋃
v∈A

Γ+(v),

where Γ+(v) is the set of vertices adjacent from v. When A = {v} we just write Γ+
l (v).

If Γ−(v) denotes the set of all vertices adjacent to v, we can define analogously the
sets Γ−l (A).

A routing ρ in a graph or digraph G assigns to every pair of different vertices a
path ρ(x, y) from x to y. The paths ρ(x, y) are called routes. We assume that all
communications between vertices are done through the routes of a fixed routing.
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Two parameters have been proposed to measure the efficiency and fault tolerance
of a fixed routing in a graph or a digraph: the forwarding index, introduced by Chung
et al. [4] and the diameter of the surviving route digraph, proposed by Dolev et al. [5].

The vertex-forwarding index of a routing ρ in a graph or digraph G, ξ(G, ρ), is the
maximum number of routes passing through a vertex. The edge- or arc-forwarding
index, π(G, ρ), is defined analogously. In order to construct efficient routings, we have
to minimize the forwarding index. That is, the routes should not load a node or a link
too much: too many routes should not go through it. If the routing is well distributed,
that is, all vertices and edges or arcs have a similar load, queues will be shortened
and the failure of a node or a link will not destroy too many routes.

When some nodes and/or links of the network fail, the routes containing faulty
elements cannot be used. However, perhaps the communication can still be possible
by using a sequence of routes not containing faulty elements. For a given set F of
faulty vertices and/or arcs, the vertices of the surviving route digraph R(G, ρ)/F are
the non-faulty vertices and there is an arc between two vertices if and only if there
are no faults on the route between them. Fault-tolerant routings are such that the
diameter of the surviving route digraph, D(R(G, ρ)/F ), is small for any set of faults
of bounded size.

Because of the good relation between their order, degree, and diameter, some
families of digraphs have been specially considered into the design of interconnec-
tion networks. The largest known (d,D)-digraphs (digraphs with maximum out-
degree d and diameter D) are the de Bruijn [2] and Kautz [14] digraphs, denoted,
respectively, by B(d,D) and K(d,D). The diameter of Reddy–Pradhan–Kuhl or
generalized de Bruijn digraphs, RPK(d, n) [19, 18, 12], and Imase–Itoh or gener-
alized Kautz digraphs, II(d, n) [13], are minimum or quasi-minimum for their degree
and order. Fiol and Yebra [9] introduced a family of bipartite digraphs, the bipar-
tite digraphs BD(d, n), with minimum or quasi-minimum diameter. The digraphs
BD(d, dD−1 + dD−3) are large (d,D)-bipartite digraphs (optimal if D ≤ 5). The
connectivity of all these digraphs is optimal in most cases [1, 9].

Kautz and de Bruijn digraphs and the bipartite digraphs BD(d, dD−1 + dD−3)
are iterated line digraphs [8, 9]. We recall here the definition and some properties of
line digraphs. See, for example, [10] for proofs and more information.

In the line digraph LG of a digraph G each vertex represents an arc of G, that
is, V (LG) = {uv | (u, v) ∈ A(G)}. A vertex uv is adjacent to a vertex wz if and
only if v = w, that is, whenever the arc (u, v) of G is adjacent to the arc (w, z).
The maximum and minimum out- and in-degrees of LG are equal to those of G.
Therefore, if G is d-regular with order n, then LG is d-regular and has order dn. If
G is a strongly connected digraph different from a directed cycle, then the diameter
of LG is the diameter of G plus one.

The iteration of the line digraph operation is a good method to obtain large
digraphs with fixed degree and diameter. If G is d-regular, and has diameter D and
order n, then LkG is d-regular, and has diameter D + k and order dkn; that is, the
order increases in an asymptotically optimal way in relation to the diameter. Routings
in the iterated line digraph LkG can be easily derived from those in G. Besides,
iterated line digraphs have maximum connectivity if the number of iterations is large
enough [7]. The diameter-vulnerability, that is, the maximum diameter after deleting
a fixed number of vertices or arcs, of the iterated line digraphs LkG is independent
from the number of iterations [16].

Homobono and Peyrat [11] and, in a different way, Escudero et al. [6] prove that
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for any routing of shortest paths in the Kautz and de Bruijn digraphs and for any
set of faults of cardinality κ(G)− 1 (κ(G) is the minimum number of vertices whose
deletion disconnects the digraph), the diameter of the surviving route digraph is 2.
Manabe, Imase, and Soneoka [15] find routings in the generalized de Bruijn digraphs,
RPK(d, n), with small forwarding index and diameter of the surviving route digraph
at most 3. Routings on the bipartite digraphs BD(d, dD−1 + dD−3) with almost
optimal forwarding index and diameter of the surviving route digraph equal to 2 are
given in [17]. A bound for the diameter of the surviving route digraph of general
iterated line digraphs is given in [6]. It is proven in [6] that for any loopless digraph
G, there are fixed routings ρ in LkG such that, if k is large enough, the diameter of the
surviving route digraph is at most 2(D(G)−R(G) + 1), where D(G) is the diameter
of G and R(G) is a parameter that, in most cases, is lesser than the diameter D(G).
Therefore, 2(D(G)−R(G) + 1) > 3 except for some particular graphs.

The purpose of this paper is to find fault-tolerant routings in the generalized de
Bruijn and Kautz digraphs, the bipartite digraphs BD(d, n), and in general iterated
line digraphs.

We present in section 2 sufficient conditions for a digraph to have a routing such
that, for any set of faults of bounded size, the diameter of the surviving route digraph
is at most 3. Using this condition, we present in sections 3 and 4 routings with
this property in the generalized de Bruijn and Kautz digraphs, the bipartite digraphs
BD(d, n), and general iterated line digraphs, loopless or not.

2. Sufficient conditions. Sufficient conditions for a digraph to have a routing
with diameter of the surviving route digraph at most three are given in this section.
These conditions are given in terms of the maximum and minimum degrees and two
parameters, h and r, which will be defined later.

Let G = (V,A) be a digraph, ρ a routing in G, and F ⊂ V ∪A, |F | < κ(G), a set
of faults. Let Fρ be the set of all routes ρ(x, y) containing items in F . If x /∈ F is a
vertex in G, d−R(x) and d+

R(x) will stand for the in-degree and the out-degree of vertex
x in the surviving route digraph R(G, ρ)/F . Let us note that d+

R(x) is the number
of vertices z such that route ρ(x, z) avoids F . Let dR(x, y) be the distance between
nonfaulty vertices x and y in the surviving route digraph.

Proposition 2.1. Let G = (V,A) be a digraph and ρ a routing in G. Let
F ⊂ V ∪ A, |F | < κ(G), be a set of faults. Let x and y be two different nonfaulty
vertices such that (d+

R(x) + 1)(d−R(y) + 1) > |Fρ |. Then dR(x, y) ≤ 3.
Proof. Let R+(x) be the set containing vertex x and all adjacent vertices from x

in the surviving route digraph. This set has exactly d+
R(x) + 1 elements. Analogously,

d−R(y) + 1 denote the number of vertices in the set R−(y), which contains the vertex
y and all vertices adjacent to y in the surviving route digraph. Therefore, if (d+

R(x) +
1)(d−R(y)+1) > |Fρ |, then R+(x)∩R−(x) 6= ∅ or there must exist vertices z1 ∈ R+(x)
and z2 ∈ R−(y) such that ρ(z1, z2) /∈ Fρ. Hence, dR(x, y) ≤ 3.

We will present bounds on (d+
R(x) + 1)(d−R(y) + 1) and on |Fρ | for a special kind

of routings. Comparing these bounds, sufficient conditions for a digraph to have a
routing with diameter of the surviving route digraph at most three will be found.
First, we are going to define the parameters h and r and the routings we are going to
consider.

Let G be a digraph with diameter D. Let us define h = h(G), 1 ≤ h ≤ D, as
the maximum integer such that if x and y are two (not necessarily different) vertices
in G, there cannot exist two different paths from x to y with the same length t ≤ h.
Notice that if G is d-regular, h(G) is the maximum integer such that for all t ≤ h and
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for all vertex x, |Γ+
t (x) | = dt.

Let G = (V,A) be a digraph with maximum degree ∆ and h = h(G). Let us
define r = r(G) as the minimum integer such that for each vertex x in G,

V = {x } ∪ Γ+
h (x) ∪ Γ+

h+1(x) ∪ · · · ∪ Γ+
h+r(x).

Let ρ be a routing in G. We will say that ρ is an h-routing if the length t of any route
ρ(x, y) is such that h ≤ t ≤ h + r and the route ρ(x, y) is the only path of length h
from x to y if y ∈ Γ+

h (x).
Proposition 2.2. Let G = (V,A) be a digraph and ρ a routing in G with vertex-

forwarding index ξ = ξ(G, ρ) and arc-forwarding index π = π(G, ρ). Let F ⊂ V ∪ A,
|F | < κ(G), be a set of faults. Then

|Fρ | ≤ |F ∩ V |ξ + |F ∩A |π.
Proposition 2.3. Let G be a digraph with maximum degree ∆, h = h(G), and

r = r(G). Let ρ be an h-routing in G. Then ξ(G, ρ) ≤ Θ(∆, h, r) and π(G, ρ) ≤
Π(∆, h, r), where

Θ(∆, h, r) = (h− 1)∆h + h∆h+1 + · · ·+ (h+ r − 1)∆h+r

and

Π(∆, h, r) = (Θ(∆, h, r) + P (∆, h, r))/∆,

with P (∆, h, r) = ∆h + ∆h+1 + · · ·+ ∆h+r.
Proof. The number of paths of length t passing through each vertex is at most

(t − 1)∆t. The number of paths of length t passing through an arc is at most
t∆t−1.

Proposition 2.4. For any integers δ ≥ 3 and h ≥ 4, let us consider
1. m0(δ, h) = 1

(δ−1)2 ((δ − 2)δ2h − (δ − 3)δs),

2. m1(δ, h) = 1
(δ−1)2 ((δ − 3)δ2h − (δ − 4)δs) if δ ≥ 4, and

3. m1(3, h) = 32h

4 + 3h

2 ,
where s = 3h/2 if h is even and s = (3h + 1)/2 if h is odd. Let G = (V,A) be a
digraph with minimum degree δ ≥ 3 and h = h(G) ≥ 4. Let ρ be an h-routing in G
and let F ⊂ V ∪ A, |F | ≤ δ − 2, be a set of faults. Let us consider two different
vertices x, y /∈ F . Then (d+

R(x) + 1)(d−R(y) + 1) ≥ m0(δ, h) if F has no arcs. If the
only arc in F is (x, y), then (d+

R(x) + 1)(d−R(y) + 1) ≥ m1(δ, h).
Proof. We are going to consider only h even. If h is odd, the proof is similar.
Let us suppose F does not contain any arc. For i = 1, 2, . . . , h let us consider

µi = |Γ+
i (x) ∩ F | and νi = |Γ−i (y) ∩ F |. Obviously, µi, νi ≤ δ − 2. Moreover, if

i+ j ≤ h, µi + νj ≤ |F |+ 1 ≤ δ− 1. Certainly, since there cannot exist two different
paths of length i+ j from x to y, the intersection Γ+

i (x)∩Γ−j (y) contains at most one
vertex. Therefore, only one item in F can be counted twice in µi + νj .

In order to find a lower bound for the number of routes ρ(x, z) of length h avoiding
F , we can suppose that all vertices have out-degree equal to the minimum degree δ.
That is, we are going to ignore d+(v)− δ arcs for each vertex v. Analogously, we are
going to suppose that all vertices have in-degree equal to δ when calculating a lower
bound for the number of routes ρ(z, y) of length h avoiding F .

Therefore, the number of routes ρ(x, z) of length h containing a faulty vertex in
position i is at most µiδ

h−i and the number of routes ρ(x, z) of length h avoiding F
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is greater than or equal to δh−∑h
i=1 µiδ

h−i− 1. Notice that it is possible x ∈ Γ+
h (x).

Therefore,

d+
R(x) + 1 ≥ δh −

h∑
i=1

µiδ
h−i.

Analogously,

d−R(y) + 1 ≥ δh −
h∑
i=1

νiδ
h−i.

Let us define X =
∑h
i=1 µiδ

h−i and Y =
∑h
i=1 νiδ

h−i. Since µi, νi ≤ δ − 2, we have
0 ≤ X,Y ≤M = (δ − 2)(δh − 1)/(δ − 1). Furthermore,

X + Y =
h∑
i=1

(µi + νi)δ
h−i ≤ (δ − 1)(δh−1 + · · ·+ δh/2) + 2(δ − 2)(δ(h−2)/2 + · · ·+ 1).

Hence, X + Y ≤ S with

S = δh − δh/2 + 2(δ − 2)
δh/2 − 1

δ − 1
.

With these restrictions, the minimum value of (δh − X)(δh − Y ) is attained when
X = M and Y = S −M or vice versa. Therefore,

(d+
R(x) + 1)(d−R(y) + 1) ≥ (δh −M)(δh − S +M),

and the proof of this case is finished with a straightforward calculation.
If F ∩A = {(x, y)}, we consider F1 = (F ∩V )∪{y} and F2 = (F ∩V )∪{x}. Notice

that all routes ρ(x, z) containing the arc (x, y) pass through the vertex y. Therefore,
if µi = |Γ+

i (x) ∩ F1 |, we have

d+
R(x) + 1 ≥ δh −

h∑
i=1

µiδ
h−i.

Analogously,

d−R(y) + 1 ≥ δh −
h∑
i=1

νiδ
h−i,

where νi = |Γ−i (y) ∩ F2 |. In this case, µi, νi ≤ δ − 2 and µi + νj ≤ |F | + 2 ≤ δ if
i + j ≤ h. But if δ = 3, then F ∩ V = ∅ and µi + νi ≤ 2. From this point the proof
follows with the same arguments used in the case before.

Proposition 2.5. For any pair of integers δ ≥ 2 and h ≥ 4, we consider
1. n0(δ, h) = (δ3 − 3δ2 + 4δ − 3)δ2h−4 − (δ − 2)δs,
2. n1(δ, h) = (δ3 − 3δ2 + 4δ − 4)δ2h−4 − (δ − 3)δs if δ ≥ 3 and
3. n1(2, h) = 22h−4 + 2h−1 + 1,

where s = (3h − 3)/2 if h is odd and s = (3h − 4)/2 if h is even. Let G = (V,A)
be a loopless digraph with minimum degree δ ≥ 2 and h = h(G) ≥ 4 such that, for
any vertex x, Γ+(x) ∩ Γ+

2 (x) = ∅. Let ρ be an h-routing in G. Let F ⊂ V ∪ A,
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|F | = δ − 1, be a set of faulty items and x, y /∈ F a pair of nonfaulty vertices.
Then (d+

R(x) + 1)(d−R(y) + 1) ≥ n0(δ, h) if F has no arcs. If F ∩ A = {(x, y)}, then
(d+
R(x) + 1)(d−R(y) + 1) ≥ n1(δ, h).

Proof. The proof of this proposition follows the same way as in Proposition 2.4.
The only difference is that we have to take into account that |F | = δ − 1 and that
µ1 + µ2 ≤ δ − 1 and ν1 + ν2 ≤ δ − 1 because there cannot exist any path of length 2
between adjacent vertices.

If we want to find upper bounds for the distance in the surviving route digraph
from a vertex x to a vertex y, we can suppose that F has no arcs or the only arc
in F is (x, y). Actually, let (u, v) 6= (x, y) be an arc in F . If u 6= x, let us consider
F ′ = (F − {(u, v)}) ∪ {u}. If u = x, we take F ′ = (F − {(u, v)}) ∪ {v}. It is easy to
see that dR(x, y) ≤ dR′(x, y) if R′ = R(G, ρ)/F ′

Theorem 2.6. Let G be a digraph with minimum degree δ ≥ 3, maximum degree
∆, h = h(G) ≥ 4 and r = r(G) such that m0(δ, h) > (δ− 2)Θ(∆, h, r) and m1(δ, h) >
(δ − 3)Θ(∆, h, r) + Π(∆, h, r). Then, for any h-routing ρ and for any set of faults F ,
|F | ≤ δ − 2, the diameter of the surviving route digraph R(G, ρ)/F is at most 3.

Proof. We have to prove that for any pair of different vertices x, y of G, dR(x, y) ≤
3.

If F does not contain the arc (x, y), we can suppose that F contains no arcs.
Therefore, from Propositions 2.2, 2.3, and 2.4,

(d+
R(x) + 1)(d−R(y) + 1) ≥ m0(δ, h) > (δ − 2)Θ(∆, h, r) ≥ |Fρ |.

Hence, from Proposition 2.1, dR(x, y) ≤ 3.
If (x, y) is a faulty arc, we can suppose that F ∩A = {(x, y)}. In this case,

(d+
R(x) + 1)(d−R(y) + 1) ≥ m1(δ, h) > (δ − 3)Θ(∆, h, r) + Π(∆, h, r) ≥ |Fρ |.
Theorem 2.7. Let G be a loopless digraph with minimum degree δ ≥ 2, maximum

degree ∆, h = h(G) ≥ 4, and r = r(G) such that Γ+(x)∩Γ+
2 (x) = ∅ for any vertex x,

n0(δ, h) > (δ − 1)Θ(∆, h, r) and n1(δ, h) > (δ − 2)Θ(∆, h, r) + Π(∆, h, r). Then, for
any h-routing ρ and for any set of faults F , |F | ≤ δ−1, the diameter of the surviving
route digraph R(G, ρ)/F is at most 3.

Proof. The proof of this theorem is similar to that of Theorem 2.6.

3. Routings in generalized Kautz and de Bruijn digraphs and bipartite
digraphs BD(d, n). For any integers n ≥ d ≥ 2, the Reddy–Pradhan–Kuhl or gener-
alized de Bruijn digraph with degree d and order n, RPK(d, n) [19, 18, 12], has a set
of vertices Zn. The arcs of RPK(d, n) are in the form (x, dx+ t), where 0 ≤ t ≤ d−1.
This digraph is d-regular and has diameter D = dlogd ne. The digraph RPK(d, dD)
is isomorphic to the de Bruijn digraph B(d,D).

The vertices of the Imase–Itoh or generalized Kautz digraph with degree d and
order n, II(d, n) [13], are the elements of Zn. A vertex x of II(d, n) is adjacent to
the vertices −dx − t for any t = 1, . . . , d. This digraph is d-regular and its diameter
is such that

blogd nc ≤ D ≤ dlogd ne.
The Kautz digraph K(d,D) coincides with the digraph II(d, dD + dD−1).

The bipartite digraphs BD(d, n) [9] are defined by taking as set of vertices V =
{0, 1} × Zn and adjacencies

Γ+(α, x) = {(α, (−1)αd(x+ α) + t) | t = 0, 1, . . . , d− 1 }.
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Table 3.1
Values of d and h for Theorem 3.2.

d = 2 and h ≥ 9
d = 3 and h ≥ 6

4 ≤ d ≤ 6 and h ≥ 5
d ≥ 7 and h ≥ 4

Table 3.2
Values of d and h for Theorem 3.3.

d = 2 and h ≥ 10
d = 3 and h ≥ 7

4 ≤ d ≤ 8 and h ≥ 6
d ≥ 9 and h ≥ 5

The digraph BD(d, n) is bipartite and d-regular and has diameter D such that

blogd nc+ 1 ≤ D ≤ dlogd ne+ 1.

The next proposition is a direct consequence of the properties of these digraphs,
which are given in [12, 13, 9].

Proposition 3.1. If G is RPK(d, n), II(d, n) or BD(d, n), then h(G) =
blogd nc. If G is RPK(d, n) or II(d, n), r(G) ≤ 1 and r(G) ≤ 2 if G = BD(d, n).

Theorem 3.2. Let G = (V,A) be one of RPK(d, n) or II(d, n), d ≥ 3, such that
h = h(G) ≥ 4. Let ρ be an h-routing in G. Then, for every set of faults F ⊂ V ∪ A,
|F | ≤ d− 2, the diameter of the surviving route digraph R(G, ρ)/F is at most 3.

Proof. Applying Theorem 2.6 for δ = ∆ = d and r = 1, it is enough to check
that m0(d, h) > (d − 2)Θ(d, h, 1) and m1(d, h) > (d − 3)Θ(d, h, 1) + Π(d, h, 1) if
h ≥ 4.

Theorem 3.3. Let d ≥ 2 and let n be a multiple of d(d + 1). Let G be the
Imase–Itoh digraph II(d, n), and let ρ be an h-routing in G. Then, for the values of
h and d given in Table 3.1 and for all set of failures F , |F | ≤ d− 1, the diameter of
the surviving route digraph R(G, ρ)/F is at most 3.

Proof. Since n is a multiple of d(d + 1), for any vertex x of the Imase–Itoh
digraph II(d, n), Γ+(x) ∩ Γ+

2 (x) = ∅. Therefore, we can apply Theorem 2.7 for
δ = ∆ = d and r = 1. We have only to check that n0(d, h) > (d − 1)Θ(d, h, 1) and
n1(d, h) > (d− 2)Θ(d, h, 1) + Π(d, h, 1) if d and h are in Table 3.1.

Theorem 3.4. Let G be the bipartite digraph BD(d, n) and let ρ be an h-routing
in G. Then, for the values of h and d given in Table 3.2 and for all set of failures F ,
|F | ≤ d− 1, the diameter of the surviving route digraph R(G, ρ)/F is at most 3.

Proof. Since G is bipartite, it is obvious that for any vertex x, Γ+(x)∩Γ+
2 (x) = ∅.

Therefore, Theorem 2.7 can be applied for δ = ∆ = d and r = 2. The proof is finished
by checking that n0(d, h) > (d−1)Θ(d, h, 2) and n1(d, h) > (d−2)Θ(d, h, 2)+Π(d, h, 2)
for the values of d and h in Table 3.2.

4. Routings in iterated line digraphs. The next proposition is proved using
the properties of iterated line digraphs given in [10].
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Proposition 4.1. Let G be a digraph with minimum degree δ ≥ 2 and maximum
degree ∆. Then, for any k ≥ 1, the iterated line digraph LkG has minimum degree δ
and maximum degree ∆, h(LkG) = h(G) + k and r(LkG) = r(G). Besides, if G is
loopless, for any vertex x of LkG, Γ+(x) ∩ Γ+

2 (x) = ∅.
Proposition 4.2. For any ∆, h, and r and for any k ≥ 1,

1. Θ(∆, h+ k, r) = ∆kΘ(∆, h, r) + k∆kP (∆, h, r).
2. Π(∆, h+ k, r) = ∆k−1Θ(∆, h, r) + (k + 1)∆k−1P (∆, h, r).

Proof. We can easily prove this proposition from the definitions of Θ, Π, and
P .

Theorem 4.3. Let G = (V,A) be a digraph with minimum degree δ ≥ 3 and
maximum degree ∆ such that ∆ < δ2. Then, if k is large enough, for any h-routing in
the iterated line digraph LkG and for any set of faults F , |F | ≤ δ − 2, the diameter
of the surviving route digraph R(LkG, ρ)/F is at most 3. Besides, if G is a loopless
digraph and k is large enough, for any h-routing in LkG and for any set of faults F ,
|F | = δ − 1, D(R(LkG, ρ)/F ) ≤ 3.

Proof. Let us consider Θ = Θ(∆, h, r) and P = P (∆, h, r). It is not difficult to
prove that

lim
k→∞

(δ − 2)Θ(∆, h+ k, r)

m0(δ, h+ k)
= lim
k→∞

(δ − 2)(∆kΘ + k∆kP )

m0(δ, h+ k)
= 0.

It can be also proved that

lim
k→∞

(δ − 3)Θ(∆, h+ k, r) + Π(∆, h+ k, r)

m1(δ, h+ k)
= 0.

Therefore, from Theorem 2.6, the diameter of the surviving route digraphR(LkG, ρ)/F
is at most 3 if k is large enough.

The case of loopless digraphs is proved analogously.
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Abstract. An input to the betweenness problem contains m constraints over n real variables
(points). Each constraint consists of three points, where one of the points is specified to lie inside the
interval defined by the other two. The order of the other two points (i.e., which one is the largest and
which one is the smallest) is not specified. This problem comes up in questions related to physical
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α > 47/48 finding a total order that satisfies at least α of the m constraints is NP-hard (even if all
the constraints are satisfiable). It is easy to find an ordering of the points that satisfies 1/3 of the m
constraints (e.g., by choosing the ordering at random).

This paper presents a polynomial time algorithm that either determines that there is no feasible
solution or finds a total order that satisfies at least 1/2 of the m constraints. The algorithm translates
the problem into a set of quadratic inequalities and solves a semidefinite relaxation of them in
Rn. The n solution points are then projected on a random line through the origin. The claimed
performance guarantee is shown using simple geometric properties of the semidefinite programming
(SDP) solution.

Key words. approximation algorithm, semidefinite programming, NP-completeness, computa-
tional biology
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1. Introduction. An input to the betweenness problem consists of a finite set
of n elements (or points) S = {x1, . . . , xn} and a finite set of m constraints. Each
constraint consists of a triplet (xi, xj , xk) ∈ S × S × S. A candidate solution to the
betweenness problem is a total order < on its points. A total order xi1 < xi2 < · · · <
xin satisfies the constraint (xi, xj , xk) if either xi < xj < xk or xk < xj < xi. That is,
each constraint forces the second variable xj to be between the other two variables xi
and xk but does not specify the relative order of xi and xk. The decision version of
the betweenness problem is to decide if all constraints can be simultaneously satisfied
by a total order of the variables.

In 1979, Opatrny [14] showed that the decision version of the betweenness prob-
lem is NP-complete. This problem arises naturally when analyzing certain mapping
problems in molecular biology. For example, it arises when trying to order markers
on a chromosome, given the results of a radiation hybrid experiment [6, 3]. A com-
putational task of practical significance in this context is to find a total ordering of
the markers (the xi in our terminology) that maximizes the number of satisfied con-
straints. Indeed, betweenness is central in the recent software package RHMAPPER
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[15, 16]. At the heart of this package is a method for producing the order of frame-
work markers based on betweenness constraints (obtained from a statistical analysis
of the biological data). Slonim et al. [16]. successfully employ two greedy heuristics
for solving the betweenness problem.

Opatrny gave two reductions in his proof of NP-completeness. One of these reduc-
tions is from 3SAT. Following his construction, we show in section 2 an approximation
preserving reduction from MAX 3SAT. This implies that there exists an ε > 0, such
that finding a total order that satisfies at least m(1 − ε) of the constraints (even if
they are all satisfiable) is NP-hard. In particular this holds for every ε < 1/48 (see
Corollary 2.5). On the other hand, it is easy to find a total order that satisfies 1/3 of
the m constraints (even if they are not all satisfiable). Simply arrange the points in
a random order along the line. The probability that a specific constraint (xi, xj , xk)
is satisfied by such a randomly chosen order is 1/3, since exactly two of the six per-
mutations on i, j, k have j in the middle. Thus the expected number of constraints
satisfied by a random order is at least 1/3 of the m constraints. On the other hand,
it is easy to construct examples where at most m/3 constraints are satisfiable. Thus
to achieve better approximation factors, one needs to be able to recognize instances
of the betweenness problems that are not satisfiable.

We present a polynomial time algorithm that either determines that there is no
feasible solution or finds a total order that satisfies at least 1/2 of the m constraints.
Our algorithm translates the problem into a set of quadratic inequalities and solves
a semidefinite programming (SDP) relaxation of them in Rn. Let v1, . . . , vn ∈ Rn
be a feasible solution to the SDP, where each vi corresponds to the real variable xi.
The n solution points are then projected on a random line through the origin. We
show that if “xj between xi and xk” is one of the betweenness constraints, then the
angle between the lines vivj and vkvj (in Rn) is obtuse. Using this property, we prove
that the random projection satisfies each constraint with probability at least 1/2.
This gives a randomized algorithm with the claimed performance guarantee. Next,
we show how to derandomize the algorithm. In addition, we demonstrate that our
analysis of the semidefinite program is tight. There is an infinite family of inputs to
the betweenness problem, such that the resulting SDP is feasible, but any total order
of the variables satisfies at most 1/2 + o(1) of the m constraints.

Our use of semidefinite programming is inspired by the recent success in using
this methodology to find improved approximation algorithms for several optimization
problems. The applicability of SDP in combinatorial optimization was demonstrated
by Grötschel, Lovász, and Schrijver [7] to show that the Theta function of Lovász
[12] was polynomial time computable. This application was then turned into exact
coloring and independent set finding algorithms for perfect graphs. The use of SDP
in approximation algorithms was innovated by the work of Goemans and Williamson
[5] who broke longstanding barriers in the approximability of MAX CUT and MAX
2SAT by their SDP based algorithm. Further evidence of the applicability of the SDP
approach is provided by the works of Karger, Motwani, and Sudan [10], who use it to
approximate graph coloring, Alon and Kahale [1] (independent set approximation),
and Feige and Goemans [4] (improvements to MAX 2SAT).

Thus the semidefinite programming method has now been used successfully to
solve many optimization problems—exactly and approximately. However, all the cases
where SDP has been used to find approximation algorithms seem to be essentially
partition problems (MAX CUT, Coloring, Multicut, etc.). Our solution seems to be
(to the best of our knowledge) the only case where SDP has been used to solve an
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ordering problem. This syntactic difference between ordered structures and unordered
ones, and the ability of SDP to help optimize over both, offers critical additional
evidence on the power of the SDP methodology.

The remainder of this paper is organized as follows. Section 2 presents the approx-
imation preserving reduction from MAX 3SAT, as well as other observations about
the betweenness problem. Semidefinite programming is briefly reviewed in section 3.
The algorithm is presented in section 4. Section 5 shows the tightness of our analysis.
Finally, section 6 contains some concluding remarks and open problems.

2. Preliminaries. We start this section with some preliminary observations
about the betweenness problem. We begin by defining the notion of an approxi-
mate solution to the betweenness problem and analyzing the complexity of finding
such a solution.

Definition 2.1. Given an instance of the betweenness problem on m constraints
and α ≤ 1, an α-approximate solution is one that satisfies at least αk constraints,
where k is the maximum number of constraints satisfied by any solution. For α ≤ 1,
the α-approximation (version of the betweenness) problem is the task of finding an α-
approximate solution for every instance. An algorithm that solves such a problem is
said to be an α-approximation algorithm. For α ≤ 1, the α-approximation problem for
satisfiable instances is the task of finding a total order that satisfies αm constraints or
determining that the instance is not satisfiable. An algorithm that solves this problem
is an α-approximation algorithm for satisfiable instances.

The complexity of solving the betweenness problem exactly (i.e., for α = 1) is well
settled. Opatrny [14] has shown that it is NP-hard to decide if a given instance of the
betweenness problem is satisfiable. We now turn our attention to the complexity of
the problem for α < 1. We first present a hardness result based on a simple reduction
from MAX CUT, due to Goemans (personal communication, 1995). An instance of
the MAX CUT problem is an undirected graph. The goal of the problem is to find
a partition (S, S̄) of the vertex set so as to maximize the number of edges with one
endpoint in S and one in S̄. This problem was shown by Arora et al. [2] to be hard
to approximate to within some factor α < 1. The best result known to date, due
to H̊astad [9] (see also Trevisan et al. [17]), is that α-approximating MAX CUT is
NP-hard for every α > 16/17.

Proposition 2.2. For every α, the α-approximation version of the MAX CUT
problem reduces to the α-approximation version of the betweenness problem.

Proof. Given an instance G of the MAX CUT problem, we create an instance of
the betweenness problem as follows: For every vertex vi in the graph, create a point
pi. In addition we introduce one special point s. For every edge (vi, vj) in the graph,
we introduce the betweenness constraint (pi, s, pj) (i.e., s is between pi and pj). Now,
given a cut (S, S̄) in the graph that has k edges crossing the cut, any ordering that
places the points corresponding to the vertices in S to the left of s and the rest of the
points to the right of s is an ordering that satisfies k of the betweenness constraints.
In the reverse direction, any ordering of the points that satisfies k betweenness con-
straints can be converted into a cut with k edges crossing the cut by letting S be
the set of vertices corresponding to points to the left of s. Thus the optima of the
two problems are exactly equal; furthermore, given an α-approximate solution to the
betweenness instance, we can construct an α-approximate solution to the MAX CUT
instance. Thus an α-approximation algorithm for the betweenness problem yields an
α-approximation algorithm for the MAX CUT problem.

Corollary 2.3. The α-approximation version of the betweenness problem is
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NP-hard for α > 16/17.

While the above reduction provides some insight about the hardness of the be-
tweenness problem on general instances, it does not quite provide a hardness result
for the problem of interest to us. This is because the instances of the betweenness
problem that we typically consider are fully satisfiable. In the reduction above, the
only instances of the MAX CUT problem that reduce to fully satisfiable instances of
betweenness are when the input graph is bipartite. But in such cases it is easy to find
the MAX CUT, and thus the instances of betweenness produced are not necessarily
hard.

In what follows we present an approximation preserving reduction from MAX
3SAT to the betweenness problem. This reduction follows Opatrny’s original reduction
and addresses the α-approximation problem for satisfiable instances. It is well known
that there exists a constant ε > 0 such that the (1− ε)-approximation version of the
MAX 3SAT problem is NP-hard. The best results known to date, due to H̊astad [9],
show that this is true for every ε < 1/8. Based on our reduction we conclude that there
exists a constant ε′ > 0 such that finding an ordering that satisfies a (1− ε′) fraction
of the constraints in a satisfiable instance of the betweenness problem is NP-hard.

Proposition 2.4. For every ε > 0, the (1 − ε)-approximation version of the
MAX 3SAT problem on satisfiable instances reduces to the (1 − ε/6)-approximation
version of the betweenness problem on satisfiable instances.

Proof. Given a 3-CNF formula φ on n variables and m clauses, we construct an
instance I of the betweenness problem on 2 + n + 5m points with 6m constraints
such that, for every `, there exists a total order satisfying 5m+ ` of the betweenness
constraints in I if and only if there exists an assignment satisfying ` of the clauses
in φ. The reduction proceeds as follows: For each Boolean variable xi of φ, we add
a point pi to I. In addition we create two special points T and F . Without loss of
generality, we consider orderings where T is to the right of F . An ordering of the
points pi, T , and F is supposed to imply a truth assignment as follows: If pi is to the
left of F then it is false; if it is to the right of F then it is true. This interpretation
will also apply to the additional “clause points” that are introduced in the rest of the
construction.

Given a clause Cj , say Cj = x1 ∨ x2 ∨ x3, we create five points q
(1)
j , q

(2̄)
j , and q

(3)
j

and r
(12)
j and r

(123)
j . The points qj are supposed to represent the assignment to the

literals in the clause. For each literal in the clause, we include a constraint that forces
the variable to be assigned consistently with the literal. We do so with the following

constraints: F between p2 and q
(2̄)
j , whereas q

(1)
j is between p1 and F , and q

(3)
j is

between p3 and F . Thus for example, an assignment satisfies q
(2̄)
j if and only if it

falsifies p2. The points r
(12)
j and r

(123)
j are supposed to represent the OR of the first

two and three literals in the clause, respectively. This is enforced with the following

betweenness constraints: r
(12)
j is between q

(1)
j and q

(2̄)
j and r

(123)
j is between r

(12)
j and

q
(3)
j . So, for example, if both literal points q

(1)
j and q

(2̄)
j are false, and r

(12)
j is between

q
(1)
j and q

(2̄)
j , then r

(12)
j must be false, while if at least one of the literal points is true,

then r
(12)
j can be placed so that it is true (to the right side of F ). Lastly we add a

betweenness constraint that attempts to ensure that a clause is assigned true. This

is done with the following constraint: r
(123)
j is between F and T .

Thus corresponding to each clause we have six betweenness constraints. Consider
an assignment to the variables in φ satisfying ` clauses out of m. Without loss of
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generality, assume that the assignment sets x1, . . . , xk = false and xk+1, . . . , xn =
true. Order the points pi and T and F as follows:

p1 · · · pk F pk+1 · · · pn T.

For j going from 1 to m, the literal points q
(1)
j , q

(2)
j , and q

(3)
j are then placed between

pk and F or between F and pk+1, depending on their truth value. (A true literal
is placed between F and pk+1 while a false literal is between pk and F .) Finally,

the points r
(12)
j and r

(123)
j are placed as far to the right as possible subject to the

betweenness constraints. This tends to make r
(123)
j lie between F and T if any one

of the literals in the jth clause is true. This arrangement always satisfies at least five
of the betweenness constraints associated with the kth clause. The only constraint

it may not satisfy is the constraint “r
(123)
j is between F and T”; this constraint is

satisfied if and only if at least one of the literals in the jth clause is true. Thus
this ordering satisfies 5m + ` of the betweenness constraints. Conversely it may
be verified that if an arrangement of the points (again, with F left of T ) satisfies
5m+ ` betweenness constraints, then the assignment that assigns true to all of those
variables whose corresponding points lie to the right of F satisfies at least ` clauses
in the formula φ. (There must be at least ` values of j for which the arrangement
satisfies all six betweenness constraints involving qj ’s and rj ’s. For these values of j,
the corresponding assignment satisfies the jth clause.)

Thus given a 3-CNF formula φ with m clauses, we have constructed a betweenness
instance I with m′ = 6m constraints. Furthermore, given an ordering satisfying
(1−ε)m′ constraints, we can reconstruct an assignment satisfying at least (1−ε)m′−
5m = m(1− 6ε) clauses of φ.

Corollary 2.5. The α-approximation version of the betweenness problem on
satisfiable instances is NP-hard, for every α > 47/48.

Next we show what can achieved by the obvious randomized algorithm for the
betweenness problem.

The natural randomized algorithm for the betweenness problem arranges the
points in a random order along the line. The probability that a specific constraint
is satisfied by such a randomly chosen order is 1/3. Thus the expected number of
constraints satisfied by a random order is at least 1/3 of all the constraints. By the
method of conditional probabilities one can find such order in polynomial time. Since
this order satisfies 1/3 of all constraints, it is within 1/3 of the optimal ordering. The
result is summarized below.

Proposition 2.6. The 1/3-approximation version of the betweenness problem
can be solved in polynomial time.

Before going on to more sophisticated techniques for solving this problem, let us
examine the main weakness of the above algorithm. We first argue that no algorithm
can do better than attempting to satisfy 1/3 of all given constraints. Consider an
instance of the betweenness problem on three points with three constraints insisting
that each point be between the other two. Clearly we can satisfy only one of the
above three constraints, which proves the claim. Thus the primary weakness of the
above algorithm is not in the (absolute) number of constraints it satisfies, but in
the fact that it attempts to do so for every instance of the betweenness problem—
even those that are obviously not satisfiable. Thus to achieve better approximation
factors, one needs to be able to recognize instances of the betweenness problems that
are not satisfiable. However, this is an NP-hard task. In fact, Corollary 2.5 indicates
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that one cannot even distinguish instances that are satisfiable from those for which
an ε fraction of the constraints remain unsatisfied under any assignment. In what
follows we use a semidefinite relaxation of our problem to distinguish cases that are
not satisfiable from cases where at least 50% of the given clauses are satisfiable. We
then go on to show that using this relaxation we can achieve a better approximation
than the naive randomized algorithm.

3. Semidefinite programming (SDP). In this section we briefly introduce the
paradigm of SDP. We describe why it is solvable in polynomial time. A complementary
technique to that of SDP is the incomplete Cholesky decomposition. We describe
how the combination allows one to find embeddings of points in finite-dimensional
Euclidean space, subject to certain constraints.

Definition 3.1. For positive integers m and n, a semidefinite program is defined
over a collection of n2 real variables {xij}n,ni=1,j=1. The input consists of a set of mn2

real numbers {a(k)
ij }n,n,mi=1,j=1,k=1, a vector of m real numbers {b(k)}mk=1, and a vector of

n2 real numbers {cij}n,ni=1,j=1. The objective is to find {xij}n,ni=1,j=1 so as to

maximize

n∑
i=1

n∑
j=1

cijxij

subject to

∀k ∈ {1, . . . ,m}
n∑
i=1

n∑
j=1

a
(k)
ij xij ≤ b(k)

and the matrix X = {xij} is symmetric

and positive semidefinite.

Recall that the following are equivalent ways of defining when a symmetric matrix X
is positive semidefinite.

1. All the eigenvalues of X are nonnegative.
2. For all vectors y ∈ Rn, yTXy ≥ 0.
3. There exists a real matrix V such that V T · V = X.

It is well known that the ellipsoid algorithm of Khaciyan [11] can be used to solve
any semidefinite program approximately in the following sense: Given a parameter
ε > 0, the algorithm runs in time polynomial in the input size and log(1/ε) and finds a
feasible solution achieving an objective of at least optimum −ε (see, for instance, [8]).

In order to use the semidefinite programming approach for solving combinatorial
optimization problems, one more tool is useful. This is the ability to find a matrix V
as guaranteed to exist in part 3 of the above definition of positive semidefiniteness.
The method that yields such a matrix is the incomplete Cholesky decomposition.

The matrix V can be used to interpret the solution obtained by the SDP problem
geometrically. Interpret the columns of the n× n matrix V as n vectors v1, . . . , vn in
Rn. Now the variables xij of the matrix X correspond simply to the inner product
of vi and vj . Thus a linear constraint on the xij ’s is simply a linear constraint on
the inner products of the vi’s vectors. Also, the objective function is simply a linear
function on the inner products.

Thus the following provides an equivalent geometric interpretation of SDP:
Find n vectors v1, . . . , vn so as to maximize the quantity

∑
i,j cij〈vi, vj〉,

subject to the constraints
∑
i,j a

(k)
ij 〈vi, vj〉 ≤ b(k), for every k ∈

{1, . . . ,m}.
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Alternately one can interpret SDP as solving an optimization problem that at-
tempts to find n points in n-dimensional Euclidean space, subject to linear constraints
on the squares of the distance between the points. This is done by observing that the
square of the distance between points vi and vj (denoted d2

ij) is simply

〈(vi − vj), (vi − vj)〉 = 〈vi, vi〉+ 〈vj , vj〉 − 2〈vi, vj〉.

Thus a linear inequality on the d2
ij ’s is also a linear inequality on the inner products

of the vi’s. (Actually the distance squared interpretation is equivalent to SDP since
we can express 〈vi, vj〉 as (d2

i0 + d2
j0 − d2

ij)/2.)

From this interpretation of SDP we can solve any problem of the form:

Geometric SDP. Embed n points in Rn such that the squares of
the distance between the points, denoted dij , satisfy the constraints∑
i,j a

(k)
ij d

2
ij ≤ b(k) while trying to maximize

∑
i,j cijd

2
ij . In the ε-

additive approximation version the algorithm is allowed to return (for
every feasible input) a solution such that each constraint is violated

by at most ε, i.e.,
∑
i,j a

(k)
ij d

2
ij ≤ b(k) + ε, and the objective achieved

is at least the optimum −ε.
In what follows we will use the last interpretation of SDP to solve the betweenness

problem. In particular, we use the following proposition.

Proposition 3.2. For every ε > 0, the ε-additive approximation version of the
geometric SDP can be solved in time polynomial in the input size and log(1/ε).

4. The algorithm. The general idea of our algorithm is to express the be-
tweenness constraints as a set of real quadratic inequalities. By considering an n-
dimensional relaxation of the problem, we get an instance of SDP and can find a
feasible solution in Rn (if one exists). We study simple geometric properties of this
solution set. We use them to argue that a projection of the set on a random line
satisfies at least 1/2 of the betweenness constraints (with high probability). Then we
show how to derandomize the algorithm.

Consider a set of m betweenness constraints on n real variables x1, . . . , xn. Sup-
pose these constraints are satisfiable and that x1 < x2 < · · · < xn is a satisfy-
ing linear order. We can clearly embed the points in the unit interval and assign
xi = (i − 1)/(n − 1) (i = 1, . . . , n). Let xi, xj , xk be a triplet such that xj is re-
quired to be between xi and xk. For the assignment above, it is readily seen that
(xi−xj)2 + (xk−xj)2 < (xi−xk)2. Furthermore, the x’s are at least 1/(n− 1) apart
and at most 1 apart. Thus for every pair of distinct indices i, j, the x’s satisfy the
inequalities 1/(n− 1)2 ≤ (xi− xj)2 ≤ 1. This motivates the following geometric SDP
relaxation for the betweenness problem.

Embed n points in Rn subject to the constraints
(SDP1(I)) 1

(n−1)2 ≤ d2
ij ≤ 1 ∀ i 6= j,

d2
ij + d2

jk ≤ d2
ik for every constraint (xi, xj , xk).

We strengthen this relaxation slightly before showing how to use it to find an
approximate solution to the instance of the betweenness problem. Recall that the x’s
are at least 1/(n− 1) apart and at most 1 apart. Therefore for any triple (xi, xj , xk),
the ratio between (xi−xj)2 + (xj −xk)2 and (xi−xk)2 is maximized when xi and xk
are extreme points (0 and 1), and xj is as close as possible to one of them (1/(n− 1)
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√
2αn − 1 · r

rvi vk

Fig. 4.1. Possible location for the midpoint vj .

or (n− 2)/(n− 1)). For these values, the ratio is(
1

n− 1

)2

+

(
1− 1

n− 1

)2

= 1− 2

n− 1
+

2

(n− 1)2
.

Denote this value by αn. Notice that αn = 1 − 2/n + o(1/n) depends only on the
number of variables.

We are now ready to set up our final SDP relaxation:

Embed n points in Rn subject to the constraints
(SDP(I)) 1

(n−1)2 ≤ d2
ij ≤ 1 ∀ i 6= j,

d2
ij + d2

jk ≤ αnd2
ik for every constraint (xi, xj , xk).

The argument leading to the construction of the instance SDP(I) says that the
SDP is feasible if the instance I is satisfiable and in fact there exists an embedding of
the points in one dimension satisfying all the constraints. We summarize this below.

Proposition 4.1. For every instance I of the betweenness problem, if I is sat-
isfiable, then the semidefinite program SDP(I ) is feasible.

As argued in section 3 (see Proposition 3.2), we can use the ellipsoid algorithm to
test the feasibility of SDP(I) and, if it is feasible, to find an approximation of a feasible
solution (if one exists). Let v1, . . . , vn ∈ Rn be an approximately feasible solution,
and let vi, vj , vk ∈ Rn be a triplet that corresponds to a betweenness constraint. We
first prove some geometric facts about the points vi, vj , vk and then use this to design
our approximation algorithm.

Consider any two-dimensional plane through the points vi, vj , vk. (If vi, vj , vk are
not collinear, then this plane is unique; otherwise we pick any such plane arbitrarily.)
Let 2r be the distance between vi and vk (1/(n−1)−ε ≤ 2r ≤ 1+ε). In what follows
we shall skip the term ε since it can be made arbitrarily small (and, in particular,
exponentially small in n).

We now consider the angle θi,j,k = 6 vivjvk. We claim that this angle is obtuse
(i.e., at least π/2). To see this, we project the points down to the two-dimensional
plane containing vi, vj , and vk. Furthermore, we rotate and translate the points so
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that vi = (−r, 0), vk = (r, 0), and vj = (x, y). Now we can use the explicit formulae
d2
ij = (x + r)2 + y2, d2

jk = (r − x)2 + y2 and d2
ik = 4r2. The constraint on these

distances yields

(x− r)2 + y2 + (x+ r)2 + y2 ≤ 4αnr
2,

which implies

x2 + y2 ≤ (2αn − 1)r2.

This means that vj , the “midpoint” in the betweenness constraint, lies inside a ball
of radius r

√
2αn − 1, whose center is the middle point (vi + vk)/2, and outside the

two small balls of radius 1/(n− 1) around vi and vk (see Figure 4.1).
This proves that the angle θi,j,k = 6 vivjvk is indeed obtuse. The following claim

proves a tighter bound on θi,j,k.
Claim 4.2. The angle θi,j,k satisfies θi,j,k ≥ (1 + Ω(1/n))π/2.
Proof. We apply the cosine rule

cos θi,j,k = (d2
ij + d2

jk − d2
ik)/(2dijdjk)

= (x2 + y2 − r2)/
(√

(x2 + y2 + r2)2 − 4r2x2
)

≤ (x2 + y2 − r2)/(x2 + y2 + r2)

≤ (αn − 1)/αn

< αn − 1

= − 2

n
+ θ

(
1

n2

)
.

Denoting θi,j,k = h+ π/2 and using the Taylor series expansion

cos(h+ π/2) = −h+
h3

6
− h5

120
+ · · · ,

we get

−h+ θ(h3) ≤ − 2

n
+ θ

(
1

n2

)
so h = Ω( 1

n ), namely, θi,j,k ≥ (1 + Ω(1/n))π/2.
We are now ready to describe our algorithm. The algorithm proceeds by picking

uniformly at random a line through the origin and projecting the n points v1, . . . , vn
on this random line. Let x′1, . . . , x

′
n be the n resulting points.

Claim 4.3. Let θi,j,k denote the angle 6 vivjvk. Then the probability that x′j lies
between x′i and x′k equals θi,j,k/π.

Proof. Instead of considering an arbitrary line through the origin, we consider a
parallel line that goes through the point vj . This does not change the betweenness
relation of the projections; neither is this relation changed when considering the pro-
jection of this line on the two-dimensional plane defined by vi, vj , vk. Consider the
section of the circle defined by the two lines that go through vj and are perpendicular
to the lines vivj and vkvj . It is not hard to see that only lines going through this
section violate the betweenness constraint of the projections. This section occupies
an angle of π − θi,j,k (see Figure 4.2). The claim follows.
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vj

vi

vk

π − θi,j,k

Fig. 4.2. Lines going through the circular section violate the constraint.

Combining Claims 4.2 and 4.3, we get the following.
Corollary 4.4. Suppose SDP(I ) has a feasible solution. Then for any of the m

constraints, the probability that x′j lies between x′i and x′k is at least 1/2 + Ω(1/n).
As a consequence, the expected number of betweenness constraints satisfied by

x′1, . . . , x
′
n is at least m/2 + Ω(m/n) = m(1/2 + Ω(1/n)). This yields the following

lemma that forms a (weak) converse to Proposition 4.1.
Lemma 4.5. For any instance I of the betweenness problem, if SDP(I ) is feasible,

then there exists a total order satisfying at least m/2 + Ω(m/n) of the betweenness
constraints in I.

Thus we get a randomized polynomial time algorithm that either finds that the
constraints are infeasible or generates a linear order that satisfies at least 1/2 the
constraints.

We now outline a method for derandomizing our algorithm. Given an embedding
of the betweenness problem, we can define a graph and an embedding of the graph
in Rn such that the expected size of the MAX CUT found for this embedding of the
graph equals the expected number of betweenness constraints that are satisfied by a
random projection.

For every ordered pair of points (vi, vj) of the betweenness problem, introduce
the vertex wij with embedding vi − vj . If i, j, k is a betweenness constraint, then put
an edge between wij and wkj . This defines the graph and its embedding.

Now consider any hyperplane through the origin that cuts across the edge between
wij and wkj . Let the slope of the normal to the hyperplane be the vector r. Assume,
without loss of generality, that r.wij < 0 and r.wjk < 0, then r.vi < r.vj and r.vj <
r.vk. Thus j lies between i and k. Conversely, if projection onto the vector r satisfies
the betweenness constraint for i, j, k, then the edge between wij and wjk must be cut.

Mahajan and Ramesh [13] give a method to deterministically find a vector r whose
cut value equals the expected cut value. They use this algorithm to derandomize the
MAX CUT and MAX 2SAT algorithm of Goemans and Williamson [5]. By using
their algorithm, we get a vector such that projection onto this vector satisfies as many
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constraints as the expected number satisfied by a random vector.
Remark. Observe that the above reduction is not a generic reduction from be-

tweenness to MAX CUT. It uses the fact that the graph produced for the MAX CUT
problem has a specified embedding in order to map a solution of the MAX CUT
problem to a solution of the betweenness problem.

We conclude this section by stating the main theorem of this paper.
Theorem 4.6. The 1/2-approximation version of the betweenness problem can

be solved in polynomial time. Specifically, there exists a polynomial time algorithm
which takes as input an instance of the betweenness algorithm on n points and m
constraints and either outputs “not feasible” or outputs a total order satisfying at
least m/2 + Ω(m/n) constraints.

5. Tightness of our analysis. In this section we show that our analysis of the
semidefinite program is almost tight. We do so by exhibiting two families of instances
of the betweenness problem on m constraints, such that the optimum value is at most
m(1/2 + o(1)), but (a slight perturbation of) the SDP is nevertheless feasible.

The first example is related to the d-dimensional hypercube. For every integer
d > 1, we construct the instance Id as follows. Id has 2d points corresponding to
the 2d vertices of the d-dimensional hypercube. Id has m =

(
d
2

)
2d constraints—one

for every simple path of length 2 in the hypercube, with the betweenness constraint
expecting the middle vertex of the path to be between the endpoints.

Consider a small perturbation of our SDP, where we set d2
i,j + d2

j,k ≤ d2
i,k for

each betweenness constraint. This SDP is clearly feasible—the natural embedding of
the hypercube in d-dimensions (as a hypercube) ensures that every path of length 2
subtends an angle of 90◦ at their midpoint.

Now consider a linear ordering of the points. Consider any point p and all the
paths that have p as their midpoint. The number of such paths is

(
d
2

)
. Now let d1 of the

neighbors of p be on its left and d2 of its neighbors be on its right (where d1 +d2 = d).
The number of betweenness constraints expecting p to be in the middle that get
satisfied is d1d2 ≤ d2/4. Thus, for any point, the fraction of betweenness constraints
that are associated with the point and are satisfied is at most (d2/4)/(d(d− 1)/2) =
d/(2(d− 1)) = 1/2 + 1/(2(d− 1)) = 1/2 + o(1).

The second example, suggested to us by Goemans, is related to the cuts in the
complete graph Kn on n variables. For every integer n > 1, we construct the instance
Cn as follows. Cn has n + 1 points, a “center point” v0 and n “vertices” v1, . . . , vn.
Cn has m =

(
n
2

)
constraints—one for every edge in the complete graph. For every

1 ≤ i < k ≤ n, we have the betweenness constraint that v0 is between vi and vk.
We now consider the following perturbation of our SDP, where d2

i,j + d2
j,k ≤

(1−1/n)d2
i,k for each betweenness constraint. To see that this SDP is feasible, consider

the following embedding: The vertex vi is embedded as the point (0, . . . , 0, 1, 0, . . . , 0),
where the 1 occurs in the ith coordinate. The vertex v0 is embedded as the point
(1/n, . . . , 1/n). Observe that the distance between vi and vj is

√
2 and the distance

between vi and v0 is
√

1− 1/n. Thus for any two indices i, k 6= 0 the inequality
d2
i,0 + d2

0,k ≤ (1 − 1/n)d2
i,k, which corresponds to the betweenness constraints, is

satisfied (in fact, equality holds). Now in order to satisfy the SDP (recall that we
required all pairwise distances to be at most 1) we simply scale down the simplex
so that the distance between the vertices is 1, embed the center v0 in the origin and
each vertex vi in the corresponding simplex vertex. This embedding satisfies all of
the SDP constraints.

Again, any linear ordering of the n + 1 points induces a cut in the graph Kn



522 BENNY CHOR AND MADHU SUDAN

(vertices to the left of v0; vertices to the right of v0). An edge corresponds to a
satisfied betweenness constraint if and only if the edge is across the cut. Therefore
the maximum number of satisfiable constraints equals the sized of a maximum cut in
Kn, namely, (n/2)2 = m(1/2 + o(1)).

The advantage of this maximum cut example is that it shows tightness of the
analysis with respect to quadratic inequalities of the form

d2
i,j + d2

k,j ≤ βnd2
i,k,

where βn = 1− 1/n− o(1/n). Our original SDP has the form

d2
i,j + d2

k,j ≤ αnd2
i,k,

where αn = 1 − 2/n + o(1/n). By starting with the complete graph example, and
padding it with extra dummy variables that do not take part in any constraint, we
can construct an example where only 1/2 + o(1) of the constraints are satisfiable, yet
the original SDP (with αn) is feasible (in fact any γn = o(1) can work here). It is not
clear how to come up with a nonartificial construction, i.e., without padding, having
these properties.

6. Concluding remarks. We remark that metric information can be easily
incorporated into our algorithm. As a simple example, suppose that for some of the
constraints we know not only that xj is between xi and xk, but that it is exactly in
the middle, namely, xj = (xi + xk)/2. In this case, we add the inequality

d2
i,j + d2

k,j ≤ d2
i,k/4

instead of

d2
i,j + d2

k,j ≤ αnd2
i,k.

Any feasible solution will have vj exactly in the middle of vi and vk, and the same
holds with respect to the final projections.

Finally, notice that our formulation of the problem as SDP tested only for fea-
sibility of the constraints. It is interesting to see if the inclusion of an appropriate
objective function, and possibly of additional inequalities, can be used to improve the
performance guarantee of the algorithm. Other approaches to the problem, possibly
purely combinatorial ones, are also of interest.
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Abstract. The richest class of t-perfect graphs known so far consists of the graphs with no
so-called odd-K4. Clearly, these graphs have the special property that they are hereditary t-perfect
in the sense that every subgraph is also t-perfect, but they are not the only ones. In this paper we
characterize hereditary t-perfect graphs by showing that any non–t-perfect graph contains a non–t-
perfect subdivision of K4, called a bad-K4. To prove the result we show which “weakly 3-connected”
graphs contain no bad-K4; as a side-product of this we get a polynomial time recognition algorithm.

It should be noted that our result does not characterize t-perfection, as that is not maintained
when taking subgraphs but only when taking induced subgraphs.
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1. Introduction. A graph G = (V,E) is t-perfect if the polyhedron

P(G) := {x ∈ RV | xv ≥ 0 (v ∈ V ),
xu + xv ≤ 1 (uv ∈ E),∑

v∈V (C)

xv ≤ |V (C)|−1
2 (C is odd circuit in G)

(1)

has integral vertices only, i.e., when P(G) is the stable set polytope of G. T-perfection
was introduced by Chvátal [4], and a characterization of it has proved elusive. The
first two classes of graphs known to be t-perfect are series-parallel graphs (conjectured
by Chvátal [4] and proved by Boulala and Uhry [2]) and almost bipartite graphs, i.e.,
graphs with a node that is contained in every odd circuit [5]. A common extension of
these two classes is the class of graphs that do not contain an odd-K4 as a subgraph.
Here odd-K4 means a subdivision of K4, the complete graph on four nodes, in which all
triangles have become odd circuits (cf. Figure 1a). Graphs containing no odd-K4 are
t-perfect [9]. However, there are odd-K4’s that are t-perfect, namely, the good-K4’s:
a good-K4 is a subdivision of K4, in which two nonadjacent edges are not subdivided
and the other four edges have become even paths (cf. Figure 1b). An odd-K4 that is
not good is called a bad-K4; bad-K4’s are not t-perfect (Lemma 11). The main result
of this paper is the following theorem.

Theorem 1. If G contains no bad-K4 as a subgraph, then it is t-perfect.
We prove this in section 3. One of the main tools is the following decomposition

result.
Theorem 2. If G is weakly 3-connected, i.e., a subdivision of a 3-node-connected

simple graph, then it contains no bad-K4 if and only if one of the following holds:
- G contains no odd-K4;
- G is an odd-P9;
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oddodd

odd

4odd-K good-K 4

(a) (b)

Fig. 1. Dashed curves indicate internally node disjoint paths of positive length, which in (b)
all have even length.

9odd-P

(b)(a)

book

Fig. 2. Dashed curves indicate internally node disjoint paths of positive even length. The
shaded regions in (b) indicate the second and third leaf of the book.

- G is a clean pad;
- G is a book.

An odd-P9 is a graph obtained from a six circuit u1u2, . . . , u5u6, u6u1 by adding
three node disjoint even uiui+3-paths (i = 1, 2, 3); see Figure 2a. Note that the
smallest odd-P9 is the Petersen graph with a node removed.

A pad is a graph G with a Hamiltonian circuit w1, u1, w2, u2, . . . , wk, uk such that
an edge not on the Hamiltonian circuit has both end nodes in U(G) := {u1, u2, . . . , uk}.
(We also define W (G) := {w1, w2, . . . , wk}.)

Clearly, a pad has exactly one Hamiltonian circuit, which we denote by R(G) and
call the rim of the pad. The set of edges not on the rim, called chords, will be denoted
by K(G). A pad G is clean if neither of the two pads in Figure 3 can be derived from
G by deleting chords and contracting edges on the rim.

A book is any graph that can be constructed as follows:
- Take two nodes h1 and h2 (the hinges of the book), and join them by an edge.
- Take a third node c, the center of the book, and add two internally node

disjoint even paths, one from c to h1 and one from c to h2 (together with
h1h2 these paths form the spine of the book).

- Add n internally node disjoint even h1h2-paths P1, . . . , Pn, and select on each
Pi a nonempty collection Ti of nodes that are an even distance from h1 on
Pi.
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Fig. 3.

Fig. 4.

- Finally, add all edges in Ri := {cr | r ∈ Ti}, i = 1, . . . , n.
Note that the union of each Pi ∪ Ri with the spine forms a pad. We call these pads
the leaves of the book. The path Pi is called the trim of the leaf. Figure 2b indicates
a book with 3 leaves.

As side-product we obtain the following result (we shall give the easy proof in
section 2.3).

Theorem 3. There exists a polynomial time algorithm that decides whether or
not a given graph G contains a bad-K4.

Another easy side-product, of which we skip the proof, is that graphs with no
bad-K4 are 3-colorable. This generalizes a result of Catlin [3] that graphs with no
odd-K4 are 3-colorable. Toft [12] conjectures that a graph is 3-colorable if it does not
contain a subgraph isomorphic to a graph obtained from K4 by replacing all six edges
with odd paths.

Characterizations around t-perfection. Shepherd [11] characterized which
near-bipartite graphs are t-perfect. (A graph is near-bipartite if for each node v and
each odd circuit C there is a neighbor of v on C. In fact, Shepherd [11] characterized
the stable set polytopes of all near-bipartite graphs.) However, the characterization
of t-perfection among all graphs is still open.

The graph in Figure 4 is t-perfect—as is easily proved—but contains a bad-K4,
which is not t-perfect. Thus t-perfection is not closed under taking subgraphs. T-
perfection is however closed under taking induced subgraphs, i.e., under the deletion
of nodes, but a complete list of minimally induced non–t-perfect graphs is not yet
known.

However, combining Theorem 1 and Lemma 11, we do have the following:

A graph contains no bad-K4 if and only if all its subgraphs are t-perfect.(2)

The result of Gerards and Schrijver shows that graphs with no odd-K4 are t-perfect.
In fact, there it is proved that a graph G = (V,E) has no odd-K4 if and only if for all
a, b ∈ ZV and all c, d ∈ ZE the polyhedron
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{x ∈ RV | av ≤ xv ≤ bv (v ∈ V ); cuv ≤ xu + xv ≤ duv (uv ∈ E)}(3)

has Chvátal-rank 1, which means that the convex hull of the integral vectors in that
polyhedron is obtained by adding all rank-1 Chvátal–Gomory cuts. From Theorem 1
it is not hard to see that a similar result holds for graphs with no bad-K4.

Corollary 4. G = (V,E) contains no bad-K4 if and only if for all a, b ∈ ZV
and all c ∈ ZE the polyhedron

{x ∈ RV | av ≤ xv ≤ bv (v ∈ V );xu + xv ≤ cuv (uv ∈ E)}(4)

has Chvátal-rank 1.
The rank-1 Chvátal–Gomory cuts needed here are

∑
v∈V (C)

xv ≤ 1

2

 ∑
uv∈E(C)

cuv

 (C is an odd circuit in G).(5)

One of the main open questions about t-perfection is whether the system of linear
inequalities given in (1) is totally dual integral. This property holds for graphs with
no odd-K4 [6], but we have not yet been able to verify this for graphs with no bad-K4.
By the decomposition results used in Gerards [6], it follows that to check for which
graphs the system in (1) is totally dual integral for all subgraphs, we may confine
ourselves to clean pads and books.

Preliminaries. If G is a graph and u and v are nodes in G of degree at least 3,
then a uv-leg of G is a uv-path P in G such that all nodes of P , except u and v, have
degree 2 in G.

If P is a path in G and u, v ∈ V (P ) we denote the uv-path in P by Puv. If
e = uv ∈ E(G), Pe := Puv.

2. Structure of graphs with no bad-K4. We first prove that if a weakly
3-connected graph with no bad-K4 contains an odd-K4, then it is either an odd-P9, a
book, or a pad (Lemma 5). Next we prove that a weakly 3-connected pad with no
bad-K4 is clean (Lemma 6). Together these two lemmas prove the only-if direction
of the equivalence in Theorem 2. As odd-P9’s clearly have no bad-K4, the if direction
follows by proving that clean pads (Lemma 7) and books (Lemma 8) have no bad-K4.
We conclude this section with a recognition algorithm for graphs with no bad-K4.

2.1. Books and pads. Let G be a pad. If H is a subgraph of G and not a pad
itself, we denote by K(H) the edges in K(G) with both end nodes in V (H).

If P is a path on R(G), we say that chords e and f are nested on P , written as
e �P f , if e, f ∈ K(P ) and Pf is a subpath of Pe. Chords e, f of K(G) are nested if
they are nested on some path on R(G); if not, e and f cross (notation: e× f).

Lemma 5. Let G be a weakly 3-connected graph with no bad-K4. If G contains
an odd-K4, then G is an odd-P9, a book or a pad.

Proof. We first give some definitions: Let H be a subgraph of a graph G. A route
of H or an H-route is a uv-path P in G such that V (P ) ∩ V (H) = {u, v} and such
that no leg of H contains both u and v. We say that nodes u1, u2, and u3 induce an
extended triangle in H if each pair is connected by a leg of H. A collection of three
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Fig. 5. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have
positive length, whereas dotted curves may have length zero. In (a), dashed curves have an even
number of edges.

internally node disjoint vui-paths Pi (i = 1, 2, 3) that are internally node disjoint from
H is called an H-tripod if v 6∈ V (H) and u1, u2, u3 induce an extended triangle in H.

It is an easy graph theoretical fact that if H is a weakly 3-connected proper
subgraph of a weakly 3-connected graph G, then G contains an H-route, or each leg
of H is a leg of G and G contains an H-tripod. Moreover, adding an H-route to a
weakly 3-connected graph H yields a weakly 3-connected graph.

Assume that G is a counterexample to the lemma with a minimum number of
edges.

Claim 1. G contains no odd-P9.
Proof of Claim 1. Suppose the claim is false and that H is an odd-P9 in G. Let

u1u2, u2u3, . . . , u6u1 be the six length-1 legs of H; and, for i = 1, 2, 3, let P i be
the even uiui+3-leg of H (see Figure 5a). By assumption G 6= H. As H is weakly
3-connected and has no extended triangle, there exists an H-route P in G. Let s and
t be the end nodes of P . One argues that without loss of generality, s ∈ P 1 \ u1 and
t ∈ P 2 \ u5 (see Figure 5b). Let G′ := (H \ P 1

u1s) ∪ P and C1, C2, C3, and C4 be
circuits as indicated in Figure 5c. Clearly, C1 and C4 are odd circuits. Moreover, C2

is even, as otherwise the union of C1, C2, and C4 is a bad-K4. Hence, C3 is odd, so the
union of C4, C3, and the symmetric difference of C1 and C2 forms a bad-K4.

Claim 2. If H is a good-K4 and P an H-route, then P is an edge and H ∪ P is
a pad with R(H ∪ P ) = R(H).

Proof of Claim 2. H is a pad. Let u1u3 and u2u4 be the two chords of H
and Q1, Q2, Q3 and Q4 be the four legs of H on R(H) (see Figure 6a). Let s
and t be the two end nodes of P . We may assume that s ∈ V (Q1) \ {u1, u2} and
t ∈ V (Q2) ∪ V (Q3) \ {u2, u4}. Let C be the unique circuit in (R(H) ∪ P ) \ Q4 (see
Figure 6b, c).

First suppose that C is even. If t were in V (Q2) \ {u2} (Figure 6b), then
(H \ Q2

u2t) ∪ P would be an odd-K4, with R1 := u1u3 and R2 := u4u2 ∪ Q1
u2s as

a pair of node disjoint legs. As R1 has length 1 and R2 does not, this odd-K4 would
be bad, so t ∈ V (Q3) \ {u3, u4} (see Figure 6c). As H ∪ P is not an odd-P9, one of
Q1
u1s, Q

1
u2s, Q

3
u3t, and Q3

u4t has more than one edge. By symmetry we may assume
that this is the case for Q1

u1s. But then all the legs of the odd-K4 (H \ Q2) ∪ P ,
except maybe P or Q3

u4t, have more than one edge. Hence this odd-K4 is bad.
Therefore, C is odd and thus H∗ := R(H)∪P ∪ {u4u2} is an odd-K4. Therefore,

P has length 1 and H∗ is a pad with R(H∗) = R(H). From this it trivially follows
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Fig. 6. Dotted and dashed curves indicate internally node disjoint paths; dashed curves have
positive length, whereas dotted curves may have length zero. In (a), dashed curves have an even
number of edges.

that also H ∪ P is a pad with R(H ∪ P ) = R(H).
A pad is called maximal if there is no larger pad with the same rim. A subgraph

H of G is induced if all edges of G with both end nodes in V (H) are in H.
Claim 3. No weakly 3-connected maximal pad has a route; hence each one is an

induced subgraph of G and has a tripod.
Proof of Claim 3. Let H be a weakly 3-connected pad, and let P be an H-route

with end nodes s and t. Let Q1 and Q2 be the two st-paths on R(H). As H ′ := H∪P
is weakly 3-connected, there exists a chord e = u1u2 of H with ui ∈ V (Qi) \ {s, t} for
i = 1, 2. Moreover, as H is weakly 3-connected, there exists a chord f of H crossing
e. Now, H∗ := R(H)∪{e, f} is a good-K4. As P is an H-route, f 6= st. Thus, s and t
lie in different legs of H∗. Hence, by Claim 2, P is an edge—e∗, say—and H∗∪e∗ is a
pad with R(H∗∪e∗) = R(H∗) = R(H). It is trivial to see from this that H ′ = H ∪e∗
is a pad as well. Hence H is not maximal. Therefore, weakly 3-connected maximal
pads have no routes.

Now, let H be a weakly 3-connected maximal pad. As it is not equal to G, it
must have a tripod. Moreover, if it were not induced, one of its legs would not be a
leg of G, but then there would be an H-route. As we have seen, this is not the case,
so H is an induced subgraph of G.

If H is a pad, u ∈ V (H) is called a center of H if the following hold: H has a
chord vw such that all other chords cross it and have u as end node, and H has a
tripod such that (i) one of its three paths has end node u and this path is of length
1 and (ii) the other two paths end in v and w and are even. We call such a tripod
fitting H at u.

Claim 4. Each weakly 3-connected maximal pad has at least one center, and each
of its tripods fits at some center of the pad.

Proof of Claim 4. Let H be a weakly 3-connected maximal pad; let P1, P2, and
P3 be the legs of any H-tripod. Denote the end node of Pi on H by ui. Let Qij be
the uiuj-path on R(H) that does not contain the third node in {u1, u2, u3}. As H is
weakly 3-connected, one of Q12, Q23, and Q31 is not a leg of H; i.e., one of the legs of
the extended triangle induced by u1, u2, u3 is an edge of K(G). Suppose that Q13 is
not a leg and, consequently, u1u3 ∈ K(H).

If uiuj ∈ K(H), then Pi ∪ Pj is an even path.(6)

Indeed, if not then R(H), Pi ∪ Pj and one of the chords of H crossing uiuj form a
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Fig. 7. Dotted curves indicate internally node disjoint even paths. The bold edges and curves
form a bad-K4.

bad-K4.

P1 ∪ P2 and P2 ∪ P3 are odd paths, and so, by (6), Q12 and Q23 are legs of H.(7)

To see this, let xy be a chord of H crossing u1u3; assume x ∈ Q23. It follows from
(6) that if (7) were false, then P1, P2, P3, Q

23
u2x, xy,Q

13, and u1u3 would constitute a
bad-K4. By (6) and (7), P1, P2, P3, Q

12, Q23, and u1u3 form an odd-K4, which implies
that

P2 consists of a single edge.(8)

It remains to prove that u2 is a center of H. Suppose that this is not the case; then
there exists a chord e of H with both end nodes in Q13 (recall that Q12 and Q23 are
legs of H). But then P1, P2, P3, Q

12, Q23, and (Q13 \Q13
e )∪{e} form a bad-K4.

Claim 5. G contains a book with at least two leaves.
Proof of Claim 5. There exists a weakly 3-connected pad (namely, each good-K4

is one). As G is not a pad, by Claim 3 there exists a weakly 3-connected pad with no
route and hence has a tripod. This pad and that tripod together form a book with
two leaves.

Let H̃ be a book with center c and hinges v and w, maximum number of leaves
L1, . . . , Ln, and maximum number of edges. Note that for any i 6= j, Li contains an
Lj-tripod centered at c. As in the proof of Claim 4, this implies that each chord of
Lj has one end in c and the other on the trim of Lj . Moreover, each V (Lj) induces

a maximal pad, so by maximality of H̃, each Lj is a maximal pad.

Claim 6. There exists no H̃-tripod.
Proof of Claim 6. Let T be a tripod of H̃. As all extended triangles are contained

in leaves, we may assume that T is a tripod of leaf L1. If T fits L1 at the center of
the book, H̃ ∪ T would be a larger book. Hence T fits L1 at a node different from
c. However, then L1 has two tripods (namely, T and one in L2) that fit at different
nodes of L1, so L1 has at least two centers, which implies that it is a good-K4. There
are two possibilities for how the tripods fit at different nodes (see Figure 7). It is not
hard to see that in either case, L1 ∪ L2 ∪ T contains a bad-K4.

As G itself is not a book, H̃ has a route—P , say. Let x and y be the end nodes
of P . As the leaves of H̃ are maximal pads, no one contains both x and y, so we may
assume that x ∈ V (L1) \ V (L2) and y ∈ V (L2) \ V (L1).
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Let Q be the trim of L2. First, if Q and P do not form a tripod of L1, then the
trim of L1 contains at least three legs, so L1 has a route, contradicting Claim 3. Thus
Q and P form an L1-tripod, which—as Q is even—fits at x (by (7)), so P consists of
a single edge and L1 has exactly one chord other than vw, namely, xc. By symmetry,
the only chords of L2 are vw and yc. However, now, xc, yc, xy, and the three even
paths in L1 ∪ L2 from v to x, y, and c form a bad-K4. This yields a final
contradiction.

2.2. Clean pads. Before we can state and prove the next lemma, we need some
further definitions. Let G be a pad. Chords e and f touch, written as e ∨ f , if they
share an end node. Chords e and f are parallel (e‖f) if they are nested but do not
touch.

A mesh is a collection of four chords e, f1, f2, h with the following properties:
- e× f1, e× f2, f1‖f2, and h‖e;
- h is not a chord of any of the four legs on R(G) of the pad R(G)∪ {e, f1, f2}

that are adjacent with e.
There are several possibilities for four chords to form a mesh. They are listed in
Figure 8. If we delete the paths P and Q on R(G) indicated in Figure 8, we obtain a
bad-K4. Hence, a pad with no bad-K4 contains no mesh.

A 3-chain is a triple e, f, g ∈ K(G) such that e �P f �P g for some path P on
R(G). A dirty triple is a collection of three pairwise parallel edges that do not form a
3-chain (see Figure 9a). A path P on R(G) is nesting if each pair of chords on K(P )
is nested. G is nesting if, for each pair of nodes s, t ∈ V (G), one of the two st-paths
on R(G) is nesting.

It is straightforward to prove that
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(9) a pad is clean if and only if it is nesting and contains no mesh and no dirty
triple.

Lemma 6. Each weakly 3-connected pad with no bad-K4 is clean.
Proof. Let G be a weakly 3-connected pad with no bad-K4. We have already seen

that G contains no mesh. Assume that G is not clean.
Claim 7. G is nonnesting.
Proof of Claim 7. Suppose that G is nesting. Hence, it contains a dirty triple

T := {f, g, h}. Let Pe, Qe (e ∈ T ) be as in Figure 9a. As G is weakly 3-connected, for
each e ∈ T there exists an edge ze := ueve crossing e. Assume ue ∈ Pe for each e ∈ T .
Then, for each e ∈ T , ve ∈ Qe, because if vf , say, were not in Qf , then zf , g, f, h
would form a mesh or G would be nonnesting.

By symmetry, we may assume that zf‖h. As zf , zh, f, h is no mesh, zh ∨ f , so
zh‖g. Repeating this argument we get that zg∨h and zf∨g. However, now G contains
a bad-K4 (namely, the bold lines in Figure 9c)—a contradiction!

Claim 8. There exist two edge disjoint paths P1 and P2 on R(G) and edges
e1, f1 ∈ K(P1) and e2, f2 ∈ K(P2) such that

(i) ei and fi are not nested on Pi (i = 1, 2),
(ii) both ei and fi share an end node with Pi (i = 1, 2),
(iii) e1 × f1.
Proof of Claim 8. By the previous claim, there exist two edge disjoint paths P1

and P2 on R(G) and chords e1, e2, f1, and f2 satisfying (i). It is not hard to see that
these paths and chords can be chosen to satisfy (ii) as well. If neither e1 and f1 nor
e2 and f2 are crossing, choose z crossing e1 (G is weakly 3-connected). With the aid
of z, it is straightforward to see that either we can find edge disjoint paths P1 and
P2 satisfying (i), (ii), and (iii) or we find a mesh (see Figure 9a). As the latter is
impossible, the claim follows.

Choose P1, P2, e1, f1, e2, and f2 as in the previous claim, with |E(P1)| + |E(P2)|
maximal. Let ui, vi be the end nodes of Pi (i = 1, 2). As G is weakly 3-connected,
there exists a chord z = uv with v ∈ P2 \ {u2, v2} and u 6∈ P2. By the maximality of
|E(P1)|+ |E(P2)|, u ∈ P1 \ {u1, v1} (see Figure 10b).

First, consider the special case in Figure 10c. It contains a bad-K4, indicated by
the bold edges. However, the general case, as in Figure 10b, can be transformed to
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that special case by contracting legs on R(G). As legs are even paths, this contraction
could not have created a bad-K4 if one in G did not already exist. Hence we have a
contradiction, so G is clean.

A chord of a pad is called universal if it is not parallel with any other chord.
Lemma 7. No clean pad contains a bad-K4.
Proof. Let G be a clean pad containing a bad-K4 H such that |E(G)| is minimal.

Let u1, u2, u3, and u4 be the four nodes of H that have degree three in H. For
i, j = 1, . . . , 4, let P ij be the uiuj-leg of H.

Claim 9. The following hold:
(i) K(G) ⊆ E(H).
(ii) All legs of G on R(G) have length 2.
(iii) If P is a leg of H, then |P ∩R(G)| ≤ 2. If |P ∩R(G)| = 2, then P is a leg of

G on R(G) or P has length 3. In the latter case, the four legs of H meeting
P are even, and the sixth leg consists of a single edge.

(iv) If u, v ∈ U(G) form a 2-node cutset of G, then there exists a uv-path P on
R(G) with 2 or 4 edges. If P has 4 edges, it has one chord, which meets
exactly one of u and v.

Proof of Claim 9. If (i) were false, deleting an edge from K(G) \ E(H) would
contradict the minimality of G, as would contracting legs of G into legs of length 2 if
(ii) were false.

To prove (iii), suppose P is a leg of H that contains edges of R(G). Let e1 and
e2 be consecutive edges on P ∩R(G). By the minimality of G, contracting e1 and e2

in H does not yield a bad-K4. This means that the leg P of H containing e1 and e2,
has length 2 or 3. Moreover, in the latter case the four legs of H meeting P are even
and the sixth one has length one. Hence (iii) follows.

To see (iv), note that if G has a two node cutset, then H lies mainly on one “side”
of that cutset in the sense that one side of the cutset contains at least five legs of H
and the other side contains at most (part of) the sixth leg.

Claim 10. G has no universal chord.
Proof of Claim 10. Let uv be a universal chord. This means that G \ {u, v} is

bipartite, so uv is a leg of H. Assume u = u1 and v = u2. Let Q1 and Q2 be the
two uv-paths in R(G). We call Q1 ∪K(Q2) and Q2 ∪K(Q1) the two sides of G. For
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i, j = 1, . . . , 4, let aij be the first edge on P ij going from ui to uj . (Thus, aij = aji if
and only if |P ij | = 1.)

As |P 12| = 1, it follows by Claim 9 that for i = 1, 2 and j = 3, 4, aij ∈ R(G) if
and only if P ij is a leg of G in R(G). Moreover, as the circuit P 1i ∪ P i2 ∪ {u1u2} is
odd for i = 3, 4, we have the following:

(10) If i = 3, 4, then a1i and a2i lie on the same side of G. Moreover, P 1i and P 2i

are both even or both odd.

Also, as the circuit P i3 ∪ P 34 ∪ P 4i is odd for i = 1, 2, we have that

if i = 1, 2, then ai3 and ai4 lie on different sides of G.(11)

Next we rule out the different cases one by one:

At least one of a13, a14, a23, and a24 is in R(G).(12)

Suppose that this is not the case and that a13 ∈ K(Q1). Then from (10) and (11) it
follows that a23 ∈ K(Q1) and a14, a24 ∈ K(Q2). Thus both Q1 and Q2 are nonnesting,
which is a contradiction.

For i = 1, 2, either ai3 or ai4 is in K(G).(13)

To see this, assume that a13 ∈ Q1 and a14 ∈ Q2 (see Figure 10a). By (10), all legs
of H adjacent to u1u2 are even. Hence P 34 is odd, and as H is bad, it has at least
three edges. By symmetry, we may assume that Q2

u2u4
is not internally node disjoint

with P 34. Hence P 24 6= Q2
u2u4

. Therefore, by (10), a24 ∈ K(Q1) and a42 × u1u2 (by
Claim 9(iii) and since u1u2 is universal). However, this implies that P 23 6= Q1

u2u3
, so,

by (10), a23 ∈ K(Q2) and a32 × u1u2. If a32 × a23, then a32, a23, a42, and a24 form a
mesh, so a32 and a23 do not cross. Similarly, a42 and a24 do not cross. However, this
implies that G is nonnesting, a contradiction. Hence (13) follows.

From the above we may assume that a13 ∈ Q1 and a14 ∈ K(Q1), so P 23 cannot
be Q1

u2u3
. Hence a23 ∈ K(Q2) and a32 × u1u2. First assume that a24 ∈ Q2 and

consequently a41 × u1u2 (see Figure 10b). As G is nesting, by symmetry we may
assume that a32 × a23, but this implies that a32, a41, a23, and a14 form a mesh. As G
is clean, this is a contradiction, so a24 6∈ Q2. Hence, a24 ∈ K(Q1) (see Figure 10c).
As a32, a41, a23, and a24 is not a mesh, a32 does not cross a23. Similarly, a24 does not
cross a14. But this means that G is nonnesting—a contradiction!

A chord is crossed if it is crossed by at least one other chord. We call chords e1

and e2 distant if e1‖e2 and, for i = 1, 2, the path Pi on R(G) with the same end nodes
as ei but node disjoint from e3−i satisfies K(Pi) = {ei}.

Claim 11. Each pair of distant chords contains a noncrossed chord.
Proof of Claim 11. Let e1 and e2 be a pair of distant chords. Suppose that e1

is crossed by z1 and e2 by z2. For i = 1, 2, zi does not cross e3−i, as otherwise, zi
would be universal, or there would be a mesh, or e1 and e2 would not be distant.
As G is nesting z1 × z2. Let x1 be the end node of z1 and x2 be the end node of z2

such that there exists an x1x2-path on R(G), called Q, that is internally node disjoint
with e1 and e2. Assume z1 and z2 are selected such that Q is as short as possible.
As G contains no mesh, either z1 ∨ e2 or z2 ∨ e1; assume the latter is the case (see
Figure 11).

For i = 1, 2, let yi be a chord parallel with zi (z1 and z2 are not universal). From
the fact that G is clean, that e1 and e2 are distant, and that Q is minimal, one is able
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to deduce that y2 ∈ K(Q \ x2). As e1, e2, y2 cannot form a dirty triple, y2 is adjacent
to e2, so x1 is an end node of e2. Hence we have symmetry between i = 1 and i = 2.
Therefore, y1 ∈ K(Q \ x1) and is adjacent to e1, but now the edges e1, e2, y1, and y2

show that G is not nesting—a contradiction!
If e = uv is a noncrossed chord, then u and v share a common neighbor in R(G)

(by Claim 9(iv)), which we denote by ue. As e ∈ E(H), the node ue will not be in
V (H).

Claim 12. Each pair of distant chords contains a crossed chord. Moreover, the
noncrossed chords in G are pairwise adjacent and there are at most two of them.

Proof of Claim 12. To prove the first statement, suppose that it is false. Let
e and f be two parallel nonadjacent noncrossed chords. Let Q1 and Q2 be the two
paths on R(G) joining an end of e with an end of f . As G is nesting, we may assume
that K(Q2) = ∅ and that Q1 is nesting. As H is contained in G′ = G \ {ue, uf}, G′
is nonbipartite. Hence K(Q1) 6= ∅. Let h ∈ K(Q1) with Q1

h minimal. As G has no
dirty triple, h is adjacent to e or to f . Thus, let us assume that h and e share an end
node—v, say. As Q1 is nesting all chords in K(Q1) are in δ(v). But that means that
all odd circuits in G′ contain v. This is impossible since not all odd circuits in H can
go through a single node.

The second statement easily follows from the first. Indeed, two parallel noncrossed
chords are clearly distant by Claim 9(iv), so by the first statement of this claim they
cannot exist. Suppose there are three pairwise adjacent noncrossed chords e1, e2, and
e3. They cannot meet at a single node, as this would contradict Claim 9(iv), so they
form a triangle. Hence K(G) = {e1, e2, e3} and R(G) is a circuit of length 6, but that
graph has no bad-K4.

Claim 13. There is exactly one noncrossed chord.
Proof of Claim 13. Suppose that this claim is false. Let e = xy and f = yz be

two noncrossed chords. Let Q be the xz-path on R(G) not containing y. As e is not
universal, K(Q) 6= ∅. Let g ∈ K(Q) with Qg minimal. Let h × g (by the previous
claim, g is crossed). As Q is nesting, h ∈ δ(y) and each chord in K(Q) crosses h.
Hence, h is universal—a contradiction!

As there are no universal edges, there exists a pair of distant chords. By Claims 11
and 12 one of the two—e = uv, say—is crossed, and the other, f , is not. Let P be the
uv-path on R(G) not containing uf . Let Q1 and Q2 be the two paths constituting
R(G) \ (P ∪ {uf}). For i = 1, 2, let Ki be the collection of edges crossing e with end
node in Qi.

Claim 14. K(Q1) = K(Q2) = ∅, K1 6= ∅, and K2 6= ∅.
Proof of Claim 14. As G is nesting, (i) K(Q1) = ∅ or K(Q2) = ∅, (ii) K(Q1) = ∅
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or K2 = ∅, and (iii) K(Q2) = ∅ or K1 = ∅. From this it is easy to check that if the
claim is false, then either K1 = ∅ and K(Q1) = ∅ or K2 = ∅ and K(Q2) = ∅. Assume
that the latter is the case. Let w be the common end node of P and Q1. There exists
an odd circuit in H not containing w. As uf 6∈ V (H), this means that G \ {uf , w}
is nonbipartite. It is straightforward to check that this implies that K(Q1) contains
a chord parallel with e. Let h be such a chord with Q1

h minimal. Then e and h are
distant, so by Claim 11, h is noncrossed, but this contradicts Claim 13.

Let Q be the path R(G) \ uf . For i = 1, 2, let ei ∈ Ki with Qei ∩P maximal. As
e, e1, e2, f do not from a mesh, e1×e2 or e1∨e2, so there exists a node—w, say—that
lies on Qe1 ∩ P and on Qe2 ∩ P . By Claim 14 this means that w lies on Qg for each
chord g ∈ K(Q) = K(G). Hence G \ {w, uf} is bipartite. As H does not contain uf ,
this is a final contradiction.

Lemma 8. No book contains a bad-K4.
Proof. Suppose that G is a book, and let H be any odd-K4 in G. Let C be the

spine, h1 and h2 be the hinges, and c be the center of G. It is easy to see that for
every e ∈ E(C) there is a node v ∈ {h1, h2, c} such that each odd circuit in G \ e
contains v. Hence H must contain C. Consequently, H should be entirely contained
in one of the leaves of G. As all leaves are clean pads, H must be a good-K4.

2.3. Recognizing graphs with no bad-K4. In this section we prove Theo-
rem 3, which says that one can check—in polynomial time—whether or not a given
graph G contains a bad-K4.

First of all, note that odd-P9’s, books and clean pads are easily recognized. Second,
a polynomial-time recognition algorithm for the containment of an odd-K4 is given
by Gerards et. al. [8] (cf. Gerards [7]). Hence, by Theorem 2, it suffices to prove that
we can find for each graph G in polynomial time a polynomial-length list L of weakly
3-connected graphs smaller than G such that G contains a bad-K4 if and only if at
least one member of L contains a bad-K4. The following two easy-to-prove lemmas
show that this is indeed the case.

We need some definitions and notations. If G is a graph, then [G1, G2]u,v is called
a split if G1 and G2 are subgraphs of G such that V (G1) ∩ V (G2) = {u, v}; E(G1)
and E(G2) partition E(G), |E(G1)|, |E(G2)| ≥ 4; and neither G1 nor G2 is an odd
circuit. If G2 is bipartite and contains an odd uv-path, we call the split odd. If G2 is
bipartite and contains an even uv-path, we call the split even. If both G1 and G2 are
nonbipartite, we call the split strong.

If u and v are two nodes of a graph H and ` ∈ N, then [H]`u,v denotes the graph
obtained from H by adding a path from u to v with ` edges; we abbreviate this as
[H]k,`u,v := [[H]ku,v]

`
u,v.

Lemma 9. Let [G1, G2]u,v be a split of a 2-connected graph G. Then the following
hold:

- If [G1, G2]u,v is odd, then G contains a bad-K4 if and only if [G1]3u,v contains
a bad-K4.

- If [G1, G2]u,v is even, then G contains a bad-K4 if and only if [G1]2u,v contains
a bad-K4.

- If [G1, G2]u,v is strong and G has no odd or even split, then G contains a
bad-K4 if and only if at least one of [G1]2,3u,v and [G2]2,3u,v contains a bad-K4.

It follows from this lemma that given a graph G we can construct a polynomial-
sized list L′(G) of graphs with no splits such that G has a bad-K4 if and only if at
least one member of the list has a bad-K4. Therefore, we may restrict ourselves to
graphs with no split. It is easy to see that a graph with no split can be obtained from
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a 3-connected graph H by replacing some edges in H by a path of length 2 or 3 or by
a circuit of length 3 or 5. More precisely, a graph G has no split if and only if there
exists a 3-connected graph H and five sets P1, P2, P3, C3, and C5 partitioning E(H),
such that G can be obtained from H as follows: for each edge uv ∈ P2 ∪C3 ∪C5 add
a path from u to v with 2 edges; moreover, for each edge uv ∈ P3 ∪ C5 add a path
from u to v with 3 edges; finally, remove all the edges in P2 ∪ P3 ∪ C5. We denote
G by H(P1, P2, P3, C3, C5). Note that, given G, it is easy to find H and the proper
partition of its edge set.

So we see that a graph with no split only fails to be weakly 3-connected because
it may have pairs of “parallel” legs. Clearly, from each such pair of legs a bad-K4 can
use at most one leg. So if we would consider the list of graphs obtainable by dropping
a leg from each pair of parallel ones, we do not gain or lose bad-K4’s. The nice thing
about the graphs on this list is that they are weakly 3-connected; the bad thing is
that there may be exponentially many of them. Fortunately there is an easy way out
of this; we do not need to create the whole list.

Lemma 10. Let G = H(P1, P2, P3, C3, C5) be a graph with no split. Then G
contains a bad-K4 if and only if there exists a T3 ⊆ C3 and a T5 ⊆ C5 with |T3|+|T5| ≤
6, such that the graph H(P1 ∪ T3, P2 ∪ (C3 \ T3) ∪ (C5 \ T5), P3 ∪ T5, ∅, ∅) contains a
bad-K4.

(In fact, this lemma remains correct if we replace |T3|+ |T5| ≤ 6 with |T3|+ |T5| ≤
3.)

3. T-perfection. The main goal of this section is to prove Theorem 1, but we
first show that bad-K4’s are not t-perfect. In the remainder of the paper, for a subset
S ⊆ V (G), we use χS to denote the incidence vector of S in RV (G).

Lemma 11. No bad-K4 is t-perfect.
Proof. First, note that K4 is not t-perfect, as the vector [ 1

3 ,
1
3 ,

1
3 ,

1
3 ] is in P(K4),

but obviously not the convex combination of characteristic vectors of stable sets in
K4. Next, note that each bad-K4 can be reduced to K4 by repeated application
of the following operation: take a node u and contract all the edges incident with
u. However, this operation preserves t-perfection, which we easily obtain from the
following:

(14) Let G be a graph, u ∈ V (G), and x ∈ RV (G) such that xv = 1 − xu for each

neighbor v of u. Moreover, let G̃ be obtained from G by contracting all the

edges in δ(u) into a new node ũ, and let x̃ ∈ RV (G̃) be defined by x̃v := xv if

v ∈ V (G̃) \ ũ and x̃
ũ

:= 1 − xu. Then x is a vertex of P(G) if and only if x̃

is a vertex of P(G̃).

Hence no bad-K4 is t-perfect.
The proof of Theorem 1 uses the following lemma (the graphs [Gi]

`
u,v are defined

in section 2.3).
Lemma 12. Let G be a graph with induced subgraphs G1 and G2 such that V (G) =

V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).
(a) If V (G1)∩ V (G2) induces a clique in G, then G is t-perfect if and only if G1

and G2 are t-perfect (Chvátal [4]).
(b) If G is 2-connected, G2 is bipartite, and V (G1) ∩ V (G2) = {u, v} with uv 6∈

E(G), then if u and v are on the same side of the bipartition of G2, G is
t-perfect if and only if [G1]2u,v is t-perfect; otherwise, G is t-perfect if and
only if [G1]3u,v is t-perfect (Sbihi and Uhry [10]).
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(c) If G is 2-connected, both G1 and G2 are nonbipartite, and V (G1) ∩ V (G2) =
{u, v} with uv 6∈ E(G), then G is t-perfect if and only if [G1]2u,v, [G1]3u,v, [G2]2u,v,
and [G2]3u,v are t-perfect (Boulala and Uhry [2], Gerards [6]).

In fact, the lemma above can be generalized beyond t-perfection: It has been
proved by Chvátal [4]—for case (a)—and Barahona and Mahjoub [1]—for cases (b)
and (c)—that one can obtain linear descriptions for the stable set polyhedron recur-
sively through decompositions as in Lemma 12.

Proof of Theorem 1. Let G̃ be a counterexample to the theorem with |E(G̃)|
minimal. By Lemma 12

G̃ is weakly 3-connected and each of its legs has at most 3 edges.(15)

Let x̃ be a fractional vertex of P(G̃). An edge uv ∈ E(G̃) is tight if x̃u + x̃v = 1;
an odd circuit C is tight if

∑
v∈V (C) x̃v = 1

2 (|V (C)| − 1). We denote the collection of
tight edges by T and the collection of tight odd circuits by C.

0 < x̃v < 1 for each v ∈ V (G̃).(16)

Indeed, if x̃u = 0, then G̃ \ {u} would be a smaller counterexample, and if x̃u = 1, u
has a neighbor v with x̃v = 0.

x̃ is the unique solution of the system
xu + xv = 1 (uv ∈ T ),∑

u∈V (C)

xu =
1

2
(|V (C)| − 1) (C ∈ C),

(17)

as otherwise x̃ would not be a vertex of P(G̃). For V0 ⊆ V (G̃), we define T (V0) :=
{uv ∈ T |u ∈ V0} and C(V0) := {C ∈ C|V (C) ∩ V0 6= ∅}.

For each V0 6⊆ V (G̃): |T (V0)|+ |C(V0)| > |V0|.(18)

If this were not true, the restriction of x̃ to V (G̃) \ V0 would be a unique solution of
the system

xu + xv = 1 (uv ∈ T \ T (V0)),∑
u∈V (C)

xu =
1

2
(|V (C)| − 1) (C ∈ C \ C(V0)).

So G̃\V0 would be a smaller counterexample to Theorem 1. From (14), it also follows
that

δ(v) 6⊆ T for each v ∈ V .(19)

Claim 15. If C is an odd circuit, then E(C) ∩ T contains no matching of size
1
2 (|V (C)| − 1). If C is an even circuit and E(C) ∩ T contains a perfect matching,
then E(C) ⊆ T .

Proof of Claim 15. Let M ⊆ E(C)∩T be a matching with at least 1
2 (|V (C)| − 1)

edges. If C is even, then 1
2 |V (C)| =

∑
uv∈M (x̃u + x̃v) =

∑
uv∈E(C)\M (x̃u + x̃v) ≤

1
2 |V (C)|; thus, we have equality throughout,which implies that also edges in E(C)\M
are in T . If C is odd, then there is exactly one node u′ ∈ V (C) that is incident
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with none of the edges in M , so we have x̃u′ =
∑
v∈V (C) xv −

∑
uv∈M (xu + xv) ≤

1
2 (|V (C)| − 1)− 1

2 (|V (C)| − 1) = 0, which contradicts (16).
Claim 16. Let u and v be two nodes on a circuit C ∈ C and P be a uv-path that

is internally node disjoint from C. If T ∩E(P ) contains a matching M covering each
node in V (P ) \ {u, v}, then the unique odd circuit in C ∪ P using P is tight.

Proof of Claim 16. Let Q1 and Q2 be the two uv-paths in C, and assume that
P ∪ Q1 is an odd circuit—C ′, say. Let N be the largest matching in E(Q2) with
V (N)∩{u, v} = V (M)∩{u, v}. Then

∑
r∈V (C′) x̃r =

∑
r∈V (C′)\V (M) x̃r+

∑
rs∈M (x̃r+

x̃s) =
∑
r∈V (C)\V (N) x̃r + |M | ≥∑r∈V (C)\V (N) x̃r +

∑
rs∈N (x̃r + x̃s)− |N |+ |M | =∑

r∈V (C) x̃r − |N | + |M | = 1
2 (|V (C)| − 1) − |N | + |M | = 1

2 (|V (C ′)| − 1). Thus

C ′ ∈ C.
A circuit C in a graph G is called separating if G has subgraphs G1 and G2, each

properly containing C, such that V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2),
V (C) = V (G1) ∩ V (G2), and E(C) = E(G1) ∩ E(G2).

Claim 17. No circuit in C is separating.
Proof of Claim 17. Let C ∈ C be separating, and let G1 and G2 be as indicated

just above this claim (with G = G̃). For i = 1, 2, let x̃i be the restriction of x̃ to

V (Gi). As both G1 and G2 have no bad-K4and fewer edges than G̃, they are t-
perfect. Therefore, there exists a K ∈ N, stable sets S1

1 , . . . , S
1
K in G1, and stable sets

S2
1 , . . . , S

2
K in G2 (with possible repetitions) such that

x̃1 =
1

K
(χS1

1
+ · · ·+ χS1

K
)andx̃2 =

1

K
(χS2

1
+ · · ·+ χS2

K
).(20)

Consequently,

|Sij ∩ V (C)| = 1

2
(|V (C)| − 1)fori = 1, 2andj = 1, . . . ,K.(21)

For i = 1, 2 and uv ∈ E(C), we denote the number of stable sets Sij with u, v 6∈ Sij by

σi(uv). As, σi(uv) =
∑K
j=1(1−|Sij∩{u, v}|) = K−∑K

j=1 χ
>
{u,v}χSij = K−Kχ>{u,v}x̃i =

K(1− x̃iu − x̃iv) = K(1− x̃u − x̃v), we have that

σ1(uv) = σ2(uv) for each uv ∈ E(C).(22)

By (21) and (22), we can renumber the sets S2
1 , . . . , S

2
K , such that

for all j = 1, . . . ,K, S1
j ∩ V (C) = S2

j ∩ V (C).(23)

Hence, each S1
j ∪ S2

j is a stable set in G̃ and

x̃ =
1

K
(χS1

1∪S2
1

+ · · ·+ χS1
K
∪S2

K
),(24)

but this contradicts that x̃ is a fractional vertex of P(G̃).

As G̃ is not t-perfect, it contains an odd-K4. So, by (15) and Theorem 2, G̃ is an
odd-P9, a book or a clean pad. We will deal with these cases separately.

Case 1. G̃ is an odd-P9.
By (15), G̃ is in fact the Petersen graph with a node removed; see Figure 13. Let

S3,6 = {u3, u6, u14, u25}. By (17), there exists an edge uv ∈ T with S3,6 ∩ {u, v} = ∅
or a C ∈ C such that |S3,6 ∩V (C)| < (|V (C)| − 1)/2. It is easy to check that the only
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Fig. 14. Dotted curves indicated internally node disjoint even paths; they may have length zero.

possibility for this to hold is that either u1u2 ∈ T or u5u4 ∈ T . By symmetry, we also
have u2u3 ∈ T or u6u5 ∈ T and u3u4 ∈ T or u6u1 ∈ T . Again by symmetry, we may
assume that u1u2 ∈ T . Hence by Claim 15, u6u5 6∈ T and u3u4 6∈ T . So u6u1 ∈ T
and u2u3 ∈ T . However, that contradicts Claim 15.

Case 2. G̃ is a book.
Let h1, h2 be the hinges of the book and c be the center. Let L1, . . . , Ln be the

trims of the book. By (15), the spine of G̃ is a circuit of length 5—h1k1ck2h2, say—
and the legs of each Li have length two. Let h1s

i
1p
i
1 be the first leg of Li and pi2s

i
2h2

be the last leg of Li (going from h1 to h2; see Figure 14a). It is straightforward to
check that

(25) each nonseparating odd circuit in G̃ is one of h1h2∪Li;h1s
i
1p
i
1ck1 or h2s

i
2p
i
2ck2

for some i = 1, . . . , n.

Claim 18. If p ∈ Li and cp ∈ E(G̃), then |C(p)| ≥ 2. Hence p ∈ {pi1, pi2}.
Proof of Claim 18. Assume |C(p)| ≤ 1. Let s1r1p and pr2s2 be the two legs of

Li adjacent to p; see Figure 14b. By (18), |T (r1, p, r2)| ≥ 4 − |C(r1, p, r2)| ≥ 3. By
(18) and (19), |T (r1)| = |T (r2)| = 1. Hence cp ∈ T . By (19), we may assume that
pr1 6∈ T ; hence r1s1 ∈ T . But now the circuit cpr1s1 or, if s1 = h1, the circuit
cpr1s1k1 violates Claim 15.

Claim 19. For each i = 1, . . . , n, pi1 = pi2 =: pi (see Figure 14d).
Proof of Claim 19. If not, Li has three legs; see Figure 14c. By (19), (18), and

(25), |T (si)| = 1, so, by symmetry, we may assume that sipi2 ∈ T . By Claim 18, the
circuit ck1h1s

i
1p
i
1 is tight, so by Claim 16, ck1h1s

i
1p
i
1s
ipi2 is tight as well. But it has a

chord, contradicting Claim 17.
Claim 20. ck1, ck2 ∈ T .
Proof of Claim 20. Suppose ck2 6∈ T . Let S := {k1, h2} ∪ {pi|1 = i, . . . , n}.
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By (17), there exists an edge uv ∈ T with S ∩ {u, v} = ∅ or an odd circuit C ∈ C
with |S ∩ V (C)| < 1

2 (|V (C)| − 1). Using (25), it is easy to check that this implies
that h1s

i
1 ∈ T for some i = 1, . . . , n. Fix such an i. By (19) and Claim 15, none of

si1p
i, pic, pisi2, and si2h2 is in T . By (18), |C(si1, pi, si2)| ≥ 4 − |T (si1, p

i, si2)| = 3, so,
ck2h2s

i
2p
i ∈ C and si1h1h2s

i
2p
i ∈ C. Hence x̃c + x̃k2 = x̃si1 + x̃h1 , contradicting that

si1h1 is tight and ck2 is not.
Now, by (19), we may assume that cp1 6∈ T . By Claims 20 and 15, T (s1

1) =
T (s2

1) = ∅. Hence |T (s1
1, p

1, s1
2)|+ |C(s1

1, p
1, s1

2)| ≤ 3, contradicting (18).

Case 3. G̃ is a clean pad.
A priori, the tight odd circuits might run quite wildly through G̃. However,

this is not the case, as is shown by the following lemma, which can be understood
independently of the present proof.

Lemma 13. Let C be a nonseparating odd circuit in a clean pad G. Then |E(C)∩
K(G)| = 1.

Proof. Let G be a counterexample with |E(G)|minimal. Let C be a nonseparating
odd circuit in G with |E(C) ∩K(G)| 6= 1. As contracting all edges on E(C) ∩ R(G)
yields another counterexample, E(C) ⊆ K(G). Moreover, if e ∈ K(G) \ E(C), then
its end nodes lie in different components of R(G) \V (C), as otherwise, G \ {e} would
be a smaller counterexample. We first prove that

E(C) contains no pair of parallel chords.(26)

Indeed, suppose that it is false. Choose parallel chords f, g ∈ E(C) that are distant
in the pad G \ (K(G) \ E(C)). As C is nonseparating, there exist edges ef , eg ∈
K(G) \ E(C) with no end node in V (C) such that ef × f and eg × g. If ef‖g and
eg‖f , then G is not clean. Thus, we may assume ef × g. As C is odd, not all edges
on C can cross ef , so there exists an h‖ef , but then, as f and g are distant in the
pad G \ (K(G) \ E(C)), the chords ef , f, g, and h form a mesh.

Let c0, . . . , c2k be the nodes of C, numbered in the order in which they lie around
R(G). From (26) it then follows that the edges of C are cici+k (indices modulo
2k + 1). Let Pi be the cici+1-path on R(G) that contains no nodes of C other than
ci and ci+1, see Figure 14a. Let Ki := {uv ∈ K(G) \ E(C)|u ∈ V (Pi)}; note that for
each i = 0, . . . , 2k, Ki 6= ∅. For each e ∈ K(G) \ E(C) let Ce be the odd circuit in
R(G) ∪ {e} that uses the fewest nodes of V (C).

If e, f ∈ Ki, then V (Ce) ∩ {ci, ci+1} = V (Cf ) ∩ {ci, ci+1}.(27)

Indeed, if not, cici+k+1, ci+1ci+k+1, e, and f show that G is nonnesting or has a mesh,
and hence is not clean.

From (27), it is easy to see that there exists an i = 0, . . . , 2k, such that V (Ce) 3 ci
for all e ∈ Ki ∪Ki−1. By circular symmetry, we may assume that k + 1 is such an
i. Let f ∈ K0. By the symmetry i ↔ 2k + 2 − i (mod 2k + 1), we may assume
that c1 ∈ V (Cf ); hence f‖c0ck+1 and f × c1ck+2. Let e ∈ Kk+1. Then e‖c1ck+2 and
e× c0ck+1. Hence c0ck+1, c1ck+2, e, and f form a mesh (see Figure 14b).

For each C ∈ C, we denote the unique edge in E(C) ∩ K(G̃) by k[C]. Our
next task is to study the structure of the collection of tight edges and odd cir-
cuits as a whole. The outcome will be summarized in (35), (36), and (37); for
proving those we need to derive some claims. We define, for each ` = 0, 1, . . .,

K` := {e ∈ K(G̃)|e is in ` tight odd circuits}, Ktight
` := K`∩T , and Kfree

` := K` \T .
By Lemma 13, K` = ∅ for ` ≥ 3. Moreover,

Kfree
0 = ∅,(28)
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as deleting an edge in Kfree
0 form G̃ would yield a smaller non–t-perfect graph.

Claim 21. If uv ∈ K(G̃) ∩ T , then uv is the only chord with end node u.
Proof of Claim 21. Let uw be a second chord. Let P := vv′ . . . w′w be the

vw-path on R(G̃) not containing u. If there exists a tight odd circuit using both v
and w, then by Claim 16, there exists a tight odd circuit using vu and uw, but this
contradicts Claim 17 or Lemma 13. Let Cw ∈ C(w′) and Cv ∈ C(v′). By Claim 17,
u 6∈ V (Cw)∪ V (Cv), so k[Cw] crosses uw and k[Cv] crosses uv. Hence, uw, uv, k[Cw],

and k[Cv] show that G̃ has a mesh or is nonnesting—a contradiction!

Claim 22. If uv ∈ K(G̃) ∩ T , then uv is not a universal chord of G̃.
Proof of Claim 22. Suppose that the claim is false. We construct a new graph

G from G̃ as follows. For each neighbor w of u, we introduce a new node w∗ and
two new edges uw∗ and w∗w and remove the original edge uw. Moreover, we define
x ∈ RV (G) by xw := x̃w if w ∈ V (G̃) \ {u}, xw∗ := x̃u if w is a neighbor of u in G̃,
and xu := 1− x̃u. Then, by (14), x is a vertex of P (G).

Let G′ be obtained from G by contracting uv∗ and v∗v into one new node, called
v again. As xu+xv∗ = 1 = xv∗+xv, we get from (14) that G′ is not t-perfect. On the

other hand, as uv is universal in G̃, each odd circuit in G′ goes through v. However,
Fonlupt and Uhry [5] have proved that graphs containing a node that lies on each odd
circuit are t-perfect—a contradiction.

As tight odd circuits have no chords, we have by Claim 21 and (28) that

|δ(u) ∩K(G̃)| ≤ 2 for all u ∈ V (G̃)(29)

and

if e ∈ K2, then all other chords cross e.(30)

By (30) and Claim 22,

K
tight
2 = ∅.(31)

For each e ∈ K(G̃) define ye to be the total number of tight odd circuits and edges
containing e. From Claims 21 and 22 and by (29) and (30), we see that∑

e∈δ(u)∩K(G̃)

ye ≤ 2 for each u ∈ U(G̃).(32)
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Moreover, by (19),

|T (u)| ≤ 1 for each u ∈W (G̃),(33)

and thus, by (17),

|V (G̃)| = |U(G̃)|+ |W (G̃)|
≥ 1

2

∑
u∈U(G̃)

∑
e∈δ(u)∩K(G̃)

ye +
∑

u∈W (G̃)

|T (u)|

=
∑

e∈K(G̃)

ye +
∑

u∈W (G̃)

|T (u)|

= |C|+ |T |
≥ |V (G̃)|.

(34)

Thus, we have equality throughout, which implies that we have equality in (32) and
(33). So we get

|T (u)| = 1 for each u ∈W (G̃);(35)

(36) each chord in K
tight
1 ∪Kfree

2 is node disjoint from all other chords; moreover,
the edges in Kfree

1 form node disjoint circuits;

and, by Claim 22,

K
tight
0 = ∅.(37)

As W (G̃) is a stable set, by (17), there exists an equation in (17) that does not hold
for χ

W (G̃)
. Case checking yields that this means that

K
tight
1 6= ∅.(38)

Claim 23. Kfree
1 6= ∅.

Proof of Claim 23. Suppose that Kfree
1 = ∅. Then, by (36), no two chords touch.

By (38), there exists at least one tight chord, so, by Claim 22, there exists a pair

of parallel chords. Choose e, f ∈ K(G̃) parallel, such that the shortest path—Q,

say—on R(G̃) that connects an end node of e with an end node of f is as short as
possible. Let Ce ∈ C(e) and Cf ∈ C(f) (as e and f are parallel, these two odd circuits
are unique). Let u ∈ W (G) ∩ V (Q) and C ∈ C(u). (C exists by (18) and (35).) As
u 6∈ V (Ce) ∪ V (Cf ), e, f 6= k[C], and by the choice of e and f , k[C] is not parallel
to e nor to f . Therefore, as there are no touching chords, k[C] crosses both e and f .
As k[C] is tight, there exists an edge h‖k[C]. As h is not a chord of Ce nor of Cf ,
k[C], e, f, and h form a mesh—a contradiction!

For each e ∈ K1 let C[e] be the unique tight odd circuit using e.
Claim 24. Kfree

1 contains no pair of parallel chords.
Proof of Claim 24. Let f1 = u1u2 and f2 = v1v2 be two parallel chords in Kfree

1 ;

see Figure 15. Let P be the u2v1-path on R(G̃) containing v2. By symmetry we may
assume that P is nesting. Let u2w be the second edge in Kfree

1 incident with u2. As



544 A. M. H. GERARDS AND F. B. SHEPHERD

u

u
2 2

v

v

C[f  ]

1

f
2

1

1

P

C[f  ]2

f
1

Fig. 16.

u 1 u 2

u k+1

u k+2

u k+1u k+2

u 1 u 2

u k+1u k+2

u 2
u 1

u 0

w

vw 22

1wv

v

u

w w

ww

k+2 k+1

211

k+2
k+1

1

P

(a)

P

P

(b) (c)

Fig. 17. Dashed curves indicate internally node disjoint even paths of positive length. The
closed curve on the outside is the rim.

P is nesting, w 6∈ P \ {v1}, but then either u1u2 or v1v2 is a chord of C[u2w], or u2w
is a chord of C[u1u2]—a contradiction!

Let Γ be a circuit in Kfree
1 . Let u0, . . . , uN be the nodes of Γ in the order in which

they lie around R(G̃). From Claim 24, it follows that N is even (2k, say) and that
the edges in Γ are of the form uiui+k+1 (indices modulo 2k + 1); see Figure 17a. All
chords not in Γ are parallel with at least one edge in Γ. Thus, by (28), (30), and
Claim 24, we have that

(39) K2 = ∅ and Kfree
1 = E(Γ).

For i = 0, . . . , 2k, let Pi be the uiui+1-path on R(G̃) that is internally node disjoint

from Γ. By (38), there exists an edge uv in K
tight
1 . By symmetry we may assume

that u ∈ P1 and v ∈ P1 ∪ · · · ∪ Pk+1. As C[u1uk+1] has no chords, we have that

v ∈ Pk+1.(40)

Claim 25. Each chord in K
tight
1 has one end node in P1 and one in Pk+1.

Proof of Claim 25. Let xy ∈ Ktight
1 \ {uv}. As we proved for uv, we may assume

that x ∈ Pi and y ∈ Pi+k. Hence, uv‖u1uk+2 and xy‖uiuk+i+1. If i were different

from 1, then xy, uv,u1uk+2 and uiuk+i+1 would form a mesh or show that G̃ is
nonnesting. Hence i = 1 and the claim follows.

Claim 26. |Ktight
1 | = 1.

Proof of Claim 26. Suppose not; then there are chords v1v2 and w1w2 in Ktight
1 ,

such that u1 and w1 are both on P1 and share a common neighbor w on P1, see
Figure 17b. From (35) we may assume that v1w ∈ T , but now the path v2v1ww1w2
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and the circuit C[u2uk+2] satisfy the assumptions in Claim 16. Hence there exists a
tight odd circuit using both v1v2 and w1w2, contradicting Claim 17 or Lemma
13.

Hence P1 and Pk+1 are paths of length 4. Let P1 = u1w1uw2u2 and P2 =
uk+1wk+1vwk+2uk+2; see Figure 17c.

We have that w2u2 6∈ T , as otherwise the path vuw2u2uk+2 and the circuit
C[u0uk+1] would satisfy the assumptions of Claim 16 and thus yield a tight odd circuit

using three chords of G̃. By symmetry also u1w1 6∈ T . Hence, by (35), uw1, uw2 ∈ T .
But as uv ∈ T this contradicts (19). This completes the proof of Case 3 and thus of
Theorem 1.
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[4] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math.,
4 (1975), pp. 305–337.

[5] J. Fonlupt and J. P. Uhry, Transformations which preserve perfection and h-perfection of
graphs, Ann. Discrete Math., 16 (1982), pp. 83–95.

[6] A. M. H. Gerards, A min-max relation for stable sets in graphs with no odd-K4, J. Combin.
Theory Ser. B, 47 (1989), pp. 330–348.

[7] A. M. H. Gerards, Graphs and Polyhedra—Binary Spaces and Cutting Planes, CWI Tract
73, CWI, Amsterdam, 1990.

[8] A. M. H. Gerards, L. Lovász, A. Schrijver, P. D. Seymour, C.-H. Shih, and K. Truemper,
Regular matroids from graphs, in preparation.

[9] A. M. H. Gerards and A. Schrijver, Matrices with the Edmonds–Johnson property, Com-
binatorica, 6 (1986), pp. 365–379.

[10] N. Sbihi and J. P. Uhry, A class of h-perfect graphs, Discrete Math., 51 (1984), pp. 191–205.
[11] F. B. Shepherd, Applying Lehman’s theorems to packing problems, Math. Programming, 71

(1995), pp. 353–367.
[12] B. Toft, Problem 10, in Recent Advances in Graph Theory: Proc. Symposium Prague, June

1974, M. Fiedler, ed., Academia, Praha, 1975, pp. 543–544.



MONOCHROMATIC PATHS AND TRIANGULATED GRAPHS∗

SHIMON EVEN† , AMI LITMAN† , AND ARNOLD L. ROSENBERG‡

SIAM J. DISCRETE MATH. c© 1998 Society for Industrial and Applied Mathematics
Vol. 11, No. 4, pp. 546–556, November 1998 003

Abstract. This paper considers two properties of graphs, one geometrical and one topological,
and shows that they are strongly related. Let G be a graph with four distinguished and distinct
vertices, w1, w2, b1, b2. Consider the two properties, TRI+(G) and MONO(G), defined as follows.

TRI+(G): There is a planar drawing of G such that
• all 3-cycles of G are faces;
• all faces of G are triangles except for the single face which is the 4-cycle

(w1 − b1 − w2 − b2 − w1).
MONO(G): G contains the 4-cycle (w1−b1−w2−b2−w1) and, for any labeling
of the vertices of G by the colors {white, black} such that w1 and w2 are white,
while b1 and b2 are black, precisely one of the following holds.
• There is a path of white vertices connecting w1 and w2.
• There is a path of black vertices connecting b1 and b2.

Our main result is that a graph G enjoys property TRI+(G) if and only if it is minimal with respect
to property MONO. Building on this, we show that one can decide in polynomial time whether or
not a given graph G has property MONO(G).

Key words. planar graphs, triangulated graphs

AMS subject classification. 05

PII. S0895480195283336

1. Introduction. We consider drawings of simple graphs on the plane and on
orientable surfaces. In a drawing G of a graph G on an orientable surface, a vertex
v is represented by a point, and an edge between vertices u and v (denoted u− v) is
represented by a curve joining its two endpoints. Two such curves do not intersect,
except perhaps at their endpoints. When we delete from the surface all points and
curves of G, the surface is partitioned to (one or more) connected components called
faces. If the topological boundary of a face is a cycle of G, we sometimes do not
distinguish between the face and the cycle, referring to the cycle as a face.

Let Ψ be a property of graphs. We say that a graph G is minimal with respect to
Ψ if G satisfies Ψ and any proper subgraph of G does not satisfy Ψ.

A q-graph is a simple graph with four distinguished and distinct vertices w1, w2,
b1, and b2 which form a 4-cycle (w1 − b1 − w2 − b2 − w1). We refer to this 4-cycle
as the principal cycle of G and to the edges and vertices of the cycle as the principal
edges and vertices. Other edges and vertices of G are nonprincipal.

A q-path in a q-graph G is a path1 whose endpoints are either (w1, w2) or (b1, b2).
A valid coloring of G is a labeling of the vertices of G by the colors {white, black}
in such a way that vertices w1 and w2 are labeled white and vertices b1 and b2 are
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1A path in a graph G is a sequence of vertices, wherein adjacent vertices are connected by an
edge in G. A path is simple if no vertex occurs more than once. The length of the path is the number
of edges, i.e., one less than the number of vertices.
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Fig. 1. Transforming an instance of Shannon’s game into a q-game. (a) Shannon’s game. (b)
Overlaying the dual graph. (c) Replacing crossings with vertices.

labeled black. This paper is devoted to exposing strong interrelationships among the
following properties of q-graphs.

TRI(G): There is a planar drawing of G in which all faces are triangles, except
for one face, which is the principal cycle.

TRI ′(G): There is a drawing of G on an orientable surface such that all faces
are triangles, except for one face which is the principal cycle.

TRI+(G): There is a planar drawing ofG as per property TRI, and, in addition,
every 3-cycle is a face. (Thomassen [2] used property TRI+ to study 2-linked
graphs. A graph satisfying TRI+ is called there a rib.)

MONO′(G): Any valid coloring of G has a monochromatic q-path.
MONO(G): MONO′(G) holds and, additionally, no valid coloring of G has

both a white q-path and a black q-path.

Our main results demonstrate the following relationships among these properties.

1. If TRI ′(G) holds, then MONO′(G) holds.
2. TRI+(G) holds if and only if G is minimal with respect to property MONO.

Building on these results, we show that one can decide in polynomial time whether
or not a given graph G enjoys property MONO.

The stimulus for this study comes from a two-player path-construction game
that generalizes several other games, namely, Hex, Bridgit, and Shannon Switching
Game [1]. This generalized game—let us call it a q-game—is played on a q-graph G.
The game begins with G in an initial configuration:

• Some vertices of G, in particular, b1 and b2, are colored black;
• some vertices of G, in particular, w1 and w2, are colored white;
• all other vertices of G are uncolored.

The two players, called Black and White, alternately select an uncolored vertex and
color it with their own color. The game concludes when all vertices are colored. Player
Black (resp., Player White) wins if there is a black (resp., a white) q-path and no
white (resp., no black) q-path in the fully colored G; otherwise, the game is a tie. In
this context, property MONO(G) means that there is no tie in a q-game based on
the graph G.

Let us see how the q-game generalizes Shannon’s Switching Game. Shannon’s
game is based on a graph K having two distinguished vertices + and −. The two
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Fig. 2. Construction of Cw.

players, called Short and Cut, alternately select an unclaimed edge and claim it. The
game concludes with Short winning if he owns a + to − path; otherwise, Cut wins.

If K is a planar graph, drawn so that vertices + and − lie on the same face, then
there is a q-game that generalizes the Shannon game. The q-graph and its initial
coloring are constructed as follows. Add to the drawing of K an edge from vertex
+ to vertex −, drawn within the face that has both vertices. Call the augmented
graph K ′. On the drawing of K ′, overlay the (geometric) dual of K ′; see Figure 1.
Now, replace each edge-crossing in the augmented drawing with a vertex, and add
the principal edges (these edges are missing in Figure 1). In the initial configuration,
color the vertices of K ′ white and the vertices of the dual graph black, and leave the
crossing vertices uncolored.

2. Property TRI(G) implies property MONO(G).
Theorem 2.1. If TRI ′(G) holds, then MONO′(G) holds.
Proof. Let G be a drawing of G as provided by property TRI ′. Let us augment G

by adding the edge w1 −w2 drawn within the face (w1 − b1 −w2 − b2 −w1). We call
the augmented drawing G+ and, by extension, we call the new depicted graph G+.
(Note that graph G+ may not be simple.) Clearly, all faces of G+ are triangles.

Consider now the multigraphG∗ that is the geometrical dual [3] of G+: the vertices
of G∗ are the faces of G+, and the edges of G∗ are in one-to-one correspondence with
edges shared by faces of G+. For each edge e of G∗, let e◦ denote the corresponding
edge of G+.

Let a valid coloring of graph G be given. In the resulting colored drawing, an edge
or a face of G+ is called bichromatic if it has both black and white vertices. Define
the bichromatic subgraph K = 〈V,E〉 of G∗ by

V = {v | v is a bichromatic face of G+},
E = {e | e◦ is a bichromatic edge of G+}.

Since every face of G+ is a triangle, every vertex of K has degree exactly two; hence,
K is a collection of disjoint simple cycles.

Let C = (v0 − v1 − · · · − vn−1 − v0) be a cycle of K. Define the “circular list”

Cw
def
= (x0, x1, . . . , xn−1, x0) of white vertices of G by

xi = the white vertex on the edge (vi − vi+1)◦ of G+,

(where addition on subscripts is modulo n). Let xi, xi+1 be any two consecutive
vertices of Cw. If the face vi+1 has exactly one white vertex, then xi = xi+1 (see
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Figure 2(a)); alternatively, if the face vi+1 has two white vertices, then xi and xi+1

are neighbors in G+ (see Figure 2(b)). Let Ĉw be the cycle in G+ obtained by
contracting each block of consecutive identical copies of a vertex x in Cw to a single
copy of x. (Ĉw is not necessarily a simple cycle.) Dually, we can define the “circular

list” Cb of black vertices of C and the associated contracted cycle Ĉb of black vertices
in G+.

Consider the triangles t1 = (w1 − w2 − b1 − w1) and t2 = (w1 − w2 − b2 − w1),
which are faces of G+ and hence are vertices of K. Let C be the cycle of K which
contains triangle t1. On the one hand, if cycle C also contains triangle t2, then both
b1 and b2 are in Ĉb so that Ĉb contains a path P of black vertices connecting b1 and
b2. Since path P does not use the edge w1 − w2, it is a path in the original graph
G. On the other hand, if cycle C does not contain triangle t2, then the edge w1 −w2

appears exactly once in Ĉw. Hence, Ĉw contains a path of white vertices connecting
w1 and w2 which does not use the edge w1 − w2.

We have thus shown that graph G has property MONO′(G).

Note that the proof does not use the fact that graph G is drawn on an orientable
surface. Hence, Theorem 2.1 holds for graphs drawn on any two-dimensional manifold.

Since a planar q-graph clearly cannot have two disjoint q-paths, one with end-
points (b1, b2) and one with endpoints (w1, w2), Theorem 2.1 actually implies the
following.

Lemma 2.2. If TRI(G) holds, then MONO(G) holds.

3. TRI+(G) holds if and only if G is MONO-minimal. Let G be a graph
and Q a set of vertices and edges of G. Let us denote by G\Q the subgraph of G
generated by removing all edges of Q, all vertices of Q, as well as their incident edges.

Let G be a q-graph. We say that G′ is a q-subgraph of G if G′ is a subgraph of G
and a q-graph (having the same principal vertices as G).

A trail T of a q-graph G is a simple path in G such that

1. the endpoints of T are (w1, w2) or (b1, b2), i.e., T is a q-path.
2. T does not contain the other two principal vertices.
3. for any vertices u and v of T , if u and v are adjacent in G, then u and v are

adjacent in T .

Lemma 3.1. Let G be a q-graph and P a q-path in G whose only principal vertices
are its endpoints. Then there a trail T in G whose vertex-set is a subset of the vertex-
set of P .

Proof. We lose no generality by assuming that P is a b1-to-b2 q-path. Let P ′

be the subgraph of G induced by the vertex-set of P . One verifies easily that any
minimal-length b1-to-b2 path in P ′ is a trail in G.

A consequence of Lemma 3.1 is that any q-graph having property MONO has a
trail.

Lemma 3.2. Let MONO(G) hold, and let T be a b1-to-b2 trail in G. Then

(a) w1 and w2 are not connected in G\T .

(b) any simple b1-to-b2 path in G whose vertex-set is a subset of T ’s coincides with
T .

(c) for any nonprincipal vertex v of T , there is a w1-to-w2 trail T ′ such that v is the
only vertex common to T and T ′.
(d) every q-subgraph of G that has property MONO(G) has trail T as a subgraph.

Clearly, by symmetry, we may interchange the roles of (w1, w2) and (b1, b2) in the
lemma.
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Proof.
(a) If w1 and w2 were connected in G\T , then one would be able to color G in

a way that simultaneously produces both a white and a black q-path, contradicting
property MONO(G).

(b) Let P = (u1 − u2 − · · · − um) be a simple b1-to-b2 path whose vertices all
appear in trail T = (v1− v2−· · ·− vn). Assume that P 6= T , and let i be the smallest
index such that ui 6= vi. Clearly, then, vertices ui−1 and ui are adjacent in G but are
not adjacent in T , contradicting the definition of “trail.”

(c) Let C be the valid coloring of G whose only black vertices are the vertices of
T\{v}. By (b), G cannot have a black q-path under coloring C. Because MONO(G)
holds, then, G must have a white q-path under coloring C; in fact, by Lemma 3.1, G
must have a white trail T ′. By (a), trail T ′ must intersect trail T . Since v is the only
white vertex of T under coloring C, it must be the only vertex common to trails T
and T ′.

(d) Assume, for contradiction, that the q-subgraphG′ ofG has propertyMONO(G′)
but does not contain trail T as a subgraph. Let C be the coloring of G′ that colors
all vertices of T ∩G′ black and colors all other vertices white. By (b), G′ cannot have
a black q-path under coloring C. Since G′ has property MONO(G′), it must contain
a white q-path P under coloring C. However, such a path P would be a path in G
that is disjoint from trail T . By (a), such a path cannot exist.

In what follows, we concentrate on b1-to-b2 trails for definiteness. The entire
development dualizes to w1-to-w2 trails by interchanging the roles of the principal
sets {b1, b2} and {w1, w2}.

Let G be a q-graph, and let T be a b1-to-b2 trail in G. Define the following
subgraphs of G.

A
(T )
1

def
= the connected component of G\T that contains principal vertex w1.

A
(T )
2

def
= the connected component of G\T that contains principal vertex w2.

X(T ) def
= G\(T ∪A(T )

1 ∪A(T )
2 ).

Note that the four graphs T , A
(T )
1 , A

(T )
2 , and X(T ) form a partition of G: the graphs

collectively contain all vertices of G, while property MONO(G) implies that the
graphs are disjoint.

Given G and T as above, define the q-graphs G
(T )
1 and G

(T )
2 as follows. For

i = 1, 2, let G′i
def
= G\(A(T )

i ∪ X(T )). Construct the graph G
(T )
i by adding to G′i the

vertex wi, as well as the edges wi − t for every vertex t of T . See Figure 3.

Lemma 3.3. If MONO(G) holds, and if T is a trail in G, then both MONO(G
(T )
1 )

and MONO(G
(T )
2 ) hold.

Proof. By symmetry, it suffices to establish that MONO(G
(T )
1 ) holds. To this

end, let C be a valid coloring of G
(T )
1 . Extend C to a coloring of G by labeling all

vertices of A
(T )
1 ∪X(T ) white.

Now, if MONO(G) holds, then G has a monochromatic q-path P . If P is a black

q-path, then P is a subgraph of G
(T )
1 . Alternatively, if P is a white q-path, then by

Lemma 3.2a, P intersects T . From the way we have constructed G
(T )
1 , it should be

clear that, in this case, we can construct a white q-path in G
(T )
1 from P . (In short,

we replace an initial segment of P by the edge from w1 to the last vertex of T that

appears in P .) We have thus shown that MONO′(G(T )
1 ) holds.

To finish the proof, we must show that G
(T )
1 never simultaneously has both a

black q-path and a white one. Assume for contradiction that, under coloring C, G
(T )
1



MONOCHROMATIC PATHS AND TRIANGULATED GRAPHS 551

Fig. 3. Construction of G
(T )
1 : (a) G and T , (b) G′1, (c) G

(T )
1 .

Fig. 4. Construction of G: (a) G and T , (b) G1, (c) G2 and G1, (d) G.

does simultaneously contain the black q-path P (b) and the white q-path P (w). Then
P (b) is a black q-path in G; moreover, Lemma 3.2c assures us that we can use P (w)

to construct a white q-path in G that coexists with P (b). This, however, contradicts
property MONO(G).

We are finally ready for our weak converse to Lemma 2.2.

Lemma 3.4. If MONO(G) holds, then G has a q-subgraph G′ for which TRI(G′)
holds.

Proof. We prove the lemma by induction on the number of vertices of G. If G
has no more than four vertices, then direct inspection verifies that TRI(G) holds.
Henceforth, therefore, we assume that G has more than four vertices, and we consider
five exhaustive, but not necessarily disjoint, cases.

Case 1. G has a trail T such that both A
(T )
1 and A

(T )
2 have at least two vertices.

With no loss of generality, say that T is a b1-to-b2 trail. Now, since MONO(G)

holds, Lemma 3.3 assures us that both MONO(G
(T )
1 ) and MONO(G

(T )
2 ) hold also.

Let us focus on G
(T )
1 . (A symmetric analysis can be done for G

(T )
2 .) Since G

(T )
1 has

fewer vertices than G, our induction hypothesis guarantees that it has a q-subgraph
K1 that has property TRI(K1). By Lemma 2.2, then, MONO(K1) holds. Hence, by
Lemma 3.2d, trail T is a subgraph of K1, and w1 − T − w1 is a simple cycle in K1.

Let G1 be a planar drawing of K1 whose external face is the principal cycle (of
G), which goes in the clockwise direction. Generate G1 from G1 by removing vertex
w1, all edges incident to w1, and all other vertices and edges that reside in the internal
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domain of the plane bounded by the simple cycle2 (w1 − T − w1). See Figure 4. All
faces of G1 are triangles except for the external face (w2 − T − w2). In a similar
way, construct the planar drawing G2 whose external face is (w1 − T − w1). Merge
drawings G1 and G2 into a single drawing G by identifying each vertex of T in G1 with
the corresponding vertex in G2. Note that since T is a trail, this merging does not
duplicate edges of the original graph3. Hence, G is a planar drawing of a q-subgraph
G′ of G that witnesses property TRI(G′).

Case 2. G has a trail of length one.

This case is immediate.

Case 3. G has a trail T of length two.

Say that T = (b1 − t − b2) for some vertex t of G. If each A
(T )
1 and A

(T )
2 has

at least two vertices, then we can just invoke Case 1. Assume, therefore, that one of

these graphs, say A
(T )
1 , has only one vertex—which must be principal vertex w1. In

this case, vertex w1 has precisely three neighbors: vertices b1, b2, and t.

Consider the q-graph G′′ def
= G\{w1} where t replaces w1 as a principal vertex.

We claim that MONO(G′′) holds. To verify this claim, let C be any valid coloring
of G′′. Extend C to a valid coloring of G by labeling vertex w1 white. Let P be any
monochromatic q-path in G (which must exist by property MONO(G)). On the one
hand, if P is a black q-path in G, then it is a subgraph of G′′; on the other hand,
if P is a white q-path in G, then P\{w1} is a white q-path in G′′. Now, G′′ cannot
simultaneously have both a white q-path P (w) and a black q-path P (b), or else G
would also have paths of both colors, contradicting property MONO(G). To wit,
path P (b) would be a black q-path in G, while path (w1 − P (w)) would be a white
q-path in G.

Since G′′ has one fewer vertices than G, there is a planar drawing G(3) of a q-
subgraph G(3) of G′′ that witnesses property TRI(G(3)). Let us alter this drawing
as follows. In the face (t − b1 − w2 − b2 − t), add vertex w1 and the edges w1 − b1,
w1 − b2, and w1 − t. Easily, this altered drawing depicts a q-subgraph G(4) of G that
witnesses property TRI(G(4)).

Case 4. G has a trail T of length greater than three.

Denote T by T = (b1 = t1 − t2 − t3 − · · · − tn = b2), where n > 4. Lemma 3.2c
assures us that there is a w1-to-w2 trail T ′ that shares precisely vertex t3 with T . It

follows that vertex t2 ∈ A(T ′)
1 and vertex t4 ∈ A(T ′)

2 ; therefore, Case 1 applies.

Case 5. All trails of G are of length three.

For any vertex v of G, denote by Γ(v) the set of neighbors of v, and define

s(v)
def
=

∑
wi∈Γ(v)

i+
∑

bi∈Γ(v)

i.

Let C be the valid coloring of G wherein a nonprincipal vertex v is labeled white if
and only if s(v) is even. Since G has a monochromatic q-path, it has a monochromatic
trail T as well. Let us discuss only the case where T is a b1-to-b2 trail; the proof of
the other case is similar. Let T = (b1 = t1 − t2 − t3 − t4 = b2). We now infer several
important facts about the adjacencies of the vertices of T .

Fact 1. Vertex t2 is adjacent to b1 but not to b2 and is adjacent to precisely one
of w1, w2.

2Actually, there are no other vertices and edges, but we do not need this fact.
3Otherwise, edges short-circuiting vertices of T may be duplicated.
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Fig. 5. The subgraph induced by T ∪ {b1, b2, w1, w2}.

By Lemma 3.2c, there is a w1-to-w2 trail T ′ (perforce, of length three) that shares
precisely vertex t2 with trail T . Therefore, vertex t2 is adjacent to one of w1 and w2.
Easily, t2 cannot be adjacent to both w1 and w2, nor to both b1 and b2, since either
such double-adjacency would lead to a trail of length two in G.

Fact 2. Vertex t3 is adjacent to b2 but not to b1 and is adjacent to precisely one
of w1, w2.

This follows by reasoning symmetric to Fact 1.
Fact 3. t2 and t3 cannot be adjacent to the same vertex of {w1, w2}.
Such common adjacency would imply that s(t2) 6= s(t3) mod 2.
Facts 1–3 imply that the subgraph ofG induced by the vertices of T∪{b1, b2, w1, w2}

has the form depicted in Figure 5. One can see from this figure that both A
(T )
1 and

A
(T )
2 must each have at least two vertices. Therefore, the scenario of Case 1 holds.

Since the list of cases above is exhaustive, the lemma is proved.
We use the next definition and lemma concerning simple graphs rather than q-

graphs. For a simple graph K, define the graph K4 = 〈V 4, E4〉 by

V 4 def
= {c| c is a 3-cycle of K},

E4 def
= {c1 − c2| c1 and c2 share an edge and c1 6= c2}.

Note that if K ′ is a subgraph of K, then (K ′)4 is a subgraph of K4.
Lemma 3.5. Let K and K ′ be simple graphs such that K ′ is a subgraph of K, K ′

has at least four vertices, and both K and K ′ have planar drawings s.t. every face is
a 3-cycle and every 3-cycle is a face. Then K = K ′.

Proof. Consider the graphs K4 and (K ′)4. As stated, (K ′)4 is a subgraph of
K4. Let K be a planar drawing of K as given by the lemma and let K∗ be the
geometrical dual of K. Since K has at least four vertices, K∗ is isomorphic to K4.
Hence, K4 is connected and is 3-regular.4 Similarly, the same holds for (K ′)4.

Combining the facts that (K ′)4 is a subgraph of K4, both graphs are 3-regular
and that K4 is connected yields K4 = (K ′)4. This implies that K and K ′ have
the same 3-cycles; since each edge of K belongs to some 3-cycle, we must have
K = K ′.

Lemma 3.6. If TRI+(G) holds, then G is minimal with respect to property TRI.
Proof. Assume that TRI+(G) holds, and let G′ be any q-subgraph of G that

enjoys property TRI(G′). We need to show that G = G′. Clearly, G′ has a q-
subgraph G′′ that enjoys property TRI+(G′′). Let G be a planar drawing of G that

4That is, the degree of each vertex is 3.
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witnesses property TRI+(G). By drawing new vertices and edges in the principal
face of G, we can construct a planar drawing such that every face is a 3-cycle and
every 3-cycle is a face. Let us call the graph depicted by this augmented drawing K.
Now, add the same vertices and edges to graph G′′, and call the resulting graph K ′.
K and K ′ satisfy the requirements of Lemma 3.5; hence, K = K ′. The equality of K
and K ′, however, implies that G = G′′.

The preceding series of lemmas allows us to prove our main theorem.
Theorem 3.7. TRI+(G) holds if and only if G is minimal with respect to prop-

erty MONO.
Proof. Say first that TRI+(G) holds. By Lemma 2.2, MONO(G) holds also. As-

sume then, for contradiction, that G is not minimal with respect to property MONO;
in particular, let G′ be a proper q-subgraph of G that enjoys property MONO(G′).
By Lemma 3.4, there exists a q-subgraph G′′ of G′ that enjoys property TRI(G′′),
but this contradicts Lemma 3.6.

Say next that G is minimal with respect to property MONO. Then, by Lemma
3.4, TRI(G′) holds for some q-subgraph G′ of G. It follows that TRI+(G′′) holds for
some q-subgraph G′′ of G′. We have just shown, however, that property TRI+(G′′)
implies that G′′ is minimal with respect to property MONO. Since G is also minimal
with respect to the property, we must have G = G′′.

4. Property MONO is decidable in polynomial time. Since property
TRI+(G) can be verified in polynomial time, Theorem 3.7 provides a polynomial-
time algorithm for deciding whether or not a given q-graph is minimal with respect to
property MONO. We need some more technical lemmas to establish that property
MONO itself is polynomial-time decidable.

Let G be a q-graph. Define the q-subgraph Ĝ
def
= 〈V̂ , Ê〉 of G, by

V̂
def
= {v | v is a principal vertex or v is on some trail},

Ê
def
= {e | e is a principal edge or e is on some trail}.

The next lemma establishes that any G that enjoys property MONO has exactly
one MONO-minimal q-subgraph, which is the graph Ĝ.

Lemma 4.1. Assume that MONO(G) holds. Then Ĝ is the only q-subgraph of
G that is minimal with respect to property MONO.

Proof. By Lemma 3.2d, any q-subgraph of G that enjoys property MONO in-
cludes Ĝ as a q-subgraph. Hence, we need only establish that MONO(Ĝ) holds.

To this end, let C be a valid coloring of Ĝ. Extend C in any way to a valid
coloring of G. Since MONO(G) holds, G has a monochromatic q-path; hence, by
Lemma 3.1, G has a monochromatic trail. By definition, this trail is a subgraph—
hence, a monochromatic q-path—of Ĝ. Of course, Ĝ could not have two conflicting
monochromatic q-paths, or else G would also. We conclude that Ĝ enjoys property
MONO.

Lemma 4.1 implies that, if G is minimal with respect to property MONO,
then any nonprincipal edge of G is on a trail; moreover, the lemma combines with
Lemma 3.2c to imply that any nonprincipal vertex of G is on both a w1-to-w2 trail
and a b1-to-b2 trail.

Lemma 4.2. If G is minimal with respect to property MONO, then any two
distinct nonadjacent vertices of G are separated by a trail.5

5Vertices u and v of G are separated by trail T if any path connecting u and v contains a vertex
of T .
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Proof. Let u and v be any two distinct nonadjacent vertices of G. We consider
the following two cases.

Case 1. There is a trail T that contains both u and v.

Let x be a vertex of T that lies between u and v. By Lemma 3.2c, there is a trail
T ′ that shares precisely vertex x with T . By Lemma 3.2a, T ′ separates u and v.

Case 2. No trail of G contains both u and v.

In this case, u and v must be nonprincipal vertices. Let T be a b1-to-b2 trail that
contains vertex v. Since G is MONO-minimal, the arguments of Case 1 in the proof
of Lemma 3.4 show that the graph X(T ) is empty. Assume, with no loss of generality,

that vertex u belongs to the graph A
(T )
2 . Let P be a v-to-w1 path such that v is the

only vertex common to P and T . Consider now the q-graph G
(T )
1 . It is easy to verify

by geometrical arguments that G
(T )
1 enjoys property TRI+. (Start with a drawing of

G that witnesses property TRI+ and modify it as shown in Figure 3.) Let T ′ be a

b1-to-b2 trail in G
(T )
1 that passes through vertex u, and let P ′ be a u-to-w2 path in

G
(T )
1 such that u is the only vertex common to T ′ and P ′.

Let us return now to graph G. T and T ′ are trails in G which, respectively, avoid
vertices u and v; P and P ′ are paths which both avoid (T ∪ T ′)\{u, v}. Consider the
valid coloring of G wherein vertices of (T ∪T ′)\{u, v} are black and all other vertices
are white. Assume that G has a white q-path and, therefore, a white trail T ′′. Now,
trail T ′′ must intersect both T and T ′; hence, it must include both u and v. However,
this contradicts the assumption that delineates this case. We conclude, therefore, that
G has a black q-path and, therefore, a black trail T . Since T separates vertices w1

and w2, and since vertices u and v are connected to w1 and w2, respectively, by paths
that are disjoint to T , we see that vertices u and v are separated by T .

Lemma 4.3 (see Thomassen [2]). If TRI+(G) holds, then, for any edge e that is
not in G, the graph (G ∪ {e}) contains two disjoint q-paths.

Proof. We present here an alternative proof. Let e be the edge u − v. By
Lemma 4.2, there is a trail T in G that separates vertices u and v. Say, with no loss

of generality, that u ∈ A(T )
1 and v ∈ A(T )

2 , and that T is a b1-to-b2 trail. It follows
that G contains a w1-to-u path P1 and a v-to-w2 path P2, such that both paths avoid
trail T . One easily sees that, in the graph (G∪{e}), trail T and path (P1−u−v−P2)
are disjoint q-paths.

For any q-graph G, we defined G⊕ to be the graph generated from G by adding
a vertex z and four edges connecting z to the principal vertices. For any 3-cycle t in
G, let G(t) be the q-subgraph of G generated by removing (from G) all vertices not
connected to z in G⊕\t. A q-graph G is lean if for any 3-cycle t: G = G(t). (In other
words, for any such t, every vertex of G\t is connected (in G\t) to some principal
vertex.)

Lemma 4.4. For any q-graph G and any 3-cycle t in G: property MONO(G)
holds if and only if MONO(G(t)) holds.

Proof. Let Y be the set of vertices removed in the construction of G(t). Let P
be a q-path in G that uses vertices of Y . Then there is a q-path P ′ in G(t), whose
vertex-set is a subset of P ’s, that has the same endpoints as P . This means that the
vertices of Y are superfluous, as far as monochromatic q-paths are concerned.

Lemma 4.5. Any lean q-graph G enjoys property MONO(G) if and only if it
enjoys property TRI+(G).

Proof. By Lemma 2.2, property TRI+(G) implies property MONO(G). To
establish the converse, we assume that MONO(G) holds and show that G is MONO-
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minimal.
Assume, for contradiction, that G 6= Ĝ. We claim that there is a path P in G

whose endpoints are nonadjacent vertices in Ĝ and all of whose other (“internal”)

vertices are not in Ĝ. If G has an edge that is not in Ĝ, then this edge is the required
path; otherwise, G has a vertex v that is not in Ĝ. Let X be the connected component
of G\Ĝ that contains v, and let Γ(X) denote the set of neighbors of X in Ĝ. If Γ(X)
contains two nonadjacent vertices, then we are done. Alternatively, Γ(X) is a clique

in Ĝ. Since Ĝ does not include the 4-clique K4, Γ(X) is either empty or is one of

the smaller cliques K1, K2, or K3. Since every edge and vertex of Ĝ is on a 3-cycle,
this contradicts the fact that G is lean. This establishes the existence of the desired
path P .

Now, if path P is a single edge, thenG contains two disjoint q-paths by Lemma 4.3.
However, the same also holds when P is a path of several edges. This contradicts
property MONO(G).

Theorem 4.6. Property MONO is polynomial-time decidable.
Proof. Let a q-graph G be given. By Lemma 4.4, we can reduce G in polynomial

time to a lean q-graph G′ that has property MONO if and only if G does. Having
G′, we can decide MONO(G) in polynomial time via Lemma 4.5.

5. Acknowledgments. We wish to thank Gili Granot for suggesting an alter-
native proof of Lemma 2.2, and Carsten Thomassen, Tuvi Etzion, and Shmuel Katz
for helpful discussions.

REFERENCES

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical
Plays, Academic Press, New York, 1982.

[2] C. Thomassen, 2-linked graphs, European J. Combin., 1 (1980), pp. 371–378.
[3] H. Whitney, Planar graphs, Fund. Math., 55 (1933), pp. 73–84.



TWO ARC-DISJOINT PATHS IN EULERIAN DIGRAPHS∗
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Abstract. Let G be an Eulerian digraph, and let {x1, x2}, {y1, y2} be two pairs of vertices in G.
A directed path from a vertex s to a vertex t is called an st-path. An instance (G; {x1, x2}, {y1, y2})
is called feasible if there is a choice of h, i, j, k with {h, i} = {j, k} = {1, 2} such that G has two
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instance is feasible, where n and m are the number of vertices and arcs in the instance, respectively.
If the instance is feasible, the corresponding two arc-disjoint paths can be computed in O(m(m +
n logn)) time.
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1. Introduction. Finding a set of edge-disjoint paths connecting pairs of spec-
ified vertices (called terminals) in a graph or a digraph is one of the classical and
fundamental problems in graph theory (see [6] for a survey), which has a wide vari-
ety of applications. A path between terminals s and t (or a directed path from s to
t) is called an st-path. If the graph is undirected, an important result by Robert-
son and Seymour [10] says that edge-disjoint paths for k pairs {si, ti} of terminals,
i = 1, 2, . . . , k, can be obtained in polynomial time for a fixed k. In the case of k = 2, a
complete characterization of undirected graphs G that do not have edge-disjoint s1t1-
and s2t2-paths is available (Dinits and Karzanov [2, 3], Seymour [11], and Thomassen
[12]). Such G can be reduced to a graph G′ that has a planar representation with the
following properties (see Fig. 1):

(i) the four terminals have degree 2, and all other vertices are of degree 3, and
(ii) the terminals are located on the outer face in the order of s1, s2, t1, t2.
Contrary to this, the characterization of arc-disjoint path problems in digraphs

seems much more difficult. For example, the weak 2-linking problem (i.e., to decide
whether there are arc-disjoint s1t1- and s2t2-paths) in a general digraph is shown by
Fortune, Hopcroft, and Wyllie [4] to be NP-complete. However, if the digraph under
consideration is Eulerian, the situation becomes slightly easier. For a given digraph
G = (V,E) with ordered terminal pairs (si, ti), i = 1, 2, . . . , k, call H = (V, {(ti, si) |
i = 1, 2, . . . , k}) its demand digraph. The weak 2-linking problem in an Eulerian
digraph G + H is known by Frank [5] to be polynomially solvable. Furthermore,
Ibaraki and Poljak [9] showed that the weak 3-linking problem for an Eulerian digraph
G+H can also be solved in polynomial time. It is based on the observations that the
weak 3-linking problem is equivalent to finding arc-disjoint x1x2-, x2x3-, and x3x1-
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Fig. 1. An infeasible instance for a two edge-disjoint path problem in an undirected graph G.

Fig. 2. An infeasible instance for a weak 3-linking problem in an Eulerian digraph G+H.

paths in an Eulerian digraph with terminals x1, x2, x3 and that the resulting problem
is infeasible if and only if it is reducible to a 2-connected Eulerian digraph G′, which
has a planar representation (see Fig. 2) such that

(i) all terminals have degree 2, and all other vertices have degree 4, and
(ii) every face is a directed cycle, and all the terminals are located on the outer

face (which is also a directed cycle) in the order of x3, x2, x1 (where the arcs in the
outer face are directed clockwise).

In this paper, we generalize the above result to the two arc-disjoint path prob-
lem in an Eulerian digraph G (but G + H is not Eulerian), which decides whether
there are arc-disjoint paths connecting two unordered terminal pairs {x1, x2} and
{y1, y2} (i.e., x′x′′- and y′y′′- paths, where either x′x′′ = x1x2 or x2x1 and either
y′y′′ = y1y2 or y2y1). This problem includes the above weak 3-linking problem as a
special case: for a given instance (G; (s1, t1), (s2, t2), (s3, t3)) of the 3-linking problem
(where G + H is Eulerian), add four new vertices x1, x2, y1, and y2 together with
seven new arcs (t1, y1), (y1, s2), (t2, y2), (y2, x1), (x1, s3), (t3, x2), (x2, s1) to obtain an
instance (G′; {x1, x2}, {y1, y2}) of the two arc-disjoint path problem (where G′ is Eu-
lerian), which is clearly feasible if and only if the instance (G; (s1, t1), (s2, t2), (s3, t3))
is feasible. We show that the problem can be solved in O(m+n log n) time, where m
and n are, respectively, the numbers of arcs and vertices in G, by deriving an analogue
of the above structural characterization of infeasible instances: an Eulerian digraph
G with four terminals x1, x2, y1, y2 is infeasible if and only if it is reducible to an
Eulerian digraph G′ that has a planar representation (see Fig. 3(a),(b)) such that

(i) all terminals have degree 2, and all other vertices have degree 4,
(ii) there is at most one cut vertex, and
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Fig. 3. Examples of infeasible instances for two arc-disjoint path problems in an Eulerian
digraph G.

(iii) every face is a directed cycle, and all terminals are located on the outer face
in the order of x1, y

′, x2, y
′′, where {y′, y′′} = {y1, y2}.

The proof for this is, however, substantially different from that of [9]. For a
feasible instance, we also show that the corresponding two arc-disjoint paths can be
computed in O(m(m+ n log n)) time.

2. Preliminaries. Let G = (V,E) be a digraph which may have multiple arcs.
Denote by deg(v), indeg(v) and outdeg(v) the degree, indegree, and outdegree of a
vertex v in G, respectively, where the degree of a vertex is the sum of its out- and
indegrees. We call a digraph Eulerian if the outdegree and indegree of each vertex
are equal. Under a path or a cycle, we always understand a directed path or cycle.
Repetition of arcs is not allowed, but repetition of vertices is allowed. A cycle that
visits every arc exactly once is called Eulerian. A path from s to t is called an st-
path. If {P1, P2, . . . , Pk} is a collection of arc-disjoint paths such that the last vertex
of Pi coincides with the initial vertex of Pi+1 for each i = 1, 2, . . . , k − 1, we denote
by P = 〈P1, P2, · · · , Pk〉 the concatenation of the paths. In the following discussion,
digraph G, path P , or cycle C may sometimes be treated either as a vertex set or an
arc set, as far as its meaning is unambiguous from the context. If it is necessary to
specify, we use E(G) and V (G) to mean the arc set and the vertex set of a digraph
G, respectively. For a digraph G = (V,E) and an arc set E′ ⊆ E, we denote the
digraph (V,E − E′) by G − E′. For a vertex set Z ⊂ V , the subdigraph induced by
Z is denoted by G[Z] = (Z,EZ), where EZ = {(u, v) ∈ E | u, v ∈ Z}, and G[V − Z]
may be denoted by G− Z.
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For a subset Z of vertices, δ+(Z) denotes the set of arcs from Z to V −Z, δ−(Z)
the set of arcs from V − Z to Z, and δ(Z) = δ+(Z) ∪ δ−(Z). If G is Eulerian, then
|δ+(Z)| = |δ−(Z)| holds for every Z, where |A| denotes the cardinality of a set A, and
therefore |δ(Z)| is always even. A set Z ⊂ V is called a k-cut if |δ(Z)| is k. For two
disjoint S, T ⊂ V , we say that a cut Z separates S and T if S ⊆ Z and T ⊆ V −Z and
define δ(S, T ) to be the set of arcs from S to T and arcs from T to S. Throughout
this paper, a singleton set {v} may also be denoted as v.

Two cuts Z1 and Z2 intersect each other if Z1 ∩ Z2 6= ∅, Z1 − Z2 6= ∅, and
Z2 − Z1 6= ∅, and they cross each other if, in addition, V − (Z1 ∪ Z2) 6= ∅ holds. For
two crossing cuts Z1 and Z2, we easily see that

|δ(Z1)|+ |δ(Z2)| ≥ |δ(Z1 ∩ Z2)|+ |δ(Z1 ∪ Z2)|(2.1)

and

|δ(Z1)|+ |δ(Z2)| = |δ(Z1 − Z2)|+ |δ(Z2 − Z1)|+ 2|δ(Z1 ∩ Z2, V − (Z1 ∪ Z2))|(2.2)

hold.
Some further notions, such as planarity, edge connectivity, and vertex connectiv-

ity, we refer to the unoriented graph G obtained from G by ignoring arc orientation. A
digraph G is called connected if G is connected. For a connected digraph G = (V,E),
a vertex z is called a cut vertex if G− {z} has more than one connected component.
We call an undirected path in G a chain. A chain with end vertices s and t is called an
st-chain, and these s and t are said to be connected (by the chain). A concatenation
of a collection of chains is also defined analogously to paths.

Consider an instance (G = (V,E);X,Y ) with X = {x1, x2} ⊆ V and Y =
{y1, y2} ⊆ V . Throughout this paper, when we refer to an instance (G;X,Y ), we
assume that G is Eulerian and is connected (hence strongly connected since G is
Eulerian). Each t ∈ X ∪ Y is called a terminal. We say that an instance (G;X,Y )
is feasible if it has two arc-disjoint x′x′′- and y′y′′-paths such that {x′, x′′} = X and
{y′, y′′} = Y ; otherwise it is infeasible.

Lemma 2.1. Let PX be an x′x′′-path with {x′, x′′} = X in (G;X,Y ). If y1 and
y2 are connected in G− E(PX), then (G;X,Y ) is feasible.

Proof. Since G is Eulerian, G − E(PX) has an x′′x′-path P ′X and each of the
connected components in G−E(PX)−E(P ′X) is Eulerian (possibly, a single vertex). If
y1 and y2 are contained in the same connected component in G−E(PX)−E(P ′X), then
the instance is feasible. Assume therefore that y1 and y2 are contained in two distinct
components H1 and H2, respectively. Since y1 and y2 are connected in G−E(PX) but
are not connected in G − E(PX) − E(P ′X), H1 and H2 must contain vertices v1 and
v2 in V (P ′X), respectively. Without loss of generality, assume that P ′X visits v1 before
v2. Then, H1 has a y1v1-path, P ′X contains a v1v2-path, and H2 has a v2y2-path.
This implies that the instance is feasible.

Lemma 2.2. If an instance (G;X,Y ) satisfies X ∩ Y 6= ∅, then it is feasible.
Proof. Assume without loss of generality that x1 = y1 for X = {x1, x2} and

Y = {y1, y2}. Since G is connected, there is arc-disjoint x1x2-path PX and x2x1-
path P ′X . Consider the connected component containing y2 in G− E(PX)− E(P ′X).
It contains a vertex in V (PX) or V (P ′X) (say, V (P ′X)) since G is connected. Then,
y1 and y2 are connected in G − E(PX). Lemma 2.1 then implies that (G;X,Y ) is
feasible.

In the following, therefore, we assume X ∩ Y = ∅ for an instance (G;X,Y ).
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Definition 2.1. We say that an instance (G;X,Y ) with X = {x1, x2} and
Y = {y1, y2} has an infeasible planar representation (IPR) if the following conditions
hold (see Fig. 3(a),(b)).

(i) G is planar and has at most one cut vertex.
(ii) All the terminals have degree 2, and all other vertices have degree 4.
(iii) G has a planar representation in which every face is a directed cycle (or

equivalently, the arcs incident to a vertex are alternately oriented out and
in), and all the terminals lie on the boundary of the outer face (which is also
a directed cycle) in the order of x1, y

′, x2, y
′′, where Y = {y′, y′′}.

We then have the next lemma.
Lemma 2.3. Any (G;X,Y ) which has an IPR is infeasible.
Proof. If an IPR has arc-disjoint x′x′′- and y′y′′-paths, where {x′, x′′} = X

and {y′, y′′} = Y , then these two paths must cross at some nonterminal vertex in
the planar representation (since every terminal has degree 2 and is located on the
boundary of the outer face). However, the two paths cannot cross at a nonterminal
vertex, because the arcs incident to a vertex are alternately oriented out and in.

It is easy to see that a feasible instance (G;X,Y ) never becomes infeasible by
contracting any arc. We say that an instance (G;X,Y ) is minimal infeasible if it is
infeasible, but the instance (G′;X,Y ) obtained by contracting any arc becomes fea-
sible. The main contribution of this paper is to show that the converse of Lemma 2.3
holds for such minimal infeasible instances. In the case of |V | = 6, however, there is
a minimal infeasible instance with V = {x1, x2, y1, y2, v, w} and E = {(v, x1), (x1, w),
(v, x2), (x2, w), (w, y1), (y1, v), (w, y2), (y2, v)} (see Fig. 3(c)), which is clearly infeasi-
ble but has no IPR. We shall see that this is the only exception.

3. Irreducible instances. Let us consider the following three types of reduc-
tions:

(1) Let Z be a 2-cut and Z∩ (X∪Y ) = ∅. Let u be the tail of the arc from V −Z
to Z and v the head of the arc from Z to V −Z. Delete Z, and if u 6= v then
add the arc (u, v) to G[V − Z]. See Fig. 4(1).

(2) Let Z be a 2-cut, |Z| ≥ 2, and |Z ∩ (X ∪ Y )| = 1. Then contract Z to the
terminal t ∈ Z, deleting any resulting loops. (The resulting terminal t has
degree 2.) See Fig. 4(2).(3) Let Z be a 4-cut such that G[Z] is connected, |Z| ≥ 2, and Z ∩ (X ∪ Y ) = ∅.
Then contract Z into a single vertex. See Fig. 4(3).

The next lemma is immediate from the definition of reductions.
Lemma 3.1. An instance (G;X,Y ) is feasible if and only if it is feasible after

performing any of the reductions (1), (2), or (3).
We say that an instance (G;X,Y ) is reducible if one of the above reductions

(1)–(3) can be applied (in this case, we also call such 2-cuts or 4-cuts reducible);
otherwise they are irreducible. An irreducible instance cannot have a 4-cut W with
W ∩ (X ∪Y ) = ∅ even if W does not induce a connected subdigraph, because in such
a case there is a 2-cut Z ⊂ W with Z ∩ (X ∪ Y ) = ∅ (i.e., it is reducible). As will
be shown in section 9, an irreducible instance of a given instance (G;X,Y ) can be
obtained in polynomial time. In this section, we present some properties of infeasible
irreducible instances.

Lemma 3.2. Any minimal infeasible instance is irreducible.
Proof. The proof is obvious because any of the reductions (1), (2), and (3) can be

performed by an adequate sequence of arc contractions, during which any infeasible
instance never becomes feasible by Lemma 3.1.



562 A. FRANK, T. IBARAKI, AND H. NAGAMOCHI

Fig. 4. Three types of reductions of irreducible cuts Z.

Lemma 3.3. Let (G = (V,E);X,Y ) be an infeasible irreducible instance. Then
the following hold.

(i) There is no 2-cut Z that separates X and Y .
(ii) Each terminal has degree 2.
(iii) Each nonterminal vertex has degree 4.
(iv) For any pair of vertices u, v ∈ V , there is at most one arc connecting them

(i.e., at most one of (u, v) and (v, u) exists in E).
Proof. (i) Assume that a 2-cut Z separates X and Y , where δ(Z) = {e1, e2}.

Since G is connected and Eulerian, there are arc-disjoint x1x2-path PX and x2x1-
path P ′X . Clearly, one of them (say, PX) contains no arcs from {e1, e2}. Similarly G
has a y′y′′-path PY , where {y′, y′′} = Y , such that E(PY ) ∩ {e1, e2} = ∅. These PX
and PY are arc-disjoint in G, and hence (G;X,Y ) is feasible.

(ii) Assume deg(x1) ≥ 4 for a terminal x1 ∈ X without loss of generality. If G
has arc-disjoint x1y1-path P1 and x1y2-path P2, then G − E(P1) − E(P2) has arc-
disjoint y1x1-path P3 and y2x1-path P4, since G is Eulerian. Let H be the connected
component in G − E(P1) − E(P2) − E(P3) − E(P4) that contains x2. Since G is
connected, H must contain a vertex z in V (Pi) for some i. Assume z ∈ V (P1)∪V (P2)
(the case of z ∈ V (P3)∪V (P4) can be treated similarly). Then E(P1)∪E(P2)∪E(H)
contains a path PX from x1 to x2 via z. However, y1 and y2 are connected in G −
E(P1)− E(P2)− E(H), since QY = 〈P3, P4〉 is a y1y2-chain, and the instance would
be feasible by Lemma 2.1, contradicting the assumption. Therefore, at least one of
the above P1 and P2 does not exist; i.e., by Menger’s theorem, there must be a 2-cut
W such that x1 ∈ W and Y ⊆ V −W . Since deg(x1) ≥ 4, we have |W | ≥ 2. From
(i) of this lemma, x2 ∈ V −W holds. This, however, implies that there is a reducible
2-cut W , which is a contradiction.

(iii) Assume deg(u) ≥ 6 for a nonterminal vertex u. Let W be a cut that minimizes
|δ(W )| among cuts W such that u ∈W and {x1, y1, y2} ⊆ V −W . By the minimality
of |δ(W )|, G[W ] is connected. By deg(u) ≥ 6, |δ(W )| = 2 would imply |W | ≥ 2,
and W is reducible. Hence |δ(W )| ≥ 4. From this, either (a) |δ(W )| ≥ 6 or (b)
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|δ(W )| = 4 and x2 ∈ W must hold (otherwise, W would be reducible). In the case
of (a), by Menger’s theorem G has three arc-disjoint paths P1, P2, and P3 from u
to some vertices w1, w2, w3 ∈ {x1, y1, y2}. By (ii) of this lemma, every terminal has
degree 2, and then we can assume that these paths P1, P2, and P3 are ux1-, uy1-, and
uy2-paths, respectively. Since G is Eulerian, G − E(P1) − E(P2) − E(P3) has three
arc-disjoint x1u-path P4, y1u-path P5, and y2u-path P6. Let H be the connected
component in G − ⋃i=1,...,6E(Pi) that contains x2. Since G is connected, H must
contain a vertex z in V (Pi) for some i. Assume z ∈ V (P1) ∪ V (P4) ∪ V (P2) ∪ V (P3)
(the case of z ∈ V (P1) ∪ V (P4) ∪ V (P5) ∪ V (P6) can be treated analogously). Then
E(P1) ∪ E(P4) ∪ E(P2) ∪ E(P3) ∪ E(H) contains a path PX from x1 to x2 via z.
However, y1 and y2 are connected in G − E(P1) − E(P4) − E(P2) − E(P3) − E(H),
since QY = 〈P5, P6〉 is a y1y2-chain, and the instance would be feasible by Lemma 2.1,
contradicting the assumption.

Therefore, we assume (b); i.e., there is a 4-cutW separating {u, x2} and {x1, y1, y2}.
In this case, applying the above argument to u and {x2, y1, y2}, we can conclude that
there is also a 4-cut W ′ such that {u, x1} ⊆ W ′ and {x2, y1, y2} ⊆ V −W ′. These
two cuts W and W ′ cross each other, and from (2.1) we have

|δ(W )|+ |δ(W ′)| ≥ |δ(W ∩W ′)|+ |δ(W ∪W ′)|.
Here |δ(W )| = |δ(W ′)| = 4 and |δ(W ∪W ′)| ≥ 4 by (i). This implies |δ(W ∩W ′)| ≤ 4;
i.e., W ∩W ′ with (W ∩W ′)∩ (X ∪Y ) = ∅ is a reducible 4-cut (or contains a reducible
2-cut W ′′ ⊂W ∩W ′), which is a contradiction.

(iv) If there are multiple arcs (u, v) and (u, v) in E, then u and v are nonterminal
vertices by (iii) and deg(u) = deg(v) = 4 holds. This means that Z = {u, v} is a
reducible 2- or 4-cut, which is a contradiction. Similarly if there are two arcs (u, v)
and (v, u), it is also easy to show that there is a reducible 2- or 4-cut Z = {u, v},
which is a contradiction.

Lemma 3.4. Let (G;X,Y ) be an irreducible infeasible instance. Then G has at
most two 2-cuts that separate {x1, y

′} and {x2, y
′′}, where Y = {y′, y′′}. If there are

two such 2-cuts Z and Z ′, then G has a cut vertex z such that Z = Z ′ ∪ {z} or
Z = (V − Z ′) ∪ {z}. Conversely, any cut vertex is obtained in this manner.

Proof. Let Z and Z ′ be the two 2-cuts that separate {x1, y
′} and {x2, y

′′}, where
we assume Z ∩ (X ∪ Y ) = Z ′ ∩ (X ∪ Y ) = {x1, y

′} without loss of generality. Choose
Z (resp., Z ′) as the cut minimizing |Z| (resp., maximizing |Z ′|) among such 2-cuts.
We first show that any other 2-cut Z ′′ that separates {x1, y

′} and {x2, y
′′} satisfies

Z ⊂ Z ′′ ⊂ Z ′ (and hence Z ⊂ Z ′).(3.1)

If Z ′′ crosses Z, we have |δ(Z ∩Z ′′)| ≥ 4 from the choice of Z and |δ(Z ∪Z ′′)| ≥ 2 as
Z ∪ Z ′′ separates {x1, y

′} and {x2, y
′′}. This means

|δ(Z)|+ |δ(Z ′′)| = 4 < 6 ≤ |δ(Z ∩ Z ′′)|+ |δ(Z ∪ Z ′′)|,
which is a contradiction to (2.1). Similarly, we see that Z ′′ also cannot cross Z ′,
and hence (3.1) holds. Since |δ(Z ′ − Z)| ≤ |δ(Z)| + |δ(Z ′)| (= 4), Z ′ − Z is a 2- or
4-cut satisfying (Z ′ − Z) ∩ (X ∪ Y ) = ∅. Then, by irreducibility, Z ′ − Z must be a
4-cut consisting of a single vertex (say, z). This implies that z is a cut vertex. From
|Z ′ − Z| = 1 and (3.1), (G;X,Y ) has at most two 2-cuts that separate {x1, y

′} and
{x2, y

′′}.
Conversely, let z be a cut vertex in G. Since G is Eulerian, z cannot have degree 2.

By Lemma 3.3(ii), (iii), and (iv), z is a nonterminal vertex and there are four distinct
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vertices, say, u1, u2, v1, v2, adjacent to z. Again since G is Eulerian, G − {z} has
exactly two components. Let W1,W2 ⊂ V be the vertex sets of these components, and
assume without loss of generality that (u1, z), (u2, z), (z, v1), (z, v2) ∈ E, u1, v1 ∈ W1

and u2, v2 ∈ W2 since G is Eulerian and at least one arc is going out (resp., going
in) of each W1 and W2. Clearly W1 and W2 = V − (W1 ∪ {z}) are both 2-cuts. By
irreducibility and Lemma 3.3(i), these satisfy |W1∩X| = |W1∩Y | = |(W1∪{z})∩X| =
|(W1 ∪ {z}) ∩ Y | = 1. This implies that a cut vertex z is obtained in the manner of
the lemma statement.

Lemma 3.5. Let (G = (V,E);X,Y ) be an irreducible infeasible instance which
has an IPR, and let B be the cycle of the outer face in the IPR. If |V | ≥ 5 and there
is no 2-cut Z such that |Z ∩ X| = |Z ∩ Y | = 1 and min{|Z|, |V − Z|} ≥ 3, then
V − (X ∪ Y ) induces a connected digraph in G− E(B).

Proof. By |V | ≥ 5, V − (X ∪ Y ) 6= ∅. By Lemma 3.3(ii) and the definition
of IPR, each terminal in X ∪ Y is an isolated vertex in G − E(B). Assume that
V − (X ∪ Y ) induces two connected components H1 and H2 in G − E(B). By the
planarity of the IPR, any vertices u1, v1 ∈ V (H1) ∩ V (B) and any vertices u2, v2 ∈
V (H2)∩V (B) cannot appear alternately (in the order of u1, u2, v1, v2) along cycle B.
This means that there are two arcs (u, v), (u′, v′) ∈ E(B) such that V (H1) and V (H2)
are contained in two distinct connected components H ′1 and H ′2 in G−{(u, v), (u′, v′)},
respectively. Hence Z = V (H ′1) is a 2-cut, and by the irreducibility, both V (H ′1) and
V (H ′2) must contain two terminals, one fromX and the other from Y by Lemma 3.3(i).
Clearly, each of V (H ′1) and V (H ′2) contains a nonterminal, and has at least three
vertices; i.e., min{|Z|, |V − Z|} ≥ 3.

The next lemma can be shown by inspecting all possible irreducible and infeasible
instances with |V | ≤ 7, based on Lemma 3.3.

Lemma 3.6. Let (G;X,Y ) be an irreducible infeasible instance with |V | ≤ 7. If
|V | ∈ {4, 5, 7}, then (G;X,Y ) has an IPR. If |V | = 6, (G;X,Y ) is the instance shown
in Fig. 3(c) (in this case there is no irreducible infeasible instance with |V | = 6 in
which some two terminals are adjacent to each other).

In this paper, we prove the next result.
Theorem 3.7. Let (G;X,Y ) be a minimal infeasible instance, and let it satisfy

|V | 6= 6. Then (G;X,Y ) has an IPR.
We shall need sections 4–8 to prove Theorem 3.7 for general |V | ≥ 8.

4. Outline of the proof. This section describes an outline of how to prove
Theorem 3.7 in sections 5–8. We first assume that there is a smallest counterexample
(G∗;X,Y ) to Theorem 3.7; i.e.,

(G∗;X,Y ) is a minimal infeasible instance with n 6=6 vertices, but has no IPR,
(4.1)
where G∗ minimizes the number n∗ of vertices among such instances. By Lemma 3.6,
n∗ ≥ 8 is assumed. In sections 5 and 6, we characterize cut vertices, 2-cuts, and 6-cuts
in G∗. Then in sections 7 and 8, as outlined below, we derive a contradiction from
the existence of such G∗, which proves Theorem 3.7.

For the subsequent discussion, we introduce two operations. Let w be a nontermi-
nal vertex with four incident arcs (s0, w), (s1, w), (w, s2), (w, s3), where s0, s1, s2, and
s3 are all distinct. We say that arcs (s0, w) and (w, s2) are split off at w when four
arcs (s0, w), (s1, w), (w, s2), (w, s3) are replaced with two new arcs (s0, s2) and (s1, s3)
after eliminating w. Conversely, we say that two arcs e = (u, v) and e′ = (u′, v′) are
hooked up (with a new vertex w) when we replace these two arcs with the new arcs
(u,w), (w, v), (u′, w), and (w, v′) after introducing a new vertex w.
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Now we choose a nonterminal vertex w adjacent to a terminal (say, x2) by arc
(x2, w) in G∗ and split off two arcs at w (recall that deg(w) = 4). If the resulting
instance

(G∗w;X,Y ) remains connected and irreducible,

then we call such splitting (or two arcs) admissible. Based on the properties obtained
in sections 5 and 6, we show in section 7 that G∗ always has an admissible splitting.
Clearly

(G∗w;X,Y ) is infeasible

since (G∗;X,Y ) is infeasible. Also if (G∗w;X,Y ) is irreducible, then

(G∗w;X,Y ) has an IPR

by the assumption on G∗.
However, we shall show in section 8 that, for the arc e = (x2, v) and any other

arc e′ in an irreducible infeasible instance (G;X,Y ) that has an IPR, the instance
(Ge,e′ ;X,Y ) obtained by hooking up e and e′ satisfies one of the following properties:

(i) (Ge,e′ ;X,Y ) is reducible,
(ii) (Ge,e′ ;X,Y ) has an IPR,
(iii) (Ge,e′ ;X,Y ) is feasible.

Notice that G∗ is obtained from G∗w by hooking up two arcs in an IPR ofG∗w. However,
this leads to a contradiction because G∗ = (G∗w)e,e′ satisfies none of (i)–(iii). Hence
no such counterexample (G∗;X,Y ) exists.

5. Cut vertex and 2-cuts in G∗.
Lemma 5.1. The minimum counterexample (G∗;X,Y ) in (4.1) has the following

properties:
(i) There is no cut vertex.
(ii) There is no 2-cut Z such that |Z∩X| = |Z∩Y | = 1 and min{|Z|, |V −Z|} ≥ 3.
Proof. (i) Assume that G∗ = (V,E) has a cut vertex z, since no vertex with

degree 2 is a cut vertex in a connected Eulerian digraph and z is nonterminal and has
degree 4 by Lemma 3.3(ii), (iii).

Let Z ′ and Z ′′ be the vertex sets of the two components in G∗ − {z}. By
Lemma 3.4, |Z ′ ∩ X| = |Z ′ ∩ Y | = 1 holds and each of Z ′ ∪ {z} and Z ′′ ∪ {z}
is a 2-cut in G∗. Let (u′, z), (u′′, z), (z, v′), (z, v′′) ∈ E be the four arcs incident
to z. Without loss of generality we can assume that u′, v′ ∈ Z ′ and u′′, v′′ ∈ Z ′′,
Z ′ ∩ (X ∪ Y ) = {x1, y2}, and G∗ has an Eulerian cycle which visits terminals in the
order of y2, x1, y1, x2 (if there is an Eulerian cycle in the order of y2, x1, x2, y1, then
the instance is feasible). We decompose (G∗;X,Y ) into (G′;X ′, Y ′) and (G′′;X ′′, Y ′′)
as follows. Let G∗[Z ′] (resp., G∗[Z ′′]) denote the subdigraph of G∗ induced by Z ′

(resp., Z ′′), and let G′ (resp., G′′) be the Eulerian digraph obtained by adding new
vertices y′1, x

′
2 and new arcs (u′, y′1), (y′1, x

′
2), (x′2, v

′) (resp., new vertices y′′2 , x
′′
1 and

new arcs (u′′, y′′2 ), (y′′2 , x
′′
1), (x′′1 , v

′′)) to G∗[Z ′] (resp., G∗[Z ′′]). Regard X ′ = {x1, x
′
2},

Y ′ = {y′1, y2}, X ′′ = {x′′1 , x2}, and Y ′′ = {y1, y
′′
2} as the sets of new terminals.

We show that (G′;X ′, Y ′) is irreducible. If (G′;X ′, Y ′) has a reducible cut W ,
then W must separate y′1 and x′2 (otherwise W would be reducible in (G∗;X,Y )).
Then W is a 2-cut such that |W | ≥ 2 and W ∩ (X ′ ∪ Y ′) = {y′1} or {x′2}. Since
deg(y′1) = deg(x′2) = 2, W − {y′1} (or W − {x′2}) is a 2-cut, which is reducible in
(G∗;X,Y ), which is a contradiction. Note that (G∗;X,Y ) is infeasible only when both
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new instances (G′;X ′, Y ′) and (G′′;X ′′, Y ′′) are infeasible. Therefore, (G′;X ′, Y ′)
must be irreducible and infeasible. Clearly, instance (G′;X ′, Y ′) is smaller than G∗

(since Z ′′ ∪ {z} is replaced with two vertices in the new instance), and hence has an
IPR by definition of G∗ (note that |V (G′)| 6= 6 by Lemma 3.6 since (G′;X ′, Y ′) has
two adjacent terminals). Analogously, we can show that (G′′;X ′′, Y ′′) also has an
IPR. However, it is easy to see that G∗ has an IPR if both instances (G′;X ′, Y ′) and
(G′′;X ′′, Y ′′) have IPRs, which is a contradiction.

(ii) Let Z be such a 2-cut in (G∗;X,Y ), where δ(Z) = {(u′, v′′), (u′′, v′)} and
u′, v′ ∈ Z and u′′, v′′ ∈ V − Z. Clearly, Z = V − Z is also such a 2-cut. Note that u′

and v′ (resp., u′′ and v′′) are distinct (otherwise it would be a cut vertex, contradict-
ing the above (i)). Without loss of generality assume that Z ∩ (X ∪Y ) = {x1, y2} and
G∗ has an Eulerian cycle that visits terminals in the order of y2, x1, y1, x2. We de-
compose instance (G∗;X,Y ) into the two instances (G′;X ′, Y ′) and (G′′;X ′′, Y ′′)
as follows. Let G′ (resp., G′′) be the digraph obtained by adding new vertices
y′1, x

′
2 and new arcs (u′, y′1), (y′1, x

′
2), (x′2, v

′) (resp., new vertices y′′2 , x
′′
1 and new arcs

(u′′, y′′2 ), (y′′2 , x
′′
1), (x′′1 , v

′′)) to G∗[Z] (resp., G∗[Z]). Regard X ′ = {x1, x
′
2}, Y ′ =

{y′1, y2}, X ′′ = {x′′1 , x2}, and Y ′′ = {y1, y
′′
2} as the sets of new terminals. Analogously

to (i), we see that each of the new instances is an irreducible infeasible instance. From
the assumption of min{|Z|, |V − Z|} ≥ 3, each of the new instances is smaller than
G∗ and has an IPR by definition of G∗ or by Lemma 3.6. However, it is again clear
that G∗ has an IPR if these new instances have IPRs, which is a contradiction.

6. 6-cuts. We first observe a property of a 6-cut Z.
Lemma 6.1. Let (G = (V,E);X,Y ) be an infeasible instance. If there exists

a 6-cut Z with Z ∩ (X ∪ Y ) = ∅ satisfying the following (i)–(iv), then (G;X,Y ) is
irreducible.

(i) |Z| ≥ 3.
(ii) Any cut W with W ⊆ Z is irreducible.
(iii) Any cut W with W ⊇ Z or W ∩ Z = ∅ is irreducible.
(iv) δ(Z) contains no multiple arcs.
Proof. Let Z be such a 6-cut. From (ii) and (iii), it suffices to show that any

cut W which intersects Z is irreducible; i.e., |δ(W )| = 2 or 4. Assume that a cut
W intersecting Z is reducible. Since W contains at most one terminal, V − (W ∪ Z)
contains a terminal, and hence cuts W and Z cross each other. By (2.1),

|δ(W )|+ |δ(Z)| ≥ |δ(W ∩ Z)|+ |δ(W ∪ Z)|,(6.1)

and by (2.2),

|δ(W )|+ |δ(Z)| = |δ(W − Z)|+ |δ(Z −W )|+ 2|δ(W ∩ Z, V − (W ∪ Z))|.(6.2)

Since Z contains no reducible cut by (ii), we have |δ(W ∩ Z)| ≥ 4. Also by (iii), we
see that |δ(W ∪Z)| ≥ |δ(W )|+2 holds (otherwise if |δ(W ∪Z)| ≤ |δ(W )|, then W ∪Z
would be reducible by (W ∪ Z) ∩ (X ∪ Y ) = W ∩ (X ∪ Y )). Therefore, |δ(Z)| = 6,
|δ(W ∩Z)| ≥ 4, and |δ(W ∪Z)| ≥ |δ(W )|+2 imply that (6.1) holds by equality. Hence
|δ(W ∩Z)| = 4 holds, and this means |W ∩Z| = 1 since Z contains no reducible cut.
Then |Z − W | ≥ 2 by (i), and again by (ii), |δ(Z − W )| ≥ 6. By (iii), we have
|δ(W − Z)| ≥ |δ(W )| (otherwise, if |δ(W − Z)| ≤ |δ(W )| − 2, then W − Z would be
reducible). By |δ(Z −W )| ≥ 6, |δ(Z)| = 6, and |δ(W − Z)| ≥ |δ(W )|, (6.2) implies
that |δ(Z−W )| = |δ(Z)| = 6, |δ(W −Z)| = |δ(W )|, and |δ(W ∩Z, V − (W ∪Z))| = 0.
By (iii), |W − Z| = 1 must hold, since |W − Z| ≥ 2 and |δ(W − Z)| = |δ(W )| mean
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Fig. 5. A 6-cut Z.

that W −Z is reducible. Now the vertex v ∈W ∩Z has degree 4 and has no adjacent
vertex in V − (W ∪Z) by |δ(W ∩Z, V − (W ∪Z))| = 0. From |δ(Z−W )| = |δ(Z)| and
|δ(W −Z)| = |δ(W )|, we then have |δ({v},W −Z)| = |δ({v}, Z −W )| = 2. However,
by |W −Z| = 1, the two arcs in δ({v}, Z−W ) are multiple, contradicting (iv).

6.1. Interchangeability. Let Z be a 6-cut in (G;X,Y ) such that

Z ∩ (X ∪ Y ) = ∅,

δ−(Z) = {e−1 , e−2 , e−3 }, δ+(Z) = {e+
1 , e

+
2 , e

+
3 },(6.3)

where z−i (resp., z+
i ) denote the head vertices of arcs e−i (resp., the tail vertices of arcs

e+
i ) for i = 1, 2, 3 (see Fig. 5). Note that these vertices z−i and z+

i may not be distinct.
We say that Z is (e−1 , e

−
2 , e
−
3 ; e+

j1
, e+
j2
, e+
j3

)-interchangeable, where {j1, j2, j3} = {1, 2, 3},
if the subdigraph G[Z] of G induced by Z has three arc-disjoint z−i z

+
ji

-paths Pi,ji (i =

1, 2, 3). Z is called fully interchangeable if it is (e−1 , e
−
2 , e
−
3 ; e+

j1
, e+
j2
, e+
j3

)-interchangeable
for any choice of j1, j2, j3 with {j1, j2, j3} = {1, 2, 3}.

Lemma 6.2. An irreducible infeasible instance (G;X,Y ) has no fully interchange-
able 6-cut Z with Z ∩ (X ∪ Y ) = ∅.

Proof. Assume that there is such a 6-cut Z, and let GZ be the digraph obtained
by contracting Z into a nonterminal vertex z. It is easy to see the following:

(i) (G;X,Y ) is feasible if and only if (GZ ;X,Y ) is feasible, and
(ii) (GZ ;X,Y ) is irreducible.

Therefore, (GZ ;X,Y ) is also an irreducible infeasible instance, but deg(z) = 6 con-
tradicts Lemma 3.3(iii).

A directed cycle of length 3 is called a triangle.
Lemma 6.3. Let (G;X,Y ) be an irreducible infeasible instance. Then the follow-

ing hold.
(i) If Z is a 6-cut such that Z∩(X∪Y ) = ∅, |Z| = 3, and the induced subdigraph

G[Z] is connected, then G[Z] is a triangle.
(ii) If |Z| = 3 and the three vertices in Z are mutually adjacent, then the induced

subdigraph G[Z] is a triangle.
Proof. (i) From Lemma 3.3(iv) and |δ(Z)| = 6, it is easy to see that the connected

subdigraph G[Z] contains exactly three arcs and these three arcs form an undirected
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cycle C of length 3 if the orientation is neglected. This C must be a directed cycle in
G, because otherwise it is not difficult to see, by checking all possibilities, that Z is
fully interchangeable, contradicting Lemma 6.2.

(ii) If all vertices in Z are nonterminal, (ii) follows from (i). Therefore, assume that
Z contains a terminal. Z = {v1, v2, v3} can contain at most two terminals since any
terminal has degree 2 from Lemma 3.3(ii). If Z contains two terminals, then clearly
G[Z] forms a triangle. Then assume that Z contains exactly one terminal, say, Z∩(X∪
Y ) = {v2}. If G[Z] is not a triangle, then we can assume without loss of generality that
G[Z] has arcs (v1, v2), (v2, v3), (v1, v3). Let Gv2 be the digraph obtained from G by
contracting Z into terminal v2. It is easy to see that (Gv2 ;X,Y ) is also an irreducible
infeasible instance. But v2 has degree 4 and contradicts Lemma 3.3(ii).

Let δ(Z;G) denote δ(Z) in a digraph G.
Lemma 6.4. Let (G;X,Y ) be an irreducible infeasible instance, and let Z be a 6-

cut in (G;X,Y ) as defined in (6.3). If Z is not (e−1 , e
−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable,

then properties (i)–(iv) hold.
(i) The induced subdigraph G[Z] is connected.
(ii) If G[Z] has no z−i z

+
i -path for some i ∈ {1, 2, 3}, then Z = {z−i , z+

i }.
(iii) z−i 6= z+

i for all i ∈ {1, 2, 3}.
(iv) If |Z| ≥ 3, then z−i 6= z−i′ and z+

i 6= z+
i′ for 1 ≤ i < i′ ≤ 3.

Proof. Note that |δ−({u};G[Z])| = |δ+({u};G[Z])| for all u ∈ Z − {z−i , z+
i | i =

1, 2, 3}. Hence if G[Z] has a z−i z
+
j -path P , then G[Z]− E(P ) has arc-disjoint z−i′ z

+
j′ -

and z−i′′z
+
j′′ -paths for some i′, i′′, j′, j′′ with {i′, i′′} = {1, 2, 3} − {i} and {j′, j′′} =

{1, 2, 3} − {j}.
(i) If the subdigraph G[Z] of G consists of more than one connected component,

then there would be a reducible 2-cut Z ′ with Z ′ ⊂ Z.
(ii) Assume without loss of generality that G[Z] has no z−1 z

+
1 -path. Then, by

Menger’s theorem, G[Z] has a cut W ⊂ Z such that z−1 ∈ W , z+
1 ∈ Z − W , and

|δ+(W ;G[Z])| = 0. Here |δ−(W ;G[Z])| ≥ 1 since G[Z] is connected by (i). Let
H denote the Eulerian digraph obtained by adding three new arcs e∗i = (z+

i , z
−
i )

(i = 1, 2, 3) to G[Z]. Now e∗1 ∈ δ−(W ;H) and |δ−(W ;H)| ≥ 2 hold, and hence
|δ+(W ;H)| ≥ 2 since H is Eulerian. Since |δ+(W ;G[Z])| = 0, we see that e∗2, e

∗
3 ∈

δ+(W ;H). Therefore, by |δ+(W ;H)| = 2 = |δ−(W ;H)|, we have |δ−(W ;G[Z])| = 1.
This implies that z−1 , z

+
2 , z

+
3 ∈ W and z+

1 , z
−
2 , z

−
3 ∈ Z − W and that |δ(W ;G)| =

|δ(Z −W ;G)| = 4 holds. Hence the 4-cut W (resp., Z −W ) in G consists of a single
vertex z−1 (resp., z+

1 ), respectively, from the irreducibility of G.
(iii) If z−1 = z+

1 , then G[Z] has a z−1 z
+
1 -path of null length. Since G is Eulerian,

G[Z] has two arc-disjoint z−2 z
+
2 - and z−3 z

+
3 -paths, because even if G[Z] has arc-disjoint

z−2 z
+
3 - and z−3 z

+
2 -paths, the connectivity of G[Z] (which follows from (i)) implies

that these paths have a common vertex v from which z−2 z
+
2 - and z−3 z

+
3 -paths can be

constructed. This contradicts that Z is not (e−1 , e
−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable.

(iv) From (ii), |Z| ≥ 3 means that G[Z] has paths from z−i to z+
i for all i = 1, 2, 3

(but they may not be arc-disjoint). Assume z−1 = z−2 since other cases are analogous,
and choose a z−3 z

+
3 -path P3 in G[Z]. Note that G[Z]−E(P3) together with additional

arcs (z+
1 , z

−
1 ) and (z+

2 , z
−
2 ) becomes Eulerian. This means that G[Z]−E(P3) has arc-

disjoint z−1 z
+
1 - and z−2 z

+
2 -paths, where z−1 = z−2 . This contradicts that Z is not

(e−1 , e
−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable.

6.2. Proper 6-cuts in G∗. We call a 6-cut Z proper if
(a) |Z| ≥ 3,
(b) Z ∩ (X ∪ Y ) = ∅,
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Fig. 6. Four possible cases for a proper 6-cut Z in (G∗;X,Y ).

(c) Z contains a vertex z such that (u, z) ∈ δ−(Z) and (z, v) ∈ δ+(Z).
In this subsection, we prove that any proper 6-cut Z induces a triangle in the

minimum counterexample (G∗;X,Y ).
Let Z be a proper 6-cut in the minimum counterexample (G∗;X,Y ) for which

e+
i , e
−
i , z

+
i , z

−
i (i = 1, 2, 3) are defined by (6.3). As Z is not fully interchangeable by

Lemma 6.2, assume that Z is not (e−1 , e
−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable without loss

of generality. From condition (c) and Lemma 6.4(iii), z−i = z+
j holds for some i 6= j.

Here we assume without loss of generality that z−1 = z+
3 (if necessary, exchange the

indices i = 2, 3). By Lemma 6.4(iii) and (iv), we have the following four possible
cases.

Case 1. z−2 , z
−
3 , z

+
2 , z

+
3 are all distinct (see Fig. 6(1)).

Case 2. z+
2 = z−3 and z−2 6= z+

1 (or symmetrically, z−2 = z+
1 and z+

2 6= z−3 ) (see
Fig. 6(2)).

Case 3. z+
1 = z−3 and z−2 6= z+

2 (see Fig. 6(3)).
Case 4. z+

2 = z−3 and z−2 = z+
1 (see Fig. 6(4)).

Now let H∗Z be the Eulerian digraph obtained from G∗[Z] as follows (see Fig. 7):
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Fig. 7. The instance (H∗Z ; X̃, Ỹ ) transformed from G∗[Z].

1. For i = 1, 2, if z+
i and z−i+1 are distinct, add a new vertex ti+1 together with

new arcs (z+
i , ti+1) and (ti+1, z

−
i+1); if z+

i = z−i+1, then let ti+1 = z−i+1(= z+
i ).

2. Let t1 = z−1 (= z+
3 ).

3. Replace the arc (t1, v) with two arcs (t1, t
′
1) and (t′1, v), inserting a new vertex

t′1 between t1 and v.
Define sets of terminals X̃ = {t1, t3} and Ỹ = {t′1, t2}. Obviously, instance (H∗Z ; X̃, Ỹ )
is feasible if and only if Z is (e−1 , e

−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable. Thus, (H∗Z ; X̃, Ỹ )

must be infeasible. Note that H∗Z contains at most |Z| + 3 (< |Z| + |X ∪ Y | ≤ n∗)
vertices, where n∗ is the number of vertices in G∗. The next lemma summarizes the
properties of H∗Z .

Lemma 6.5. Let (G∗;X,Y ) be the minimum counterexample, and let Z be a
proper 6-cut in (G∗;X,Y ), which is not (e−1 , e

−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable, and

(H∗Z ; X̃, Ỹ ) be the instance defined in the above. Then the following properties (i)–(iv)
hold in all the above cases.

(i) (H∗Z ; X̃, Ỹ ) is infeasible.
(ii) (H∗Z ; X̃, Ỹ ) is connected and irreducible and has no 2-cut W such that |W ∩

X̃| = |W ∩ Ỹ | = 1 and min{|W |, |V (H∗Z)−W |} ≥ 3.
(iii) (H∗Z ; X̃, Ỹ ) has an IPR.
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(iv) Z is (e−1 , e
−
2 , e
−
3 ; e+

j1
, e+
j2
, e+
j3

)-interchangeable for any choice of j1, j2, j3 from
{1, 2, 3} except (j1, j2, j3) = (1, 2, 3).

Proof. In what follows, we consider all four cases simultaneously.
(i) Already proved.
(ii) Since G∗[Z] is connected by Lemma 6.4(i), H∗Z is connected. Assume that

(H∗Z ; X̃, Ỹ ) has a reducible cut W . If W ∩ (X̃ ∪ Ỹ ) = ∅, then W would also be a
reducible cut in (G∗;X,Y ), which is a contradiction. Therefore, W must be a 2-
cut in (H∗Z ; X̃, Ỹ ) such that |W | ≥ 2 and |W ∩ (X̃ ∪ Ỹ )| = 1. Since no such W
with |W | = 2 attains |δ(W ;H∗Z)| = 2 as easily checked, we further assume |W | ≥ 3.
Let {t∗} = W ∩ (X̃ ∪ Ỹ ). Clearly, |δ(W ;H∗Z)| = 2 implies that |δ(W ′;G∗)| ≤ 4
holds for W ′ = W − {t∗} ⊆ V . This and |W ′| = |W | − 1 ≥ 2 mean that W ′ is a
reducible 2- or 4-cut in (G∗;X,Y ), which is a contradiction. Therefore, (H∗Z ; X̃, Ỹ )
is irreducible. Assume that (H∗Z ; X̃, Ỹ ) has a 2-cut W with |W ∩ X̃| = |W ∩ Ỹ | = 1
and min{|W |, |V (H∗Z) −W |} ≥ 3, and let t′1 ∈ W without loss of generality. Then
|W | ≥ 3 implies that (W − (X̃ ∪ Ỹ )) ∪ {z+

3 } is a reducible 4-cut in G∗, contradicting
irreducibility of (G∗;X,Y ).

(iii) The instance (H∗Z ; X̃, Ỹ ) is infeasible by (i) and is connected and irreducible
by (ii). Since H∗Z contains at most |Z|+ 3 < n∗ vertices, the instance (H∗Z ; X̃, Ỹ ) has
an IPR by the minimality assumption on G∗ and by Lemma 3.6 (note that terminals
t1 ∈ X̃ and t′1 ∈ Ỹ are adjacent).

(iv) Let B be the directed cycle of the outer face in an IPR of (H∗Z ; X̃, Ỹ ), where B
visits t1, t

′
1, t3, t2 in this order, and let B(u, v) denote the uv-path on B, where B(u, u)

means a path of null length. Note that (j1, j2, j3) 6= (1, 2, 3) implies (a) j1 = 3, (b)
j1 = 2, or (c) j1 = 1 and j2 = 3. If |V (H∗Z)| = 4, then only Case 4 can occur and the
IPR is a cycle of length 4 visiting t1, t

′
1, t3, t2 in this order. In this case, we can easily

check by inspection that (iv) holds. We then assume |V (H∗Z)| ≥ 5. Since (H∗Z ; X̃, Ỹ )
has no 2-cut W stated in the above (ii) and |V (H∗Z)| ≥ 5 holds, V (H∗Z) − (X̃ ∪ Ỹ )
induces a connected component in H∗Z − E(B) by Lemma 3.5.

(a) j1 = 3. We first take a z−1 z
+
3 -path PA of null length in H∗Z . We then consider

path B(z+
2 , z

−
2 ), which contains a z−3 z

+
1 -path PB = B(z−3 z

+
1 ), and remove the arcs

of E(B(z+
2 , z

−
2 )) from H∗Z . Now indeg(u) = outdeg(u) holds for all u ∈ V (H∗Z) −

{z+
2 , z

−
2 }. Then, the set E(H∗Z)−E(B(z+

2 , z
−
2 )) of remaining arcs can be regarded as a

z−2 z
+
2 -path PC . Therefore, Z is (e−1 , e

−
2 , e
−
3 ; e+

3 , e
+
2 , e

+
1 )-interchangeable. To show the

(e−1 , e
−
2 , e
−
3 ; e+

3 , e
+
1 , e

+
2 )-interchangeability, it suffices to prove that the above z−3 z

+
1 -

path PB = B(z−3 z
+
1 ) and z−2 z

+
2 -path PC have a common vertex by which we can

reconstruct arc-disjoint z−3 z
+
2 -path and z−2 z

+
1 -path. Now since V (H∗Z) − (X̃ ∪ Ỹ )

induces a connected component in H∗Z − E(B), we obtain V (PB) ∩ V (PC) 6= ∅.
(b) j1 = 2. It is easy to see that z−1 z

+
2 -path PA = B(z−1 , z

+
2 ) and path B(z+

2 , z
−
2 )

(which contains a z−3 z
+
1 -path PB = B(z−3 z

+
1 )) and z−2 z

+
3 -path PC = E(H∗Z) −

E(B(z−1 , z
−
2 )) are arc-disjoint. Therefore, Z is (e−1 , e

−
2 , e
−
3 ; e+

2 , e
+
3 , e

+
1 )-interchangeable.

By the connectedness of V (H∗Z)− (X̃ ∪ Ỹ ) in H∗Z −E(B), V (PB)∩ V (PC) 6= ∅ holds
and arc-disjoint z−3 z

+
3 -path and z−2 z

+
1 -path can be reconstructed from PB and PC ,

implying (e−1 , e
−
2 , e
−
3 ; e+

2 , e
+
1 , e

+
3 )-interchangeability.

(c) j1 = 1 and j2 = 3. Consider a z−2 z
+
3 -path PA = B(z−2 , z

+
3 ) path B(z+

2 , z
−
2 )

(which contains a z−3 z
+
1 -path PB = B(z−3 z

+
1 )), and z−1 z

+
2 -path PC = E(H∗Z)−

E(B(z+
2 , z

−
1 )). These three paths are arc-disjoint. By the connectedness of V (H∗Z)−

(X̃ ∪ Ỹ ) in H∗Z − E(B), V (PB) ∩ V (PC) 6= ∅ holds and arc-disjoint z−3 z
+
2 -path and

z−1 z
+
1 -path can be reconstructed from PB and PC , implying (e−1 , e

−
2 , e
−
3 ; e+

1 , e
+
3 , e

+
2 )-

interchangeability.
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Fig. 8. The smallest IPRs of H∗Z .

Figure 8 shows the smallest IPR of H∗Z in Cases 1–4. Let H∗Z [Z ∪ {t′}] be the

subdigraph induced by Z ∪ {t′} from the smallest IPR of H∗Z in Fig. 8, and let H#
Z

be the digraph obtained from H∗Z [Z ∪{t′}] by deleting the vertex t′1 (merging the two

arcs (z+
3 , t
′
1), (t′1, v) into an arc (z+

3 , v)). Let us consider the digraph G#
HZ

obtained

from the minimum counterexample G∗ by replacing G∗[Z] by H#
Z , as shown in Fig. 9.

Let Z0 = V (H#
Z ). Let Z ′0 be the set of vertices u ∈ Z0 with |δ({u};H#

Z )| = 2 and

z0 ∈ Z0 be the vertex with |δ({u};H#
Z )| = 4 in Cases 1 and 2. Note that each vertex

in Z ′0 is either z+
i or z−i for some i.

Lemma 6.6. For a proper 6-cut Z in the minimum counterexample (G∗;X,Y ),

which is not (e−1 , e
−
2 , e
−
3 ; e+

1 , e
+
2 , e

+
3 )-interchangeable, let G#

Z be defined as above. Then
the following properties (i)–(iv) hold in all Cases 1–4 (defined in the beginning of this
subsection).

(i) (G#
Z ;X,Y ) is infeasible.

(ii) (G#
Z ;X,Y ) is connected and irreducible.

(iii) (G∗;X,Y ) has an IPR if (G#
Z ;X,Y ) has an IPR.
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Fig. 9. The instance G#
Z obtained from G∗ by replacing G∗[Z] with H#

Z .

(iv) G∗[Z] = H#
Z holds.

Proof. (i) By Lemma 6.5(iv), the 6-cut Z in G∗ is (e−1 , e
−
2 , e
−
3 ; e+

j1
, e+
j2
, e+
j3

)-
interchangeable for any choice of j1, j2, j3 from {1, 2, 3}, except (j1, j2, j3) = (1, 2, 3).

Then it is easy to see that the corresponding 6-cut Z0 = V (H#
Z ) also has the same

interchangeability in G#
Z , implying that (G#

Z ;X,Y ) is feasible if and only if (G∗;X,Y )

is feasible. Since (G∗;X,Y ) is infeasible, (G#
Z ;X,Y ) is also infeasible.

(ii) Clearly, (G#
Z ;X,Y ) is connected since (G∗;X,Y ) is. We apply Lemma 6.1 to

(G#
Z ;X,Y ) and 6-cut Z0 = V (H#

Z ). Clearly, Z0 ∩ (X ∪ Y ) = ∅ and |Z0| ≥ 3, and
δ(Z0) contains no multiple arcs, satisfying conditions (i) and (iv) of Lemma 6.1. We
see by inspection that there is no reducible cut W ⊆ Z0 and from the irreducibility
of (G∗;X,Y ) that there is no reducible cut W with W ⊇ Z0 or W ∩ Z0 = ∅, satis-

fying conditions (ii) and (iii) of Lemma 6.1. Therefore, (G#
Z ;X,Y ) is irreducible by

Lemma 6.1.
(iii) Consider Case 1 (other cases can be treated analogously). Assume that

(G#
Z ;X,Y ) has an IPR in which we assume without loss of generality that arcs
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e+
3 , e
−
1 , e

+
2 , e
−
3 , e

+
1 , e
−
2 appear in this order along the cycle {z+

3 = z−1 , z
+
2 , z

−
3 , z

+
1 , z

−
2 }

(recall that, in an IPR, the arcs incident to each vertex are alternately oriented out
and in). By Lemma 6.5(iii), (H∗Z ; X̃, Ỹ ) has an IPR in which we can assume without
loss of generality that all terminals t1, t

′
1, t3, t2 appear in this order along the cycle of

the outer face, and hence the arcs e+
3 , e
−
1 , e

+
2 , e
−
3 , e

+
1 , e
−
2 appear in the same way as in

the IPR of (G#
Z ;X,Y ). This implies that H#

Z in G#
Z can be replaced with H∗Z so that

the resulting digraph G∗ also has an IPR.
(iv) From (i)–(iii) and the assumption on G∗, (G#

Z ;X,Y ) is an irreducible infea-

sible instance, but has no IPR. Clearly, by |V (G#)| ≥ |Z0|+ |X ∪ Y | ≥ 7, (G#
Z ;X,Y )

is also a counterexample to Theorem 3.7. Then by the minimality of G∗, |Z0| = |Z|.
By inspection, we see that Z with |Z| = |Z0| can induce no other subdigraph than

G∗[Z] = H#
Z of Fig. 9 in all Cases 1–4.

In what follows, we strengthen Lemma 6.6(iv) and show that any proper 6-cut
Z in G∗ induces a triangle, i.e., none of Cases 1, 2 or 3 occurs. A proper 6-cut Z in
(G∗;X,Y ) is called maximal if there is no proper 6-cut Z ′ with Z ⊂ Z ′.

Lemma 6.7. Let Z be a maximal proper 6-cut in the minimum counterexample
(G∗;X,Y ), defined by (6.3). If Z satisfies one of Case 1, Case 2, or Case 3 (i.e.,
G∗[Z] = H∗Z of Fig, 9(1), (2), and (3), respectively), then the following properties
(i)–(v) hold.

(i) In Case 1, there is no pair of terminals t, t′ ∈ X ∪ Y such that (t, z−2 ),
(z+

1 , t),(t
′, z−3 ), (z+

2 , t
′) ∈ δ(Z). In Case 2, there is no pair of terminals t, t′ ∈

X∪Y such that (t, z−2 ), (z+
3 , t), (t′, z−3 ), (z+

1 , t
′) ∈ δ(Z). In Case 3, there is no

pair of terminals t, t′ ∈ X∪Y such that (t, z−2 ), (z+
3 , t), (t′, z−3 ), (z+

2 , t
′) ∈ δ(Z).

(ii) In Case 1, assume that there is no terminal t with (t, z−2 ), (z+
1 , t) ∈ δ(Z)

(without loss of generality by (i)). Then the instance (G′;X,Y ) obtained
from (G∗;X,Y ) by splitting off arcs e−2 and (z−2 , z

+
1 ) at z−2 is infeasible and

irreducible.
(iii) In Case 2, assume that there is no terminal t with (t, z−2 ), (z+

3 , t) ∈ δ(Z)
(without loss of generality by (i)). Then the instance (G′;X,Y ) obtained from
(G∗;X,Y ) by splitting off arcs (z−2 , z

+
3 ) and e+

3 at z+
3 (= z−1 ) is infeasible and

irreducible.
(iv) In Case 3, assume that there is no terminal t with (t, z−2 ), (z+

3 , t) ∈ δ(Z) or
(t, z−1 ), (z+

2 , t) ∈ δ(Z) (without loss of generality by (i)). Then the instance
(G′;X,Y ) obtained from (G∗;X,Y ) by splitting off arcs (z−2 , z

+
3 ) and e+

3 at
z+

3 (= z−1 ) is infeasible and irreducible.
(v) Let (G′;X,Y ) be the instance of (ii) of Case 1 (resp., (iii) of Case 2 and (iv)

of Case 3). Then (G∗;X,Y ) has an IPR if (G′;X,Y ) has an IPR.
Proof. (i) Assume that there are such terminals t and t′ in Cases 1, 2, and 3. By

Lemma 3.3(ii), terminals t and t′ have degree 2 and Z ∪ {t, t′} is a 2-cut. In Case 1,
G∗ would have a cut vertex z−1 = z+

3 (see Fig. 9(1)), which contradicts Lemma 5.1(i).
Then consider Cases 2 and 3. By Lemma 3.3(i), |{t, t′} ∩ X| = |{t, t′} ∩ Y | = 1
holds, and assume t = x1 and t′ = y1 without loss of generality. Furthermore, by
Lemma 5.1(ii), we obtain V − (Z∪{t, t′}) = {x2, y2}. Now G∗ has |Z|+4 = 9 vertices
in Case 2 and |Z| + 4 = 8 vertices in Case 3. By inspection, we see that (G∗;X,Y )
in Case 2 is feasible or has an IPR and (G∗;X,Y ) in Case 3 is feasible, which is a
contradiction.

(ii) Obviously (G′;X,Y ) is infeasible. We show that (G′;X,Y ) has no multiple
arcs. If there are such multiple arcs, then they must be (u, z+

1 ), (z+
1 , u) for some vertex

u ∈ V − Z, since G∗ has no multiple arcs by Lemma 3.3(iv). This means that u is
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adjacent to both z−2 and z+
1 in G∗. By the assumption that there is no terminal t

with (t, z−2 ), (z+
1 , t) ∈ δ(Z), u is not a terminal. Then Z ∪ {u} is a proper 6-cut,

contradicting the maximality of |Z|. Now we apply Lemma 6.1 to (G′;X,Y ) and
Z ′ = Z−{z−2 }. Clearly, 6-cut Z ′ satisfies Z ′∩ (X ∪Y ) = ∅ and conditions (i) and (iv)
of Lemma 6.1. From the irreducibility of G∗, condition (iii) of Lemma 6.1 holds for
Z ′. By inspection, we see that Z ′ satisfies condition of (ii) of Lemma 6.1. Therefore,
(G′;X,Y ) is irreducible by Lemma 6.1.

(iii) This proof is analogous to (ii).
(iv) The assumption that there is no terminal t with (t, z−2 ), (z+

3 , t) ∈ δ(Z) or
(t, z−1 ), (z+

2 , t) ∈ δ(Z) in Case 3 does not lose generality, because if a terminal t is
adjacent to both z−2 and z+

3 , then no terminal is adjacent to both z−3 and z+
2 by

(i) and two vertices z−2 , z
−
3 cannot be adjacent to another terminal. This assumption

ensures that (G′;X,Y ) has no multiple arcs. The rest of the proof is analogous to (ii).
(v) It should be noted that if an instance has an IPR, then any triangle (if any)

in the instance gives rise to a face in its IPR. Let Z ′ = Z − {z−2 } in Case 1 and
Z ′ = Z − {z−1 } in Cases 2 and 3. It is easy to see that (G′;X,Y ) still contains a
triangle in G′[Z ′] in each of Cases 1, 2, and 3, and the vertices on these triangles are
uniquely embedded in an IPR. Based on this, we can observe that if (G′;X,Y ) has
an IPR, then (G∗;X,Y ) has an IPR.

From this lemma, we can conclude that none of Cases 1, 2, or 3 can happen
in (G∗;X,Y ) as follows. If situations (ii), (iii), or (iv) occurs, then the instance
(G′;X,Y ) is irreducible and infeasible, as shown in the lemma. Since the instance
(G′;X,Y ) is smaller than (G∗;X,Y ) and |V (G′)| = |V (G∗)| − 1 ≥ 7, it has an IPR
by the assumption on G∗ and Lemma 3.6. Then, (G∗;X,Y ) also has an IPR by
Lemma 6.7(v). This is a contradiction. Therefore, only Case 4 is possible for a
maximal proper 6-cut Z (note that Lemma 6.7(iv) no longer holds for Case 4, since
G∗[Z] has no triangle after splitting off arcs, say, (z−2 , z

+
3 ) and e+

3 at z+
3 ). This implies

that any maximal proper 6-cut (and hence any proper 6-cut, which is not necessarily
maximal) always induces a triangle.

Lemma 6.8. Any proper 6-cut in (G∗;X,Y ) induces a triangle.

7. Admissible splitting. In this section, we derive a condition for splitting two
arcs at a nonterminal vertex to be admissible (defined in section 4) and then show
that (G∗;X,Y ) always has an admissible splitting.

Lemma 7.1. Let (G∗;X,Y ) be the minimum counterexample, and let w be a
nonterminal vertex in G∗, where (s0, w), (s1, w), (w, s2), (w, s3) are the four arcs in-
cident with w. If s0 and s2 are not adjacent, and s1 and s3 are not adjacent, then
the instance (G∗w;X,Y ) obtained by splitting off (s0, w) and (w, s2) at w is connected
and irreducible (i.e., this splitting is admissible).

Proof. By Lemma 5.1(i), w is not a cut vertex in G∗, and hence (G∗w;X,Y )
is connected. Assume that (G∗w;X,Y ) has a reducible cut W ⊆ V − {w}. Since
s0, s1, s2, s3 are distinct by Lemma 3.3(iv), let S = {s0, s1, s2, s3}. We see that W ∩
S = {s0, s2} orW∩S = {s1, s3} holds (otherwiseW would be reducible in (G∗;X,Y )).
Without loss of generality, assume W ∩ S = {s0, s2} (see Fig. 10). We consider three
cases: (a) |δ(W ;G∗w)| = 2 and W ∩(X∪Y ) = ∅; (b) |δ(W ;G∗w)| = 4, W ∩(X∪Y ) = ∅,
and |W | ≥ 2; and (c) |δ(W ;G∗w)| = 2, |W ∩ (X ∪ Y )| = 1, and |W | ≥ 2.

(a) In this case, W ′ = W ∪ {w} satisfies |δ(W ′;G∗)| = |δ(W ;G∗w)| + 2 = 4 and
|W ′| ≥ 2, implying that W ′ was reducible in (G∗;X,Y ), which is a contradiction.

(b) W ′ = W ∪{w} satisfies |δ(W ′;G∗)| = |δ(W ;G∗w)|+2 = 6, and |W ′| ≥ 3. Since
arcs (s1, w), (w, s3) are adjacent to w, W ′ is a proper 6-cut in G∗, and by Lemma 6.8
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Fig. 10. Illustration for Lemma 7.1.

Fig. 11. Illustration for Lemma 7.2.

it induces a triangle. However, this contradicts that s0 and s2 are not adjacent.
(c) Let {t} = W ∩ (X ∪ Y ). We see that t 6= s0, s2, because otherwise if t = s0 or

t = s2, then W −{t} is a 4-cut in G∗ and |W −{t}| = 1 must hold by irreducibility of
G∗, contradicting that s0 and s2 are not adjacent. Then |W | ≥ 3. This means that
W ′ = (W−{t})∪{w} is a proper 6-cut in G∗, which induces a triangle by Lemma 6.8.
However, this again contradicts that s0 and s2 are not adjacent.

Lemma 7.2. Let w be a nonterminal vertex adjacent to a terminal t by arc (t, w)
in the minimum counterexample (G∗;X,Y ), and let (s1, w), (w, s2), (w, s3) be three
other arcs incident with w. Then the following property (i) or (ii) holds.

(i) t and s3 are not adjacent, and s1 and s2 are not adjacent (i.e., splitting (t, w)
and (w, s3) at w is admissible by Lemma 7.1).

(ii) t and s2 are not adjacent, and s1 and s3 are not adjacent (i.e., splitting (t, w)
and (w, s2) at w is admissible by Lemma 7.1).

Proof. (a) Consider the case in which t is adjacent to s2 (i.e., G∗ has arc (s2, t)).
Clearly, t cannot be adjacent to s3. Assume that s1 and s2 are adjacent (i.e., G∗ has
arc (s2, s1) by Lemma 6.3(ii)). Let u, v be two other vertices adjacent to s1, where
(u, s1), (s1, v) ∈ E (see Fig. 11). We will show that w (resp., s2) is not adjacent to u
(resp., v). Assume first that w and u are adjacent (i.e., (w, u) ∈ E by Lemma 6.3(ii),
and hence u = s3). If u is a terminal, W = {t, u = s3, w, s1, s2} is a 2-cut with
|W ∩ (X ∪Y )| = 2. By Lemma 3.3(i), |W ∩X| = |W ∩Y | = 1, and by Lemma 5.1(ii),
|V −W | = 2, implying |V −W | + |W | = 7 < n∗, which is a contradiction. (Recall
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Fig. 12. Illustration for Lemma 7.3.

that n∗ ≥ 8 holds by Lemma 3.6, as noted after (4.1).) Then u must be nonterminal.
However, in this case Z = {u = s3, w, s1, s2} would be a proper 6-cut with four
vertices, contradicting Lemma 6.8. Therefore, u is not adjacent to w. Similarly, we
see that v is not adjacent to s2. In other words, splitting off (u, s1), (s1, w) at s1

is admissible by Lemma 7.1 (i.e., the resulting instance (G∗s1 ;X,Y ) is irreducible by
Lemma 7.1). (G∗s1 ;X,Y ) (containing n∗−1 ≥ 7) has an IPR by the assumption on G∗

and Lemma 3.6. Since the arcs incident to any terminal lie on the outer face in such
IPR, arcs (s2, t), (t, w), (w, s3) form part of the boundary of the outer face. Hence,
arcs (u,w), (w, s2), (s2, v) belong to the boundary of a face in the IPR. This implies
that (G∗;X,Y ) also has an IPR, which can be obtained by hooking up (u,w) and
(s2, v). This is a contradiction, implying that s1 and s2 are not adjacent. Therefore,
in this case, we have (i).

(b) If t is adjacent to s3, we can show that (ii) holds by an analogous argument.
(c) Finally, consider the case in which t is adjacent to neither s2 or s3. Assume

that s1 and s3 are adjacent. We only have to show that s1 and s2 are not adjacent.
However, if these are adjacent, Z = {w, s1, s2, s3} would be a proper 6-cut with four
vertices, contradicting Lemma 6.8.

This lemma says that (G∗;X,Y ) always has an admissible splitting at vertex w,
which is adjacent to a terminal. We further characterize the digraph obtained by such
splitting.

Lemma 7.3. Let t be a terminal which is not adjacent to any other terminal, w
be a nonterminal vertex adjacent to t by arc (t, w) in the minimum counterexample
(G∗;X,Y ), and (s1, w), (w, s2), (w, s3) be three other arcs incident with w. Let G∗s2
(resp., G∗s3) denote the instance obtained from G∗ by splitting arcs (t, w), (w, s2) (resp.,
(t, w), (w, s3)) at w. Then one of these instances is connected and irreducible and has
no cut vertex.

Proof. By Lemma 7.2, one of the instances G∗s2 and G∗s3 is connected and irre-
ducible. Assume without loss of generality that G∗s2 is connected and irreducible, i.e.,
Lemma 7.2(ii) holds. Then s1 and s3 are not adjacent and t and s2 are not adjacent
in G∗. If G∗s2 does not have a cut vertex, then the lemma is shown. Therefore, assume
that G∗s2 has a cut vertex z (see Fig. 12).

We first show that w and z are not adjacent in G∗ by contradiction. By Lemma
5.1(i), z is not a cut vertex in G∗. Let Z and Z ′ = V − {w, z} −Z be the vertex sets
of the two connected components in G∗s2 −{z}, where t ∈ Z is assumed. Consider the
three possible cases, in which z = s1, z = s2, and z = s3.

First consider the case of z = s1. Then Z ′ is a 2-cut in G∗ and |Z ′| ≥ 2 holds since
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Fig. 13. The proof of Lemma 7.3.

s1 and s3 are not adjacent. Then |Z ∩ (X ∪Y )| = |Z ′ ∩ (X ∪Y )| = 2 (otherwise Z ′ or
V−Z ′ would be a reducible 2-cut inG∗s2). Then, by Lemma 3.3(i), |Z ′∩X| = |Z ′∩Y | =
1. If Z = {t, s2} ⊂ X ∪ Y , then |δ(t;G∗)| = |δ(s2;G∗)| = 2 holds by Lemma 3.3(ii),
and in this case we see that (G∗;X,Y ) is feasible, which is a contradiction. Then
Z− (X ∪Y ) 6= ∅. By this and Lemma 5.1(ii), we have Z ′− (X ∪Y ) = ∅ and |Z ′| = 2.
Let t′ be the terminal in Z −{t}. We see that W = (Z ∪ {w, z})−{t, t′} is a 6-cut in
G∗ (if W is a 2- or 4-cut, then it would be reducible). By assumption of n∗ ≥ 8, we
have |W | = n∗ − 4 ≥ 4, and hence W is a proper 6-cut. However, |W | = 3 must hold
by Lemma 6.8, which is a contradiction.

Next, consider the case of z = s3. In this case, we can observe |Z ′| = 2 and
|Z ′ ∩ X| = |Z ′ ∩ Y | = 1 in a similar manner as in the case of z = s1. Let t′ be the
terminal in Z −{t} and Z ′ = {t′′, t′′′}. We see that W = (Z ∪ {z})−{t, t′} is a 6-cut
in G∗ (if W is a 2- or 4-cut, then it would be reducible). By n∗ ≥ 8, |W | = n∗−5 ≥ 3
and W is a proper 6-cut. By Lemma 6.8, W induces a triangle. By considering that t
and s2 are not adjacent and G∗ has no multiple arc, G∗ is given as the instance shown
in Fig. 13, where the triangle W = {z, s2, v} has two possible orientations. For any
choice of terminals {t, t′, t′′, t′′′} from X ∪ Y and orientation of the triangle, we can
check that the instance is always feasible, which is a contradiction.

Finally, consider the case of z = s2. In this case, we can obtain |δ(Z)| = 2,
|Z| = 2, and |Z ∩X| = |Z ∩ Y | = 1 in a similar manner as in the above cases. This
implies that t is adjacent to a terminal {t′} = Z − {t}, contradicting the assumption
on t of this lemma.

Therefore, w and z are not adjacent in G∗.
Then, {s1, s3} and {t, s2} are contained in distinct components in G∗s2−{z} since

z is a cut vertex in G∗s2 but not in G∗. That is, s1 and s2 (resp., t and s3) are not
adjacent, and hence G∗s3 is connected and irreducible by Lemma 7.2.

We show that G∗s3 has no cut vertex. Let G∗s3 [Z] (resp., G∗s3 [Z ′]) denote the
subdigraph of G∗s3 induced by Z (resp., Z ′). Note that G∗s3 [Z] = G∗[Z] and G∗s3 [Z ′] =
G∗[Z ′]. Clearly, all vertices in Z (resp., all vertices in Z ′) are connected in G∗s3 [Z]
(resp., G∗s3 [Z ′]) since otherwise G∗ would be reducible. This implies that z is no longer
a cut vertex in G∗s3 . Assume that G∗s3 has another cut vertex z′ (6= z). By a similar
argument as above, z′ is not equal to any of s1, s2, s3 and {s1, s2} and {t, s3} are
contained in distinct components in G∗s3 − {z′}. However, this is impossible because
if z′ ∈ Z ′, then t and s2 are connected in G∗[Z](= G∗s3 [Z]) (without using z′), and
otherwise if z′ ∈ Z, then s1 and s3 are connected in G∗[Z ′](= G∗s3 [Z ′]) (without using
z′).
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Fig. 14. Case 1 in the proof of Lemma 8.1 (the shaded area indicates R′; i.e., B′ and its
interior).

8. Hooking up arcs in IPR. To complete the proof of Theorem 3.7, this section
shows that, given an irreducible infeasible instance G that has an IPR, hooking up
any two arcs in G cannot yield G∗. More precisely, hooking up two arcs in G makes
G satisfy at least one of the conditions in the following lemma, none of which G∗ can
satisfy.

Lemma 8.1. Let (G = (V,E);X,Y ) (where |V | ≥ 7) be an irreducible instance
which has an IPR and has no cut vertex. For arc e = (x2, u) ∈ E with x2 ∈ X and
any arc e′ = (v, v′) ∈ E, let (Ge,e′ ;X,Y ) be the resulting instance obtained by hooking
up e and e′ with a new vertex w. Then Ge,e′ is connected and one of the following
properties (i)–(v) holds.

(i) Ge,e′ has a cut vertex.
(ii) (Ge,e′ ;X,Y ) has a 2-cut Z such that Z ⊆ V , |Z ∩X| = |Z ∩Y | = 1, |Z| ≥ 3,

and |(V ∪ {w})− Z| ≥ 3.
(iii) (Ge,e′ ;X,Y ) is reducible.
(iv) (Ge,e′ ;X,Y ) has an IPR.
(v) (Ge,e′ ;X,Y ) is feasible.
Proof. Assuming that (Ge,e′ ;X,Y ) satisfy neither (i) nor (ii), we show that

(Ge,e′ ;X,Y ) satisfies one of (iii)–(v). Since G has no cut vertex, we only have to
consider IPRs as illustrated in Figs. 14, 15, and 16, which correspond respectively to
the following three cases.

Case 1. (G;X,Y ) has no 2-cut W such that |W ∩X| = |W ∩ Y | = 1.
Case 2. (G;X,Y ) has a 2-cut Z such that |Z∩X| = |Z∩Y | = 1, Z−(X∪Y ) 6= ∅,

and (V − Z)− (X ∪ Y ) 6= ∅, where x2 ∈ Z.
Case 3. (G;X,Y ) has a 2-cut Z such that |Z ∩X| = |Z ∩ Y | = 1, Z ⊆ X ∪ Y , or

V − Z ⊆ X ∪ Y , where x2 ∈ Z.
Let R be the IPR of (G;X,Y ), and let B denote the cycle of the outer face of

R, which is a simple cycle since G has no cut vertex. Let v1, v2, . . . , vp (p = |V (B)|)
be the vertices that appear along B clockwise, where v1 = x1, va = y′, vb = x2, and
vc = y′′ (1 < a < b < c), and {y′, y′′} = Y are assumed without loss of generality.
Let B(u, v) denote the subpath of B from u to v, where B(u, u) means a path of
null length. Let R′ denote the planar representation obtained from the IPR of G by
eliminating the arcs in E(B) together with X ∪ Y . We denote components of R′ by
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Fig. 15. Illustration of graph G used in the proof of Lemma 8.1.

G′, G′′, . . . and the directed cycles representing their outer faces by B′, B′′, . . . . For
these cycles, say, B′, we denote by B′(u, v) the subpath of B′ from u to v. The proof
will be given separately for the above three cases.

Case 1 (Fig. 14). In this case, R′ consists of a single component G′ by Lemma 3.5.
Also, no two terminals in R are adjacent on B. Note that the directed cycle B′ (which
may not be simple) visits all vertices in V (B)−X −Y in the order reverse to B (i.e.,
counterclockwise). Choose e = (x2, vb+1), and partition the arc set E − e into the
three subsets

E1 = {e′′|e′′ is adjacent to e},
E2 = E(B(vb+1, y

′′)) ∪ E(B′(vb+1, vb−1))− E1,

E3 = E − e− E1 − E2 (see Fig. 15).

It is easy to see that (Ge,e′ ;X,Y ) satisfies (iii) (resp., (iv)) for any e′ ∈ E1 (resp.,
e′ ∈ E2). We then show that (v) holds for all e′ ∈ E3. Since no two terminals in R
are adjacent on B and R has no cut vertex, G has at least four nonterminal vertices
in V (B′).

Case 1a. e′ = (va−1, y
′) ∈ E3. Then Ge,e′ has a y′y′′-path,

PY = 〈B(y′, va+1), B′(va+1, va−1), (va−1, w), (w, vb+1), B(vb+1, y
′′)〉.

Clearly Ge,e′ −E(PY ) has an x1x2-path, where e and e′ are hooked up with vertex w.
PX = 〈(x1, v2), B′(v2, vb−1), (vb−1, x2)〉, which implies that (Ge,e′ ;X,Y ) is feasible.

Case 1b. e′ = (vk, vk+1) ∈ E(B(y′, vb−1)) ⊆ E3. Then Ge,e′ has a y′y′′-path

PY = 〈B(y′, vk), (vk, w), (w, vb+1), B(vb+1, y
′′)〉.

It is also easy to see that x1 and x2 are still connected in Ge,e′ − E(PY ), implying
that (Ge,e′ ;X,Y ) is feasible by Lemma 2.1.

Case 1c. e′ ∈ E3 − {(va−1, y
′)} − E(B(y′, vb−1)). In this case, consider the

following y′y′′-chain in G:

QY = 〈B(y′, vb−1), B′(vb+1, vb−1), B(vb+1, y
′′)〉.
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Fig. 16. Illustration for the proof of Case 1c in Lemma 8.1.

Clearly, e′ 6∈ E(QY ) holds, and Ge,e′ still has y′y′′-chain QY .
Let H be the IPR resulting from R by removing the arcs in E(B(va−1, vc+1)) ∪

E(B′(vc+1, vb−1)) (see Fig. 16). We now claim that x1 is reachable in H from any
vertex which is located on the boundary B′ or in the area surrounded by B′. By
E(H)∩E(QY ) = ∅, the claim will mean that, for any e′ = (u′, v′) ∈ E3−{(va−1, y

′)}−
E(B(y′, vb−1)), Ge,e′ − E(QY ) has a v′x1-path (hence, it has an x2x1-path). Then,
by Lemma 2.1, this will complete the proof that (Ge,e′ ;X,Y ) is feasible. To prove the
claim, it is sufficient to show that x1 is reachable from any vertex on B′, since any
vertex inside B′ is clearly reachable to a vertex on B′.

Partition set V (B′) into two subsets V1 = V (B′(vb−1, vc+1)) and V2 = V (B′)−V1.
Since two paths B′(vb−1, vc+1) and B(vc+1, va−1) remain in H, x1 is clearly reachable
in H from any vertex v ∈ V1. We then show that x1 is reachable from any vertex
v ∈ V2 in H. Let us denote the vertex set V (B′(vc+1, vb−1)) (= V2 ∪ {vc+1, vb−1})
by {u0, u1, u2, . . . , uq, uq+1}, where B′ visits these vertices u0, . . . , uq+1 in this order.
Assume that there is a vertex uk ∈ V2 which cannot reach any vertex in V1 and that
uk has the smallest index among such vertices in V2. We follow the leftmost path P ∗

from uk in H until the path returns to uk (note that P ∗ must come back to uk since
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Fig. 17. Case 2 in the proof of Lemma 8.1.

indeg(v) = outdeg(v) for all v ∈ V − V1 in H). Clearly, |V (P ∗)| ≥ 2. Let uh be the
first vertex in V2 that P ∗ visits. Note that P ∗ visits no vertex ui ∈ V2 with i > h.
Consider the set V ∗ of vertices in V −V (P ∗) that are adjacent to a vertex of V (P ∗) in
H. Since the arcs incident to a nonterminal vertex are alternately oriented in and out
from the definition of IPR, all vertices in V ∗ are located in the inside area surrounded
by P ∗. In other words, V1 and V (P ∗) ∪ V ∗ are disconnected in H. Thus, removal of
the four arcs {(uk−1, uk), ek, (uh, uh+1), eh} from G disconnects V1 and V (P ∗) ∪ V ∗,
where ek (resp., eh) is the arc in B(x2, y

′′) such that ek and (uk−1, uk) (resp., eh and
(uh, uh+1)) belong to the same face in R. This contradicts that (G;X,Y ) has no
reducible 4-cut. Therefore, x1 is reachable from any vertex in V1 ∪ V2.

Case 2 (Fig. 17). In this case, R′ consists of two components G′ and G′′, where
G′ (resp., G′′) is induced by V ′ = Z − (X ∪ Y ) (resp., V ′′ = (V − Z) − (X ∪ Y )).
There are two cases. Case 2a: y′, x2 ∈ Z and y′′, x1 ∈ V − Z (see Fig. 17(2a)), and
Case 2b: x2, y

′′ ∈ Z and x1, y
′ ∈ V − Z (see Fig. 17(2b)). In both Cases 2a and 2b,

e′ must be chosen from E(G[V − Z]) to avoid the case (ii) in the lemma statement.
Case 2a(i). e′ ∈ E(B(x2, y

′′)) ∩ E(G[V − Z]). It is easy to see that (Ge,e′ ;X,Y )
has an IPR.

Case 2a(ii). e′ ∈ E(G[V −Z])−E(B(x2, y
′′)). Let vh be the vertex in B(y′, y′′)∩Z

with the largest index, where b < h < c must hold (otherwise V ′ would be a reducible
cut or a cut vertex). Then Ge,e′ has a y′y′′-path

PY = 〈(y′, va+1), B′(va+1, vh), B(vh, y
′′)〉.

Furthermore, it is also easy to see that x1 and x2 are connected in Ge,e′ − E(PY ).
Therefore, (Ge,e′ ;X,Y ) is feasible by Lemma 2.1.

Case 2b(i). e′ = (vk, vk+1) ∈ E(B(y′, x2))∩E(G[V −Z]). Then Ge,e′ has a y′y′′-
path PY = 〈B(y′, vk), (vk, w), (w, vb+1), B(vb+1, y

′′)〉. Obviously, x1 and x2 remain
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Fig. 18. Case 3 in the proof of Lemma 8.1.

connected in Ge,e′ − E(PY ), implying by Lemma 2.1 that (Ge,e′ ;X,Y ) is feasible.
Case 2b(ii). e′ ∈ E(G[V −Z])−E(B(y′, x2)). Let vh be the vertex in B(y′, y′′)∩Z

with the smallest index, where a < h < b must hold. Then Ge,e′ has a y′y′′-path
PY = 〈B(y′, vh), B′(vh, vc−1), (vc−1, y

′′)〉. Since it is obvious that x1 and x2 are
connected in Ge,e′ − E(PY ), (Ge,e′ ;X,Y ) is feasible by Lemma 2.1.

Case 3 (Fig. 18). In this case, there are two terminals x∗ ∈ X and y∗ ∈ Y which
are adjacent on B, and R′ has a single component G′.

Case 3a. Z = {y′, x2} (i.e., (y′, x2) ∈ E(B)) (see Fig. 18(3a)). This case can be
treated in the same manner as in Case 1, where the corresponding partition of E − e
is defined by E1 = {e′′|e′′ is adjacent to e}, E2 = {(va−1, y

′)} ∪ E(B′(vb+1, va−1)) ∪
E(B(vb+1, y

′′)) − E1, and E3 = E − e − E1 − E2 and y′y′′-chain QY in Case 1c is
chosen as QY = 〈(va−1, y

′), B′(vb+1, va−1), B(vb+1, y
′′)〉.

Case 3b. V − Z = {y′′, x1} (i.e., (y′′, x1) ∈ E(B)) (see Fig. 18(3b)). This case
can be treated in the same manner as in Case 2a.

Case 3c. V − Z = {x1, y
′} (i.e., (x1, y

′) ∈ E(B)) (see Fig. 18(3c)). This case can
be treated in the same manner as in Case 2b.

Case 3d. Z = {x2, y
′′} (i.e., (x2, y

′′) ∈ E(B)) (see Fig. 18(3d)). This case
can be treated in the same manner as in Case 1, where the corresponding parti-
tion of E − e is defined by E1 = {e′′|e′′ is adjacent to e}, E2 = E(B′(vc+1, vb−1)),
and E3 = E − e − E1 − E2 and y′y′′-chain QY in Case 1c is chosen as QY =
〈B(y′, vb−1), B′(vc+1, vb−1), B(y′′, vc+1)〉.

Now we are ready to prove Theorem 3.7 by deriving a contradiction from the
assumption that a minimum counterexample (G∗;X,Y ) exists. G∗ must have a non-
terminal vertex adjacent to a terminal (otherwise, G∗ consists of only terminals, con-
tradicting n∗ ≥ 8). We can assume without loss of generality that (G∗;X,Y ) has a
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terminal x2 which is not adjacent to any other terminal (because if any terminal is ad-
jacent to some other terminal, then |δ(V −(X∪Y ))| ≤ 4, and hence |V −(X∪Y )| ≤ 1
would hold by irreducibility of G∗). Then by Lemma 7.3, two arcs (x2, w) and (w, s2)
in (G∗;X,Y ) can be split off at w so that the resulting instance (G∗w;X,Y ) is still
connected and irreducible, and has no cut vertex, where (s1, w) and (w, s3) are the
other arcs incident to w. In other words, G∗ can be obtained from G∗w by hooking up
two arcs e = (x2, s2) and e′ = (s1, s3) after introducing w. We then apply Lemma 8.1
to G = G∗w and Ge,e′ = G∗. By Lemma 5.1, neither (i) nor (ii) of Lemma 8.1 holds
for G∗. Furthermore, none of the remaining (iii)–(v) of Lemma 8.1 is possible by the
definition of G∗. This is a contradiction and proves the next lemma.

Lemma 8.2. Let (G;X,Y ) be an infeasible irreducible instance that satisfies
|V | 6= 6. Then (G;X,Y ) has an IPR.

Finally, this proves Theorem 3.7, since, by Lemma 3.2, this is a stronger statement
than Theorem 3.7.

9. Complexity results. Based on Theorem 3.7 (or Lemma 8.2 to be more
precise), we can test if a given instance (G;X,Y ) is feasible or not in polynomial
time.

Lemma 9.1. Given an instance (G;X,Y ), one of its irreducible instances (G′;X,Y )
can be found in O(m + n log n) time, where n and m denote the numbers of vertices
and arcs in G, respectively.

Before describing the algorithm for computing an irreducible instance, let us
review a cactus representation [1], a compact representation of all minimum cuts in an
undirected graph. A connected undirected graph is called a cactus if, for each edge,
there is exactly one simple cycle that contains it, where the cycle may be of length 2.
Then, in a cactus, two cycles (if any) have at most one common vertex, which is a cut
vertex. A vertex with degree 2 in a cactus is called a leaf vertex. Given an undirected
graph G = (V,E), we map it to a cactus Γ = (W,F ) by a mapping ϕ : V →W , where
ϕ may not be an onto-mapping. The size of a minimum cut in G (resp., in Γ) is defined
by λ(G) = min{|δ(Z;G)| | ∅ 6= Z ⊂ V } (resp., λ(Γ) = min{|δ(S; Γ)| | ∅ 6= S ⊂ W}),
where δ(Z;G) denotes the set of edges between Z and V − Z in G (similarly for
δ(S; Γ)). Clearly, in a cactus Γ = (W,F ) with |W | ≥ 2, λ(Γ) = 2 holds.

Let C(G) = {Z | ∅ 6= Z ⊂ V, |δ(Z;G)| = λ(G)} and C(Γ) = {S | ∅ 6= S ⊂
W, |δ(S; Γ)| = λ(Γ)} denote the sets of all minimum cuts of G and Γ, respectively.
Note that S belongs to C(Γ) if and only if two arcs in δ(S; Γ) belong to the same
cycle. In the following description, we use the term “vertex” to denote an element in
V and the term “node” to denote an element in W . There may be a node x ∈ W
with ϕ−1(x) = ∅, which is called an empty node. Define

ϕ(Z) ≡ {ϕ(v) ∈W | v ∈ Z} for Z ⊆ V and

ϕ−1(S) ≡ {v ∈ V | ϕ(v) ∈ S} for S ⊆W.
A pair (Γ, ϕ) of a cactus and a mapping ϕ is called a cactus representation for C(G)
if it satisfies (i) and (ii) below.

(i) For any cut Z ∈ C(G), there exists a cut S ∈ C(Γ) such that Z = ϕ−1(S) and
V − Z = ϕ−1(W − S).

(ii) Conversely, for any 2-cut S ∈ C(Γ), Z = ϕ−1(S) satisfies Z ∈ C(G).
It is known [1] that G = (V,E) always has such a cactus representation (Γ =

(W,F ), ϕ) with |W | = O(|F |) = O(|V |), which can be constructed in O(|E| +
λ(G)2|V | log |V |) time [7]. We say that a cut Z ∈ C(G) and a cut S ∈ C(Γ) cor-
respond to each other if Z = ϕ−1(S) and V −Z = ϕ−1(W −S). Note that if Γ has an
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empty node, a minimum cut in C(G) may correspond to more than one minimum cut
in C(Γ), while any minimum cut in C(Γ) always corresponds to exactly one minimum
cut in C(G). Obviously, any leaf node w ∈W corresponds to a minimum cut in C(G),
and there are at least two leaf nodes in Γ.

Lemma 9.2. For an undirected graph G = (V,E) and a designated vertex t∗ ∈ V ,
let Z = {Z1, Z2, . . . , Zq} be the set of all cuts Zi such that

(i) Zi ∈ C(G) and Zi ⊆ V − {t∗},
(ii) |Zi| is maximal subject to (i) (i.e., no cut Z ′ ∈ C(G) with Zi ⊂ Z ′ ⊆ V −{t∗}).

Then any two cuts Zi, Zj ∈ Z are mutually disjoint, and the set Z can be computed
in O(|E|+ λ(G)2|V | log |V |) time.

Proof. Consider a cactus representation (Γ = (W,F ), ϕ) for C(G). Let w∗ =
ϕ(t∗) ∈ W , and let Γ have p cycles passing through w∗. In other words, removal of
w∗ from Γ creates p connected components with node sets Wi, i = 1, 2, . . . , p. Let
Zi = ϕ−1(Wi), i = 1, . . . , p. Since each Wi is a 2-cut in Γ, we have Wi ∈ C(Γ) and
hence Zi ∈ C(G) by definition of a cactus representation. Hence, each Zi satisfies
condition (i). If there is a cut Z ′ ∈ C(G) such that Zi ⊂ Z ′ ⊆ V − {t∗}, then there is
a cut W ′ ∈ C(Γ) such that Z ′ = ϕ−1(W ′), Wi ⊂ W ′, and w∗ ∈ W −W ′. However,
Γ cannot have any such 2-cut W ′ separating w∗ and Wi by the definition of W ′.
Therefore, each Zi satisfies condition (ii). Obviously, Zi, . . . , Zp are mutually disjoint
by disjointness of W1, . . . ,Wp. The stated time complexity follows from the fact that
a cactus representation (Γ = (W,F ), ϕ) with |W | + |F | = O(|V |) can be obtained in
O(|E| + λ(G)2|V | log |V |) time [7], and computing connected components in Γ − w∗
can be done in O(|W |+ |F |) = O(|V |) time.

Proof of Lemma 9.1. Given an instance (G;X,Y ), where n = |V | and m = |E|,
the following algorithm applies all reductions of type (1), (2), and (3), defined in the
beginning of section 3.

1. Type (1) reductions (i.e., 2-cuts Z such that |Z| ≥ 1 and Z ∩ (X ∪ Y ) = ∅):
We contract four terminals x1, x2, y1, y2 into a single vertex t∗ and ignore
arc orientation in G. Let G denote the resulting undirected graph. Clearly,
λ(G) ≥ 2, since G is connected and Eulerian. It is easy to see that a cut
Z ⊆ V − {x1, x2, y1, y2} is 2-cut in G if and only if λ(G) = 2, Z ∈ C(G),
and Z ⊆ V (G)− {t∗}. We can check if λ(G) ≥ 2 in O(m+ n log n) time [7].
If λ(G) > 2, then there is no cut of type (1), and we go to 2. If λ(G) = 2,
then by Lemma 9.2 the set {Z1, . . . , Zp} of these cuts Z with maximal |Z| is
uniquely determined and obtained in O(m + n log n) time. Apply reduction
(1) to all cuts Zi in (G;X,Y ). This can be done in O(m + n) time (since
Zi ∩Zj = ∅ for 1 ≤ i < j ≤ p if p ≥ 2). Go to 2 after letting (G;X,Y ) be the
resulting instance.

2. Type (2) reductions (i.e., 2-cuts Z such that |Z| ≥ 2 and |Z ∩ (X ∪ Y )| = 1):
For each terminal t ∈ X∪Y , let Gt denote the undirected graph obtained from
G by contracting the other three terminals X ∪ Y −{t} into a single vertex t
and ignoring arc orientations. We easily see that if G has a 2-cut Z with Z ∩
(X ∪ Y ) = {t} and |Z| ≥ 2, then λ(Gt) = 2, Z ∈ C(Gt), and Z ⊆ V (G)− {t}
hold. Then such Z contains t (otherwise, Z would be a cut of type (1), which
has been eliminated in the above 1) and is unique if it is maximal (since at
most one cut can contain t). Furthermore, such Z can be obtained in O(m+
n log n) time; see Lemma 9.2. We apply reduction (2) to the cut Z in (G;X,Y )
in O(m + n) time. This procedure for all four terminals can be done in
O(m+n log n) time. Go to 3 after letting (G;X,Y ) be the resulting instance.
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3. Type (3) reductions (i.e., 4-cuts Z such that G[Z] is connected, |Z| ≥ 2, and
Z ∩ (X ∪ Y ) = ∅): Since the current (G;X,Y ) has no cut of type (1), any
4-cut Z ⊆ V − (X ∪ Y ) induces a connected subdigraph G[Z]. Let G be
the undirected graph obtained from (G;X,Y ) by contracting four terminals
x1, x2, y1, y2 into a single vertex t∗ and ignoring arc orientations. Clearly,
λ(G) ≥ 4 (otherwise, (G;X,Y ) would have a reducible 2-cut). We easily
see that a cut Z ⊆ V − (X ∪ Y ) is 4-cut in G if and only if λ(G) = 4,
Z ∈ C(G), and Z ⊆ V (G)−{t∗}. We can check if λ(G) ≥ 4 in O(m+n log n)
time. If λ(G) > 4, then there is no cut of type (3) and the current instance
(G;X,Y ) is irreducible. If λ(G) = 4, then by Lemma 9.2 the set {Z1, . . . , Zp}
of these cuts Z with maximal |Z| is uniquely determined and is obtained in
O(m+ n log n) time. Apply reduction (3) to all these cuts Zi in (G;X,Y ) to
obtain an irreducible instance. This can be done in O(m+ n) time.

Given an irreducible instance (G′;X,Y ), we can check if it is feasible or not in
linear time as follows. If G′ has less than 7 vertices, its feasibility can be easily checked
in O(1) time (since any irreducible infeasible digraph G′ with |V | < 7 has O(1) arcs).
Otherwise, test if the resulting irreducible instance (G′;X,Y ) has an IPR, which can
be done in O(m + n) time by using a fast planar drawing algorithm [8]. If it has an
IPR, then it is infeasible; otherwise it is feasible. Therefore, we have established the
next theorem.

Theorem 9.3. Given an instance (G;X,Y ), where n and m are the numbers of
vertices and arcs, respectively, testing if it is feasible or not can be done in O(m +
n log n) time.

We now show that, if a given instance (G;X,Y ) is feasible, a solution (i.e., a pair
of arc-disjoint x′x′′- and y′y′′-paths in G, where {x′, x′′} = X and {y′, y′′} = Y ) can
be found in O(m(m+ n log n)) time.

Let (G = (V,E);X,Y ) be an irreducible feasible instance. If V consists of only
four terminals, then a solution is easily found in O(1) time. Otherwise, one of the
following four cases A–D occurs, and we can find a pair of arcs such that the instance
remains feasible after splitting them off.

A. There is a nonterminal vertex v with deg(v) ≤ 6 or a terminal v with deg(v) =
4 in instance (G;X,Y ): Choose such a vertex v, and find two arcs (v′, v) ∈
δ−(v) and (v, v′′) ∈ δ+(v) such that the instance obtained by splitting (v′, v)
and (v, v′′) at v remains feasible. Note that such a pair of arcs exists (since
the instance is feasible), and by Theorem 9.3 it is found in O(m + n log n)
time by checking feasibility among all (at most 9) possibilities. Split off such
(v′, v) and (v, v′′) at v, and recompute an irreducible instance (G′;X,Y ) from
the resulting instance in O(m+ n log n) time (Lemma 9.1).

B. deg(v) ≥ 8 for all v ∈ V − (X ∪ Y ), deg(t) 6= 4 for all t ∈ X ∪ Y , and there
is a 6-cut Z ⊆ V − (X ∪ Y ): Then choose a 6-cut Z with minimal |Z| among
such 6-cuts, and let v be a nonterminal vertex in Z. Note that any nonempty
cut

Z∗ ⊂ Z satisfies |δ(Z∗;G)| ≥ 8 from the assumption on Z.

Since |δ−(v)| = |δ+(v)| ≥ 4 by deg(v) ≥ 8 and |δ−(Z)| = |δ+(Z)| = 3, there
are arcs (v′, v) ∈ δ−(v)−δ−(Z) and (v, v′′) ∈ δ+(v)−δ+(Z), where v′, v′′ ∈ Z
(possibly v′ = v′′). Let (G′;X,Y ) be the instance obtained from (G;X,Y )
by splitting off these arcs (v′, v) and (v, v′′) at v (in the case of v′ = v′′,
splitting simply means removal of those two arcs). We show that (G′;X,Y )
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remains irreducible (hence feasible, because any irreducible instance having a
nonterminal vertex v with deg(v) ≥ 6 is feasible by Lemma 3.3(iii)). Assume
that (G′;X,Y ) has a reducible cut Z ′. Since Z ′ was not reducible in (G;X,Y ),
Z ′ must separate {v} and {v′, v′′}. Since Z ′ ⊂ Z would imply |δ(Z ′;G)| ≥ 8
from the above and |δ(Z ′;G′)| ≥ 6 (hence, such Z ′ is not reducible in G′), Z ′

must intersect Z (and hence Z ′ and Z cross each other because (V −(Z ′∪Z))
contains a terminal). From the above, we have |δ(Z ∩ Z ′;G)| ≥ 8 and

|δ(Z ∩ Z ′;G′)| ≥ 6 (= |δ(Z;G′)|).
Also, we obtain

|δ(Z ∪ Z ′;G′)| ≥ |δ(Z ′;G′)|+ 2

(otherwise |δ(Z ∪ Z ′;G′)| ≤ |δ(Z ′;G′)| implies that Z ∪ Z ′ is a reducible
cut in G). However, these two inequalities contradict (2.1) (i.e., |δ(Z;G′)|+
|δ(Z ′;G′)| ≥ |δ(Z ∩ Z ′;G′)|+ |δ(Z ∪ Z ′;G′)|). This shows that (G′;X,Y ) is
irreducible, and hence feasible.

A minimal 6-cut Z in the above can be found in O(m+ n log n) time as
follows. Since such Z never intersects X ∪ Y , we contract the four terminals
into a single vertex t∗ and ignore the arc orientation. Let Gt∗ be the resulting
undirected graph. Clearly, λ(Gt∗) = 6 by the irreducibility of G and the
assumption of case B. Find a cactus representation (Γ, ϕ) for C(Gt∗) in O(m+
n log n) time [7]. Recall that Γ has at least two leaf nodes, and one of them,
say, z, satisfies t∗ 6∈ ϕ−1(z). By definition of a cactus representation, Z =
ϕ−1(z) is a minimal 6-cut in G.

C. deg(v) ≥ 8 for all v ∈ V −(X∪Y ), deg(t) 6= 4 for all t ∈ X∪Y , and |δ(Z∗)| ≥ 8
for all Z∗ ⊆ V − (X ∪ Y ), but there is a 4-cut Z with Z ∩ (X ∪ Y ) = {t}
for some terminal t: Then take a minimal Z among them. Since deg(t) 6= 4,
we see that Z − {t} 6= ∅ and deg(t) ≥ 6 (if deg(t) = 2, then Z − {t} is a
6-cut with Z − {t} ⊆ V − (X ∪ Y ), contradicting the assumption of case C).
Since |δ−(t)| = |δ+(t)| ≥ 3 by deg(t) ≥ 6 and |δ−(Z)| = |δ+(Z)| = 2,
there are arcs (v′, t) ∈ δ−({t})− δ−(Z) and (t, v′′) ∈ δ+({t})− δ+(Z), where
v′, v′′ ∈ Z (possibly v′ = v′′). Let (G′;X,Y ) be the instance obtained from
(G;X,Y ) by splitting off these arcs (v′, t) and (t, v′′) at t (in the case of
v′ = v′′, splitting means removal of those two arcs). We show that (G′;X,Y )
remains irreducible (hence feasible, because any irreducible instance having
a terminal vertex t with deg(t) ≥ 4 is feasible by Lemma 3.3(ii)). Assume
that (G′;X,Y ) has a reducible cut Z ′. Since Z ′ is not reducible in (G;X,Y ),
Z ′ must separate {t} and {v′, v′′}. Since Z ′ ⊂ Z implies that |δ(Z ′)| ≥ 6 (if
t ∈ Z ′) by the minimality of |Z| and |δ(Z ′)| ≥ 8 (if t 6∈ Z ′) by the assumption
of case C (hence, such Z ′ is not reducible in G′), then Z ′ intersects Z (and
hence Z ′ and Z cross each other since (V − (Z ′ ∪ Z)) contains a terminal).
We see that Z ′ is not a cut of type (1) because otherwise Z ′ would be a
reducible 4-cut in (G;X,Y ). If Z ′ is a cut of type (3) in (G′;X,Y ), then
Z ′ is a 6-cut Z ′ ⊆ V − (X ∪ Y ) in (G;X,Y ), contradicting the assumption
of case C. Therefore, Z ′ must be a reducible cut of type (2) in (G′;X,Y ).
We first consider the case of t ∈ Z ∩ Z ′. We have |δ(Z ∩ Z ′;G)| ≥ 6 (by
the minimality of |Z|) and |δ(Z ∩ Z ′;G′)| ≥ 4(= |δ(Z;G′)|). Since Z − Z ′
contains no terminal, we obtain |δ(Z ∪ Z ′;G′)| ≥ |δ(Z ′;G′)| + 2 (otherwise
|δ(Z ∪Z ′;G)| = |δ(Z ∪Z ′;G′)| ≤ |δ(Z ′;G′)| implies that Z ∪Z ′ is a reducible
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cut in G). However, these two inequalities contradict (2.1), as in case B. Then
assume t ∈ Z−Z ′, implying that there is another terminal t′ in Z ′−Z. Clearly,
|δ(Z−Z ′;G)| ≥ 6 (= |δ(Z;G)|+2) (from minimality of Z). From |δ(Z ′;G′)| =
2, we have |δ(Z ′;G)| = 4 and deg(t′) ≥ 6 (otherwise, if deg(t′) = 2, then
Z ′−{t′} would be a 6-cut, contradicting the assumption of case C). From this
and the irreducibility of (G;X,Y ), |δ(Z ′ − Z;G)| ≥ 4 (= |δ(Z ′;G)|) holds.
These inequalities contradict (2.2). Consequently, (G′;X,Y ) is irreducible
and hence is feasible.

The above minimal 4-cut Z can be found in O(m+n log n) time as follows.
Since such Z always separates {t} and (X∪Y )−{t}, contract the three other
terminals of (X∪Y )−{t} into a single vertex t and ignore the arc orientation.
Let Gt be the resulting undirected graph. Clearly, λ(Gt) = 4 (since case C
does not occur for this t if λ(Gt) ≥ 6). Find a cactus representation (Γ, ϕ)
for C(Gt) in O(m+n log n) time [7]. By definition of a cactus representation,
Γ has a leaf node z with t ∈ ϕ−1(z) and Z = ϕ−1(z) is a desired minimal
4-cut in G.

D. deg(v) ≥ 8 for all v ∈ V −(X∪Y ), deg(t) 6= 4 for all t ∈ X∪Y , and |δ(Z∗)| ≥ 8
for all Z∗ ⊆ V − (X ∪ Y ) and |δ(Z)| ≥ 6 for all Z with Z ∩ (X ∪ Y ) = {t}
and t ∈ X ∪ Y : Then choose an arbitrary nonterminal vertex v and two arcs
(v′, v) and (v, v′′). It is easy to see that the instance (G′;X,Y ) obtained from
(G;X,Y ) by splitting off these arcs (v′, v) and (v, v′′) at v remains irreducible
(hence feasible, because any irreducible instance having a nonterminal vertex
v with deg(v) ≥ 6 is feasible by Lemma 3.3(iii)).

Recall that none of cases A–D can be applied to an instance only when it has
four terminals with degree 2 but no nonterminal vertex. Given an irreducible feasible
instance, we continue to split off a pair of arcs to obtain smaller feasible instances
by following the above cases A–D until an instance consisting of four terminals with
degree 2 is obtained, in which we can easily find a solution. The entire running time
of this procedure is O(m(m + n log n)), since the number of arcs decreases at least
by 2 after splitting off a pair of arcs. It is easy to see that a solution of the original
instance (G;X,Y ) can be recovered in the same time complexity from the sequence
of such splittings. This establishes the next theorem.

Theorem 9.4. Given a feasible instance (G;X,Y ), where n and m are the
numbers of vertices and edges, respectively, a solution of (G;X,Y ) can be computed
in O(m(m+ n log n)) time.

10. Discussion. For the arc-disjoint path problems

(G;Xi = {si, ti}, i = 1, 2, . . . , k)

associated with Eulerian digraphs, different problem settings are conceivable depend-
ing upon the restrictions on G and the directions of the required paths: (i) either
G + H is Eulerian, where H is the demand digraph, or G itself is Eulerian, and (ii)
either siti-paths are required for all i, or one of the siti- and tisi-paths is required
for each i. The result in [9] shows that (G + H Eulerian, siti-path, k = 3) can be
solved in polynomial time, while our result here shows that (G Eulerian, one of the
siti- and tisi-paths, k = 2) can also be solved in polynomial time. By generaliz-
ing the proof in [4, 9], it is possible to prove that all types become NP-hard if k
is considered as a part of input. Therefore, an interesting theoretical challenge, for
each problem type, will be to find out the maximum constant k that permits a poly-
nomial time algorithm, or to show that any constant k permits a polynomial time
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algorithm.
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Abstract. Consider the problem of transporting a set of objects between the vertices of a simple
graph by a vehicle that traverses the edges of the graph. The problem of finding a shortest tour for
the vehicle to transport all objects from their initial vertices to their destination vertices is called
the vehicle routing problem. The problem is multiple capacity if the vehicle can handle more than
one objects at a time. The problem is preemptive if objects can be unloaded at the intermediate
vertices. In this paper, we present an O(kn + n2) time algorithm for multiple capacity preemptive
vehicle routing problem on paths, where k is the number of objects to be moved and n is the number
of vertices in the path.
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1. Introduction. Consider an edge weighted graph with objects located at some
vertices. Associated with each object is a destination vertex to which that object is to
be moved by a vehicle that traverses the edges of the graph. A fundamental problem
in motion planning is to determine a tour of minimum cost for the vehicle to transport
all objects from their initial vertices to their destination vertices. The determination
of a minimum cost tour for the problem is called the vehicle routing problem, and we
are interested in the computational complexity of the vehicle routing problem.

One factor that affects the complexity of the vehicle routing problem is whether
or not we allow drops in the process of transportation. A drop is an unloading of an
object at a vertex that is not its destination. If an object is dropped, its movement is
not immediately completed, and the object will be picked up and transported farther
at some later time in the transportation. Based on whether or not we allow drops in
the transportation, we have two versions of the vehicle routing problem. We shall use
the term nonpreemptive to denote the version in which no objects can be dropped at
intermediate vertices and the term preemptive to denote the version in which objects
can be dropped at intermediate vertices.

Another factor that makes a difference on the complexity of the vehicle routing
problem is whether the capacity of the vehicle is 1 or greater than 1. Suppose the
vehicle can transport c objects at a time. We refer to the problem as the unit capacity
vehicle routing problem if c = 1 and refer to it as the multiple capacity vehicle routing
problem if c ≥ 2. Combined with the preemptive and nonpreemptive versions, we have
four kinds of vehicle routing problems: unit capacity preemptive vehicle routing; unit
capacity nonpreemptive vehicle routing; multiple capacity preemptive vehicle routing;
and multiple capacity nonpreemptive vehicle routing.

For general graphs, all four problems are NP-hard [6]. However, for practical
applications such as in elevators and those applications that arise in robotics, it suffices
to consider more restricted classes of graphs. Indeed, for all of the recent research
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in this area, focus has been on solving the vehicle routing problems on paths, cycles,
and trees [1, 3, 4, 5, 2, 7].

The unit capacity (preemptive and nonpreemptive) vehicle routing problems on
paths and cycles are shown to be polynomial time decidable by Atallah and Kosaraju [1]
and Frederickson [3]. For unit capacity vehicle routing problems on trees, Frederick-
son and Guan [4] proved that the preemptive version is polynomial time decidable,
while the nonpreemptive version is NP-complete.

For multiple capacity nonpreemptive vehicle routing problems, Guan proved that
the problem is NP-complete even if the underlying graph is a path [2]. This, of course,
implies that the problem is NP-complete on cycles and trees.

Summing up the above results, the only cases that remain open for paths and
cycles are the multiple capacity preemptive vehicle routing problems on paths and
cycles. (Note that the multiple capacity nonpreemptive routing problem on trees is
NP-complete, as an instance of a unit capacity nonpreemptive routing problem on
trees can be easily reduced to a multiple capacity nonpreemptive routing problem on
trees.)

The multiple capacity preemptive routing problem on paths was investigated by
Karp [7] and Guan [2]. Karp constructed a polynomial time algorithm for this problem
under two constraints: (1) the starting vertex is an endpoint of the path; and (2) the
number of objects located at each vertex before and after the transportation should be
the same. In [2], Guan analyzed the time complexity of Karp’s algorithm and showed
that the algorithm takes O(kn log log n) time, where k is the number of objects and n
is the number of vertices. Then Guan constructed an algorithm with time complexity
O(k+n) and which does not require that the number of objects located at each vertex
before and after the transportation be the same. However, it is crucial for both Karp’s
and Guan’s algorithms that the starting vertex is an end vertex of the path.

In this paper, we give a polynomial time algorithm for the multiple capacity
preemptive routing problem on paths, without imposing any constraints. The time
complexity of our algorithm is O(kn+n2). Then we go on to show that our algorithm
can actually be applied to the multiple capacity preemptive routing problem on cycles,
under the constraint that for each object the direction of transportation is given. (Note
that to transport an object from vertex i to vertex j on a cycle, we can go in either
the clockwise or counterclockwise direction.) We remark that in practice, an object
is usually transported along the shorter arc connecting the two vertices. Thus the
constraint is not very unnatural. However, there are cases in which we can reduce
the cost by allowing some objects to go along the longer arc, connecting their initial
vertices and destination vertices, even if the problem is a unit capacity version [1].

2. Preliminaries. An instance of a vehicle routing problem consists of an edge
weighted graph G, a set O of objects together with their initial vertices and destination
vertices, a designated vertex s of G which is the starting vertex as well as the ending
vertex of the vehicle, and a constant c which is the capacity of the vehicle. The weight
of an edge represents the distance or the cost of transporting the objects between the
two vertices of the edge and which is assumed to be nonnegative. We shall assume
throughout the paper that the number of vertices of the graph G is n and that the
number of objects is k. We shall concentrate on the case where the graph G is a
path whose vertices are labeled 1, 2, . . . , n, where (i, i+ 1), i = 1, 2, . . . , n− 1 are the
edges of G. The k objects will also be labeled by 1, 2, . . . , k. The initial vertex and
destination vertex of object j are uj and vj , respectively. We represent an object j
by a directed edge from uj to vj with label j.
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Thus an instance of a vehicle routing problem can be represented by a mixed graph
which has undirected as well as directed edges. Each undirected edge has a nonnega-
tive weight, and each directed edge has a label from the integer set {1, 2, . . . , k}.

A vertex is useful if it is the start vertex s, the initial vertex uj , or the destination
vertex vj for some object j. It is clear that, if the end-point of the path is not a useful
vertex, then it can be deleted from the path. An intermediate vertex of the path that
is not a useful vertex can be eliminated from the path by replacing the vertex and its
two adjacent edges by one edge with weight the sum of the weights of the two edges.
Therefore, we assume that all vertices are useful vertices.

A move from a vertex x to a vertex y of the vehicle carrying a set of objects Z
is designated by (x, y;Z). Each move (x, y;Z) with Z 6= ∅ is called a carrying move,
otherwise, it is called a noncarrying move. Let c be the capacity of the vehicle. A
carrying move with |Z| = c is called a full-carrying move.

An object j is transported from x to y by a move (x, y;Z) if j is at vertex x before
the move, and j ∈ Z. After the move, the object j will be at vertex y.

A transportation, Q from v0 to vr, is a sequence of moves

Q = (v0, v1;Z1), (v1, v2;Z2), . . . , (vr−1, vr;Zr).

Let Q be a transportation. Let Q(j) be a subsequence of moves obtained from Q
by deleting those moves that do not involve the object j. An object j is transported
from x to y by a transportation Q, if Q(j) is a transportation from x to y. If objects
cannot be dropped at the intermediate vertices, then Q(j) must be a consecutive
subsequence of moves of Q.

A transportation is valid if v0 = vr = s, and each object is transported from
its initial vertex to its destination vertex by Q. Unless stated otherwise, we con-
sider only valid transportations, and we should use transportation instead of valid
transportation.

The cost of the transportation, c(Q), is the distance the vehicle traversed. That
is,

c(Q) =

r∑
i=1

d(vi−1, vi),

where d(vi−1, vi) is the sum of the weights of the edges from vi−1 to vi in the underlying
graph.

A transportation Q is an optimal transportation if c(Q) is minimum among all
valid transportations. The vehicle routing problem is to find an optimal transporta-
tion.

Let L be the underlying graph, which is a path. Denote L[l, r] the subgraph of L
induced by the vertices l, l+1, . . . , r. Let L[u, v] and L[x, y] be two disjoint subgraphs
of L. Define f([u, v], [x, y]) to be the number of objects with initial vertices in L[u, v]
and destination vertices in L[x, y].

Since the underlying graph is a path and the vehicle must return to s, each edge
must be traversed by the vehicle at least twice, once in each direction. Furthermore,
for each edge (u, v), the number of times the vehicle traverses the edge from u to v
must be equal to the number of times the vehicle traverses the edge from v to u. We
therefore define a balanced problem as follows. For each edge e = (v, v + 1), let

λe = max{df([1, v], [v + 1, n])/ce, df([v + 1, n], [1, v])/ce, 1}.
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Fig. 2.1. An example of the vehicle routing problem.

That is, λe is the minimum number of times that the vehicle must traverse the edge
e in either direction. A problem with f([1, v], [v + 1, n]) = f([v + 1, n], [1, v]) = cλe,
for each edge e = (v, v + 1), v = 1, 2, . . . , n− 1, is called a balanced problem.

Given an arbitrary instance of the vehicle routing problem, one can add objects
to make it into a balanced problem without increasing the cost of an optimal trans-
portation. A trivial method is to add cλe−f([1, v], [v+1, n]) objects to be transported
from v to v+ 1, and add cλe− f([v+ 1, n], [1, v]) objects to be transported from v+ 1
to v, for each edge e = (v, v + 1). It is clear that the total number of objects added
to the problem is at most ((c− 1) + (k + (c− 1)))n1 + 2cn0, where n1 is the number
of edges that are to be traversed by at least one object, and n1 is the number of
edges that are to be traversed by no objects. It can be done in O(kn) time, assuming
that c is a constant. For the remainder of this paper, we shall only consider balanced
problems.

Figure 2.1 is an example of a vehicle routing problem, where the weight of each
undirected edge is 1 and the capacity of the vehicle is 2. For clarity, directed edges
are drawn with vertical offsets.

If the starting vertex is 1, then it is easy to verify that the following sequence of
moves is a transportation of the given problem: (1, 2; {1, 3})(2, 4; {5, 7})(4, 6; {6, 8})
(6, 2; {9, 10})(2, 3; {1, 3})(3, 5; {2, 3})(5, 7; {2, 4})(7, 1; {11, 12}). Note that this trans-
portation consists of only full-carrying moves, and each object is transported in such
a way that it traverses the edges between its initial vertex and destination vertex ex-
actly once, and traverses no other edges. Therefore, this is an optimal transportation.
Indeed, it was proved in [2] that for any balanced multiple capacity preemptive vehicle
routing problem on a path, there is a transportation that consists of only full-carrying
moves. For the application in this paper, we shall briefly describe the algorithm given
by Guan, which is divided into two steps [2]:

1. First we use a greedy algorithm, which starts at 1 and which arbitrarily picks
c objects whose destinations are on the same side of the current vertex and
moves the objects toward their destinations. The vehicle repeatedly moves
objects in this direction. It changes the direction of movement only if, at
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the current vertex, there are not enough objects to be moved in the current
direction. It was proved in [2] that if there are not enough objects to be moved
in either direction, then the current vertex must be the starting vertex. In
other words, the route of the vehicle is a closed walk of the underlying graph.

Since the problem is balanced, when the above procedure stops, none of
the remaining objects will be transported through the first edge. In other
words, the first vertex is not a useful vertex to the remaining problem. Let x
be the first vertex which is a useful vertex to the remaining problem. Then we
start from vertex x, and apply the above greedy algorithm again, to obtain
another sequence of moves, which form another closed walk of the underlying
graph. Repeat this process to obtain a sequence of closed walks that together
move every object to its destination.

2. As the second step, we “cut” and “paste” these closed walks to form a single
closed walk. This is very similar to the algorithm that finds an Euler tour of
an Eulerian graph. This single closed walk corresponds to a transportation
which consists of only full-carrying moves.

We remark that the algorithm above does not work if the starting vertex is not
an end vertex of the path. Indeed, in example 1, if the starting vertex s = 4, then
there is no transportation in which all moves are full-carrying moves. We shall show
in the following section how to compute an optimal transportation for the case where
the starting vertex is not at the end-point of the path.

3. Preemptive routing in paths. In this section, we present an O(kn + n2)
time algorithm to solve the multiple capacity preemptive vehicle routing problem on
paths. We shall first establish a necessary and sufficient condition for a balanced
problem to have a transportation that consists of only full-carrying moves.

Theorem 3.1. Let P be a balanced instance of a multiple capacity vehicle rout-
ing problem on a path, in which the starting vertex of the vehicle is s. There is a
transportation that consists of only full-carrying moves if and only if there exists a
sequence of full-carrying moves from s to one of the end-points of the path.

Proof. If P has a transportation Q that consists of only full-carrying moves and
that starts from s, then of course there exists a sequence of full carrying moves from
s to one of the end-points of the path.

Assume that there exists a sequence of full carrying moves, say Q1, from s to one
of the end vertices, say 1. Let P ′ be the problem resulting from P by performing the
sequences of moves in Q1, and let P ′′ be the problem obtained from P ′ by adding
c objects with initial vertex s and destination vertex 1. We denote by X̄ the set of
added objects.

The problem P ′′ is “almost” balanced, except that there might be somes edges
that will not be traversed by any object. For simplicity, we may assume that the
problem P ′′ is indeed balanced. In case there are such edges that will not be traversed
by any object, we only need to consider each subproblem separately, and at the final
stage, to combine the subtransportation together. This is quite a routine process, and
the same technique is also used in Guan’s algorithm described in the previous section.

Now let P̄ be the problem obtained from P ′′ by switching the initial vertex and
destination vertex of each object. Thus the objects of X̄ now have initial vertex 1
and destination vertex s. Apply the algorithm described in the previous section to P̄
in such a way that the very first step moves X̄ from 1 to s. Also, when applying the
second step of the algorithm to combine subtransportations into a single transporta-
tion, we shall avoid splitting the move (1, s; X̄). This is possible because objects in
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X̄ are added to make the problem balanced, and hence the vertices between s and 1
must be traversed by the vehicle transporting objects not in X̄.

Let the optimal transportation obtained by the algorithm be Q̄′. Let Q̄ be the
inverse of Q̄′, which is defined as the inverse of the sequence of the moves in Q and each
move (x, y;Z) is transformed into (y, x;Z). It is clear that Q̄ is a valid transportation
of P ′′ that consists of only full-carrying moves.

An optimal transportation for the original problem, starting and ending at vertex
s, can be obtained by concatenating Q1 and Q̄, and then deleting the last move, which
is the move for the objects in X̄.

Now we present an algorithm that determines whether or not there exists a se-
quence of full-carrying moves from s to 1 or n.

We say a vertex x of the path is reachable (from s) if there is a sequence of
full-carrying moves from s to x.

Suppose x is a reachable vertex. We define the predecessor p(x) of x as follows:
If x ≥ s, then p(x) is the smallest vertex such that p(x) ≤ s and any sequence of
full-carrying moves from s to x passes through p(x). If x < s, then we define p(x) to
be the largest vertex such that p(x) ≥ s and any sequence of full-carrying moves from
s to x passes through p(x).

Intuitively, if there is a sequence of full-carrying moves from s directly to x, then
p(x) = s. Otherwise, to have a sequence of full-carrying moves from s to x, the vehicle
may need to visit the vertices beyond s in order to pick up the necessary objects. The
predecessor p(x) is the vertex closest to s such that there exists a sequence of full-
carrying moves from s to x in which the vehicle makes its last turn before reaching x.

Note that the predecessor function p(x) is monotone, in the sense that if x ≤ y ≤ s,
then p(x) ≥ p(y), and if x ≥ y ≥ s, then p(x) ≤ p(y). This monotone property reduces
the computational complexity in finding an optimal transportation.

Suppose x is a reachable vertex. We define a function cx : E → Z+, which is the
smallest number of times the vehicle traverses the edge e, in the direction away from
s, before it can reach the vertex x. The number of times the vehicle traverses the
edge e in the direction toward s will not be counted in cx(e).

The values of cx(e) are computed as follows. Initially, let cs(e) = 0 for every edge
e ∈ E. Suppose p(x) is known and that cp(x)(e) is determined for each edge e. The
value of cx(e) can then be computed as follows. For x 6= s, cx(e) = cp(x)(e) + 1 if the
edge e is between the two vertices s and x; otherwise, cx(e) = cp(x)(e).

It can be proved by induction on
∑
e∈E cx(e) that for each reachable vertex x,

there is a sequence of full-carrying moves from s to x that traverses the edge e in the
direction away from s exactly cx(e) times, and any other full-carrying moves from s
to x traverse the edge e in the direction away from s at least cx(e) times. Therefore,
the vehicle must traverse each edge e cx(e) times, in the direction away from s, before
reaching x.

The algorithm that determines the reachable vertex, the predecessor p(x), and
the value of cx(e) for each reachable vertex x is described as follows.

The algorithm keeps track of a set R, which is the set of currently known reachable
vertices. By the definition of a reachable vertex, the induced subgraph P [R] must be a
connected subpath of P , which includes the start vertex s. We shall use the notation
R = [l, r] to denote the set of reachable vertices l, l + 1, . . . , r.

Initially, R = [s, s], p(s) = s, and cs(e) = 0 for every e ∈ E. Suppose that, at the
ith iteration, R = [l, r]. Then in the (i+ 1)th iteration, the algorithm checks whether
or not the vertices l − 1 and r + 1 are reachable. The testing of whether or not the
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vertex l−1 is reachable is described as follows. For each vertex x = p(l), p(l)+1, . . . , r,
the algorithm decides whether or not there is a sequence of full-carrying moves from s
to x and then directly from x to l− 1 (i.e., without making another turn). We should
prove that there is such a sequence of full carrying moves if and only if the following
conditions are satisfied.

1. For each edge e = (a, b) ∈ E between s and l − 1, we have

c · (cx(e) + 1) ≤ f([b, x], [1, a]).

2. For each edge e = (a, b) ∈ E between s and x, we have

c · cx(e) ≤ f([b, x], [1, a]).

If the inequalities above hold for all the edges e between x and l − 1, then the
algorithm adds l − 1 to R, i.e., change R from [l, r] to [l − 1, r], set p(l − 1) = x, set
cl−1(e) = cx(e) + 1 for those edges e between s and l − 1, and set cl−1 = cx(e) for
other edges e.

If the inequalities above do not hold for some edge e between x and l − 1, then
the vertex l − 1 cannot be reached before the vehicle going further to the right of x.
Thus the algorithm increases the value of x, provided that x < r, and then repeats
the procedure above. If x = r, the vertex l−1 cannot be reached at the moment, and
the algorithm starts checking whether or not r+ 1 is a reachable vertex. The method
for checking whether or not r + 1 is a reachable vertex is similar to the case for the
vertex l − 1.

The algorithm repeatedly checks whether or not the end-points of R can be ex-
tended, and the algorithm stops when neither l − 1 nor r + 1 is reachable.

We shall show that the algorithm above indeed finds all reachable vertices.
Theorem 3.2. Let P be a balanced problem. At the end of the algorithm, the

interval R contains all reachable vertices. In other words, for each x ∈ R, there is a
sequence of full-carrying moves from s to x, and for any x 6∈ R, there does not exist
such a sequence of full-carrying moves.

Proof. For simplicity, we may assume that x ≤ s. We shall prove by induction
the following stronger statement:

For each x ∈ R, x ≤ s, there is a sequence of full-carrying moves from
s to x, in which the vehicle traverses each edge e exactly cx(e) times
along the direction away from s, and in which p(x) is the largest
vertex that the vehicle passes through before reaching x. Moreover,
for any other sequence of full-carrying moves from s to x, the vehicle
traverses each edge e at least cx(e) times along the direction away
from s, and the vehicle must pass through p(x) before reaching x.

For x > s, a corresponding result holds. Although in our argument we only consider
vertices x ≤ s, our induction hypothesis is for all vertices added to R before the vertex
x is added.

At the initial step, R = [s, s], and the statement above is obviously true. Suppose
x is added to R at step i. Then p(x) ≥ s is added to R at some previous step,
and hence the statement above is true for any vertex y between s and p(x) by the
induction hypothesis. Thus there is a sequence of full-carrying moves from s to p(x)
that traverses each edge e exactly cp(x)(e) times along the direction away from s.
Now we shall extend such a sequence by adding some full-carrying moves from p(x)
to x (without making turns). Of course, the only concern is whether or not there are
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enough objects to be picked up and moved along the way. There are such objects for
the following two reasons:

1. The previous sequence of moves traverses each edge e = (a, b) ∈ E between s
and p(x) exactly cp(x)(e)− 1 times in the direction from p(x) to x (note that
for these edges, this is the direction toward s, and that the vehicle starts at
s) and traverses each edge e = (a, b) ∈ E between s and x exactly cp(x)(e)
times in direction from p(x) to x.

2. For each edge e = (a, b) ∈ E between s and p(x), we have that

c · cp(x)(e) ≤ f([b, p(x)], [1, a])

holds for each edge e = (a, b) ∈ E between s and p(x), and for each edge
e = (a, b) ∈ E between s and x, we have

c · (cp(x)(e) + 1) ≤ f([b, p(x)], [1, a]).

Next we show that each sequence of full-carrying moves from s to x must pass
through p(x). Assume to the contrary that there is a sequence of full-carrying moves
to x and that the maximum vertex that the vehicle passes through is y < p(x). Then
an initial segment of this sequence forms a subsequence of full-carrying moves from s
to y. By the induction hypothesis, for each edge e = (a, b) ∈ E between s and x, this
subsequence of moves traverses e at least cy(e) times along the off s direction, and for
each edge e = (a, b) ∈ E between y and s, this subsequence of moves traverses e at
least cy(e)− 1 times along the toward s direction. On the other hand, it follows from
the algorithm that, since p(x) > y, there is either an edge e = (a, b) ∈ E between s
and x such that

c · (cy(e) + 1) > f([b, y], [1, a]),

or there exists an edge e = (a, b) ∈ E between s and y such that

c · cy(e) > f([b, y], [1, a]).

In either case, there are not enough objects to be picked up on the way for the vehicle
to pass through the edge e. Therefore, every sequence of full-carrying moves from s
to x pass through p(x).

The argument above can be easily modified to show that every sequence of full-
carrying moves from s to x traverses each edge e at least cx(e) times along the off s
direction. We shall omit the details.

Also, the argument above can be modified to show that for any vertex x 6∈ R,
there exists no sequence of full-carrying moves from s to x, and we shall omit the
details.

As shown by example 1, for some balanced problems, it is possible that there does
not exist a transportation which consists of only full-carrying moves. By Theorem 3.1,
for such a problem, there does not exist a sequence of full-carrying moves from s to
an end-point of the path. In other words, the vertices 1 and n are not reachable.

For such problems, the optimal transportation must contain moves (x, y;Z) with
|Z| < c. It is straightforward to verify that, for balanced problems, we may restrict
ourselves to full-carrying moves and noncarrying moves. To determine a minimum
transportation cost for a problem, it suffices to determine the minimum distance
traveled by the vehicle with noncarrying moves. As each edge must be traversed by
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the vehicle the same number of times in both directions and, as the original problem is
balanced, we conclude that for each edge e, the number of times the vehicle traverses
e in the two directions with a noncarrying move is equal. Thus we may just count
the number of times the vehicle traverses the edge e in the off s direction with a
noncarrying move.

We define the cost of a noncarrying move to be the distance of that move. Suppose
there is a vertex x of the path which is not reachable. We define c(x) to be the
minimum cost reaching x, i.e., the minimum total distance that the vehicle needs to
travel with noncarrying moves before reaching x. We shall present an algorithm that
determines recursively the values of all c(x).

Before we present the algorithm, we consider again the example shown in Fig-
ure 2.1. Assume that the capacity of the vehicle c = 2. If the start vertex s = 6,
then all of the vertices are reachable vertices. However, if the start vertex s = 4, then
the reachable set R = [2, 6]. Readers are advised to try to find the minimum cost of
adding objects to make each of the other vertices reachable.

In the algorithm, we keep track of the following parameters:

S: the set of vertices whose optimal cost has already been computed.

v: the last vertex added to S.

c(x): the current known minimum cost of reaching x.

cx(e): the current known minimum number of times the vehicle traverses the edge
e, in the direction away from s, in order to reach the vertex x with the cost c(x).

εx(e): the currently known minimum number of times the vehicle crosses the edge
e in the off s direction, with a noncarrying move, in order to reach x.

Our algorithm is similar to Dijkstra’s algorithm for finding the shortest path
between two vertices in a weighted graph. The above parameters will be updated at
each iteration. Note that S must be a connected subgraph of the path; hence S = [l, r]
is always an interval.

Initially, we set S = [s, s], v = s, c(s) = 0, cs(e) = 0, and εs(e) = 0 for every
e ∈ E. For each x 6= s, we let c(x) =∞, cx(e) =∞, and εx(e) =∞ for every edge e.

At each iteration, the parameters are updated by the following rules:

1. If v ≤ s, then for each vertex x 6∈ S and x > s, we calculate the cost c′(x) of
moving the vehicle from s to x in such a way that the vehicle reaches v first
(with cost c(v)) and then goes directly from v to x (with some additional cost
that can be calculated easily). Then we compare the new cost c′(x) with the
current value c(x) and replace it with c′(x) if c′(x) < c(x).

2. If v ≥ s, then we use the value of c(v) to update the cost of c(x) for all x < s,
in the same way.

After we finish updating the cost function, we then add a vertex x with minimum
cost c(x) among the vertices V − S into S, and then repeat the above process again.

This is exactly what was done in Dijkstra’s algorithm for finding the shortest path
between two vertices in a weighted graph. However, we need some tools to calculate
the cost c′(x).

In order to calculate the additional cost of moving the vehicle from v to x, we
need to know how many times the vehicle traverses each edge e along the direction
from v to x. Then we determine if there are enough objects to be transported by the
vehicle to cross the edge. In case there are not enough objects to be transported by
the vehicle to cross the edge e = (a, b), then the vehicle needs to cross the edge e with
a noncarrying move, and that will contribute to the cost of reaching x.

As noted before, we may just count the number of times the vehicle traverses the
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edge e in the off s direction with a noncarrying move. We shall not consider the cost
of moving the vehicle toward s.

Let gx,v(e) be the minimum number of times the vehicles traverses the edge e
in the direction from v to x under the condition that the vehicle first reaches v and
then directly goes to x. Then since cv(e) is the minimum number of times the vehicle
traverses the edge e in the off s direction in the process of going from s to v, we
conclude that:

1. for edges e between v and s, gv,x(e) = cv(e); and
2. for edges e between s and x, gv,x(e) = cv(e) + 1.

Assume that v ≤ s < x. Let W (v, x) be the set of edges e = (a, b) between s and
x such that f([v, a], [b, n]) < c · (gv,x(e)− εv(e)). Then it is clear that W (v, x) is the
set of edges that the vehicle needs to traverse with a noncarrying move, along the
way from v to x. (Note that f([v, a], [b, n]) is the total number of objects that can be
transported from a to b at the present time; gv,x(e) is the total number of times the
vehicle traversed from a to b up to now, including the trip from v to x; and εv(e) is the
total number of times the vehicle has already traversed from a to b with noncarrying
moves.)

Thus we set c′(x) = c(v) +
∑
e∈W (v,x) w(e). Then we compare c′(x) with c(x). If

c′(x) < c(x), we do the following: set c(x) = c′(x), set εx(e) = εv(e) for e 6∈ W (v, x)
and εx(e) = εv(e) + 1 for e ∈ W (v, x), set cx(e) = cv(e) for each e between v and s
and cx(e) = cv(e) + 1 for each e between x and s.

Find a vertex x in V − S such that c(x) = min{c(y) : y ∈ V − S}, and then let
S = S ∪ {x}. Then we set v = x and repeat the procedure above.

The algorithm terminates when one of the end vertices of the path is added to
S. Without loss of generality, we assume that 1 is added to S. Then 2c(1) is the
minimum distance that must be traveled by the vehicle with noncarrying moves in
any transportation for the problem.

Theorem 3.3. The algorithm described above indeed determines the minimum
distance that must be traveled by the vehicle with noncarrying moves in any trans-
portation for the problem.

Proof. First we note that there is a transportation for the problem in which the
total distance traveled by the vehicle with noncarrying moves is 2c(1). Indeed, in
the process of reaching 1 by taking some noncarrying moves, we may replace each
noncarrying move that crosses an edge e = (a, b) in the off s direction by the addition
of c objects from a to b, and c objects from b to a. Then after these objects are added,
the resulting problem is still balanced and in this problem the vertex 1 becomes a
reachable vertex. Then by Theorem 3.1, there is a transportation for this new problem
that consists of only full-carrying moves. By omitting those added objects, we obtain
a transportation of the original problem in which the total distance traveled by the
vehicle with noncarrying moves is 2c(1).

Next we shall show that in any other transportation, the total distance traveled
by the vehicle with noncarrying moves is at least 2c(1). Since in any transportation,
the vehicle must reach vertex 1, it suffices to show for the vehicle to reach the vertex
1, it has to travel a distance of at least c(1) in the off s direction, with noncarrying
moves. We shall show by induction that for each vertex x of S, the vehicle needs to
travel a distance of at least c(x) in the off s direction, before reaching x.

Suppose S∗ is the set of vertices of S which are added to S before x, and suppose
to the contrary of the theorem that there is a sequence of moves, say Q1, for the
vehicle to reach x with less noncarrying move distance. By the induction hypothesis,
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and by the procedure of updating the value of c(x), it is straightforward to see that in
the sequence of moves Q1, the vehicle must reach some vertex y 6∈ S∗ before reaching
x. Let y0 be the first vertex not in S∗ which is reached by the vehicle in this sequence
of moves. By induction hypothesis and the procedure for defining c(y) at that step,
we conclude that the total distance traveled by the vehicle with noncarrying moves
along the off s direction is at least c(y) ≥ c(x), which is a contradiction. Here c(y)
is the value at the step in which we add x into S. (Recall that in the algorithm the
value c(y) is updated at each step.)

Theorem 3.4. The algorithm described above terminates in O(kn + n2) time,
where k is the number of objects to be transported and n is the number of vertices in
the path.

Proof. After each iteration, one vertex is added to S. Hence there are at most n
iterations. The crucial step to make the algorithm efficient is to compute the values
of f([v, x], [x+ 1, n]) and f([v, x+ 1], [1, x]) efficiently. We shall show how to compute
all of the values of f([v, x], [x + 1, n]), for v = s, s + 1, . . . , n, x = v, v + 1, . . . , n − 1,
in O(kn + n2) time. The computation for f([v, x + 1], [1, x]) for v = s, s − 1, . . . , 1,
x = v − 1, v − 2, . . . , 1 is done in a similar way.

For each vertex v, let α(v) be the set of objects with initial vertex v and with
destination vertices to the right of v. For v, x ∈ V , v < x, let βv(x) be the set
of objects with initial vertices between v and x − 1 and destination vertex x, and
let δ(v, x) be the set of objects with initial vertex v and destination vertex x. By
definition,

βv(x) = βv+1(x) ∪ δ(v, x).

For any given v, v ≤ s, the value of f([v, v], [v + 1, n]) = |α(v)|, and for x =
v + 1, v + 2, . . . , n− 1,

f([v, x], [x+ 1, n]) = f([v, x− 1], [x, n]) + |α(x)| − |βv(x)|.

After balancing objects are added, there are at most O(kn) objects. It is straight-
forward to compute all the values of δ(v, x), for all v, x ∈ V in O(kn + n2) time.
After these values are computed, for any given v, the values of f([v, x], [x + 1, n]),
x = v, v + 1, . . . , n − 1 can each be computed in constant time. Therefore, our algo-
rithm can be implemented in O(kn+ n2) time.

An analysis of the algorithm shows that we have the term kn in the time com-
plexity, simply for the reason that we may add O(kn) objects to make it a balanced
problem. We remark that with a complex algorithm, we can produce a balanced
problem in which the number of added objects is at most O(k + n). If we use that
algorithm to produce the balanced version (which we did not use for the reason of
simplicity), then the time complexity of our algorithm can be reduced to O(k + n2).

4. Preemptive routing on cycles. We shall show in this section that the
algorithm in the previous section can be applied to the multiple capacity preemptive
vehicle routing problems on cycles, provided that the arc along which each object is
to be transported is determined. In practice, we usually transport an object along
the shorter of the two arcs connecting its initial vertex and destination vertex.

We assume that the cycle has vertices 1, 2, . . . , n embedded in the plane in this
order along the clockwise direction. Furthermore, we assume that every vertex is a
useful vertex, that is, it is either the start vertex s, or the initial vertex uj , or the
destination vertex vj for some object j. A vertex that is not a useful vertex can be
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eliminated from the cycle by replacing the vertex and its two adjacent edges by one
edge with the weight the sum of the weights of the two edges.

Unlike the path, for a vehicle to start and end at a vertex s of a cycle, it is
not necessary that the vehicle traverses each edge the same number of times in both
directions. This is because the vehicle can go around the cycle in one direction many
times and return to the staring vertex.

We shall employ techniques of [1] for overcoming this difficulty. First we modify
the definition of a balanced problem. Let e be an edge of the cycle C, λ(e) be the
number of objects that must traverse the edge e in a clockwise direction, and λ′(e)
the number of objects that must traverse the edge e in a counterclockwise direction.
A problem is balanced if and only if, for each edge e of C,

λ(e) ≡ λ′(e) ≡ 0 mod c

and

φ(e) = λ(e)− λ′(e) = cψ,

where c is the capacity of the vehicle and ψ is a constant.
The algorithm for finding an optimal tour is summarized as follows. First, find

the balanced version of the problem for some fixed value of ψ. Using the algorithm
for the paths, find a sequence of moves with minimum total distance of noncarrying
moves such that the vehicle visit all the vertices of the cycle. Similarly we define c(x)
to be the minimum total distance of noncarrying moves to reach x. Let v be the
vertex with largest cost c(v) among all vertices in C. Then similar to Theorem 3.3,
it can be proved that 2c(v) is the minimum total distance traveled by a vehicle with
noncarrying moves in a transportation for the problem, under the condition that the
vehicle goes around the cycle clockwise ψ times.

For each number ψ between −maxe∈E{λ
′(e)
c + 1} and maxe∈E{λ(e)

c + 1}, we
apply the above algorithm. At the very end we choose the value of ψ for which the
corresponding cost is minimum. That will be the minimum cost of a transportation
for the problem.

We remark that this algorithm works only if each object is moved in the prede-
termined direction. The general problem remains open. In addition to this problem,
we list two more open problems:

1. Suppose the underlying graph G is obtained from a fixed number, say k, of
paths by joining one of their end points together. In other words, G is like a
star, with a constant number of branches. What is the complexity of multiple
capacity preemptive vehicle routing problems on G?
We note that if the number of branches is not a constant, then the problem
was shown to be NP-complete [2].

2. Suppose the capacity of the vehicle is unlimited; then what is the complexity
of the vehicle routing problem on some special graphs such as trees or graphs
of bounded tree-width?
We note that this problem is easily seen to be polynomial on paths and cycles
and NP-complete for general graphs.
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Abstract. Given a simple graph G = (V,E), our goal is to find a smallest set F of new edges
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1. Introduction. In the last decade several graph augmentation problems have
been investigated. The connectivity augmentation problems, especially, attracted
considerable attention due to the various connections to the so-called network design
problems which model the survivability problems of (telephone or computer, etc.)
networks. In these problems a graph (or digraph) G and a target connectivity number
k are given and the goal is to find a smallest set F of new edges which makes G
k-edge-connected, that is, for which the augmented graph G = (V,E ∪ F ) is k-edge-
connected and |F | is as small as possible. (Sometimes the goal is to increase the
vertex-connectivity of G. In this paper we consider edge-connectivity problems only.)
Note that the set F of new edges may contain parallel edges and edges which are
parallel to edges of G as well.

The edge-connectivity augmentation problem and a number of its extensions can
be solved efficiently. Since Watanabe and Nakamura’s first polynomial time algorithm,
several other efficient algorithms have been developed; see [4], [8], [22], [25] and also
[3], [11], [21] for some important results. For a survey of this area see [9].

However, there are several versions of the connectivity augmentation problem
which remain open. For example, in some cases the goal is to increase the connec-
tivity by maintaing certain properties of the starting graph G. Depending on these
properties, one obtains problems of a very different nature. Kant and Bodlaender
[16] proved that the problem where the goal is to increase vertex-connectivity and the
planarity of G is to be preserved is NP-complete. Nagamochi and Eades [19] solved
some cases of the corresponding edge-connectivity problem in polynomial time. Hsu
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and Kao [13] showed how to increase a variant of vertex-connectivity while main-
taining the bipartiteness of the graph in polynomial time. Recently, Bang-Jensen et
al. [1] proved that edge-connectivity can be optimally increased in polynomial time
preserving bipartiteness (or, in general, l-partiteness).

In this paper we deal with another property to be preserved: the simplicity of G.
As it is stated in [9]: “It is an important open problem to find algorithms that do
not add parallel edges.” Partial results in this direction have been obtained by Frank
and Chou [10], Naor, Gusfield, and Martel [22], Taoka, Takafuji, and Watanabe [23],
and Watanabe and Yamakado [24] (the details are given below), but the complexity
of the general problem was still open. Recently the second author proved that the
simplicity-preserving k-edge-connectivity augmentation problem is NP-complete, even
if the starting graph is already (k− 1)-edge-connected; see [15] and [2]. On the other
hand, as we shall prove, the problem becomes polynomially solvable if the target
connectivity k is fixed. We give an O(n4) algorithm for this variant (where the
running time depends exponentially on k).

Let G = (V,E) be an l-edge-connected simple graph with |V | ≥ k + 1. The
simplicity-preserving k-edge-connectivity augmentation problem is to find a smallest
set F of new edges which makes G k-edge-connected without creating parallel edges,
that is, G′ = (V,E ∪F ) must be a k-edge-connected simple graph and subject to this
|F | must be minimal. Such an F is called an optimal simple augmentation of G (with
respect to k).

The very first paper that deals with a similar problem is from 1970 and is due
to Frank and Chou [10]. They solve the simplicity-preserving edge-connectivity aug-
mentation problem in the special case where the starting graph G has no edges. In
this case they can handle nonuniform demands as well, where the edge-connectivity
requirements may be different between different pairs of vertices. Besides the solution
of this version — which is in fact a construction problem rather than an augmentation
problem — there are some recent results which deal with small target connectivity
values k or solve some very special case for general k.

Let us denote the size of a smallest k-edge-connected (k-edge-connected and sim-
ple) augmentation of a graph G by OPT kP (G) (and OPT kS (G), respectively). Obvi-
ously OPT kP ≤ OPT kS for any k and any graph G.

It can be checked easily that the linear-time 2-edge-connectivity augmentation
algorithm of Eswaran and Tarjan [6] does not create parallel edges; thus it solves the
simplicity-preserving version, too, for k = 2. It was proved in [24] thatOPT kS = OPT kP
holds for k = 3 as well, by showing a polynomial algorithm which solves the 3-edge-
connectivity augmentation problem optimally without creating parallel edges.

This is not the case in general. As it was observed already in [23], OPT kS ≥
OPT kP + 1 may hold if k ≥ 4; see Figure 1.1. On the other hand, it was also shown
in [23] that OPT kS ≤ OPT kP + 1 if l+ 1 = k with k = 4 or k = 5, and in these special
cases we have OPT kS = OPT kP , provided that OPT kP ≥ 4. In [22] it was observed that
OPT kS (G) = OPT kP (G) if l + 1 = k and the minimum degree in G is at least k.

Besides the construction of a polynomial algorithm for any fixed k, our goal in
this paper is to show that there exist polynomials f, g such that if OPT kP (G) ≥ f(k),
then OPT kS (G) = OPT kP (G), and OPT kS (G) ≤ OPT kP (G) + g(k) for any k and any
graph G. These results are presented in section 3. Specializing our proofs to the case
where l+ 1 = k = 4, we give simpler proofs for (extensions of) some results of [23] in
section 4. In section 5 we indicate how our main results can be extended to the case
where local edge-connectivity requirements must be satisfied.
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Fig. 1.1. OPT 4
S(G) = 3 and OPT 4

P (G) = 2.

2. Terminology and some basic results. In this section we first introduce
the basic notation and definitions and then list those theorems and algorithms (mostly
from Frank’s paper [8]) which we shall use in our proofs. We assume that the reader
is familiar with the results of [8].

Let G = (V,E) be an undirected graph. For two disjoint subsets X and Y of V ,
the number d(X,Y ) denotes the number of edges between X and Y , and we define
the degree of a subset X as d(X) := d(X,V −X). A set consisting of a single vertex
v is simply denoted by v. Thus d(v) stands for the degree of v. The degree-function
of a graph G′ is denoted by d′. An edge connecting the vertices x and y is denoted
by xy. Sometimes xy will refer to an arbitrary copy of the parallel edges between x
and y, but this will not cause any confusion. Adding or deleting an edge e to/from a
graph G is often denoted by G+ e or G− e, respectively. Adding or deleting a set Y
of vertices to/from a set X of vertices is denoted by X∪Y or X−Y , respectively. For
a set F of edges, V (F ) denotes the set of end-vertices of edges of F . The subgraph of
G induced by a subset X of vertices is denoted by G[X]. The maximum degree of the
graph G is ∆(G). For a vertex v we use N(v) to denote the set of vertices adjacent
to v. A subpartition of V is a collection of pairwise disjoint subsets of V .

The operation splitting off a pair vs, st of edges (v 6= t) from a vertex s means
that we replace the edges vs, st by a new edge vt. A complete splitting from a vertex
s (with even degree) is a sequence of d(s)/2 splittings of pairs of edges incident to s.
A graph G = (V,E) is k-edge-connected if

(1.1) d(X) ≥ k for all ∅ 6= X ⊂ V.

The edge-connectivity of G is the largest integer k for which G is k-edge-connected.
The local edge-connectivity λ(u, v) between two vertices u, v is the maximum number
of pairwise edge-disjoint u-v paths.

The following equalities are well known.
Proposition 2.1. Let G = (V,E) be a graph and X,Y ⊆ V . Then

(1.2a) d(X) + d(Y ) = d(X ∩ Y ) + d(X ∪ Y ) + 2d(X − Y, Y −X)

(1.2b) d(X) + d(Y ) = d(X − Y ) + d(Y −X) + 2d(X ∩ Y, V − (X ∪ Y )).
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Let G = (V + s,E) be a graph with a special vertex s such that (1.1) holds,
that is, the edge-connectivity of G within V is at least k. We say that a pair of
edges vs, st is an admissible pair if, after splitting off vs and st, condition (1.1) still
holds. Otherwise vs, st form a nonadmissible pair. It is easy to see that vs and st
are nonadmissible if and only if there exists a proper subset X ⊂ V with v, t ∈ X for
which d(X) ≤ k + 1. Such a set is called dangerous.

The following result of Lovász [17, Problem 6.53] — Theorem 2.2(a) below — is
an important tool in [8]. Here we formulate a kind of extension, as well — part (b)
of Theorem 2.2 — which will be used in some of our arguments. The proof follows
easily from the proof of part (a) given in [8, pp. 35–36]. (Jackson [14] observed that
a similar extension holds in the special case of Eulerian graphs.)

Theorem 2.2. Suppose that (1.1) holds in G = (V + s,E) for some k ≥ 2 and
d(s) > 0 is even. Then

(a) (see [17]) for every edge st there exists an edge su such that the pair st, su is
admissible.

(b) for every edge st the number of edges which are nonadmissible with st is at
most k + 1.

Proof. We prove part (b). Following Frank’s proof of part (a) we observe that
for every edge sv for which st and sv is a nonadmissible pair, the vertex v is either
contained in a unique maximal dangerous setM containing t or contained in one of two
maximal dangerous sets X,Y whose intersection contains t and for which X ∪Y 6= V ,
d(s,X ∩ Y ) = 1 hold. Since the edge sv contributes to the degree of M (or to the
degree of X or Y ), we obtain that in the former case there are at most k edges which
are nonadmissible with respect to st, and in the latter case, using (1.2a) we get

2k + 2 ≥ d(X) + d(Y ) ≥ d(X ∩ Y ) + d(X ∪ Y ) ≥ k + d(X ∪ Y ),

which implies d(X ∪ Y ) ≤ k + 2, from which d(s, (X ∪ Y )− t) ≤ k + 1 follows.

Most of the results in this paper are based on Frank’s algorithm [8] which solves
the augmentation problem without the simplicity requirement and uses the splitting
off operation as the main tool. His algorithm does not find all the intermediate
optimal augmentations between l + 1 and k but only an optimal k-edge-connected
augmentation. The other previously mentioned algorithms either use a one-by-one
augmentation approach — like [3], [11], [22], [25] — or are based on splitting off [4],
[21]. (We remark that Cai and Sun [4] gave the first algorithm for this problem which
was based on the splitting off method.)

We say that the successive augmentation property holds for a certain augmentation
problem if, for any increasing sequence k1 < · · · < km of target-connectivities, there
exists an increasing sequence F1 ⊂ · · · ⊂ Fk of solutions such that Fi is optimal with
respect to ki. For example this property holds for the edge-connectivity augmentation
problem of graphs and digraphs (with uniform demands); see [5], [22], [25]. Since the
successive augmentation property does not hold for simple augmentations (see Figure
2.1), using Frank’s algorithm seems to be promising for attacking the general case.

We now describe Frank’s algorithm [8] which gives an optimal solution for any
given (not necessarily simple) graph G = (V,E) and target-connectivity k, provided
that there is no simplicity-preserving requirement.

Frank’s algorithm.

Phase 1. Add a new vertex s to V and a set F of new edges between s and some
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u

v

Fig. 2.1. This graph G shows that the successive augmentation property does not hold.
OPT 4

S(G) = 1 and OPT 5
S(G) = 4 for G. The edge e = uv is the unique optimal augmentation

with respect to k = 4, but OPT 5
S(G+ e) = 4.

vertices of V such that

(2.1) (1.1) holds in G′ = (V + s,E ∪ F ),

(2.2) d′(s, v) ≤ k for all v ∈ V,

(2.3) F is minimal (with respect to inclusion) subject to (2.1) and (2.2).

Remark. It is easy to see that such an F exists. It was shown in [8] that (∗) there
exists a subpartition F = {X1, ..., Xt} of V for which |F | = ∑t

1(k − d(Xi)) holds.
Phase 2. If d′(s) is odd in G′, add a new parallel edge between s and v for some

v ∈ V with d′(s, v) ≥ 1.
Remark. In Frank’s original algorithm, the extra edge which makes d′(v) even

can be added between s and any v ∈ V . However, this small modification in Phase 2
will be essential in our algorithm.

Phase 3. Split off admissible pairs of edges incident to s in arbitrary order,
maintaining (1.1). When s becomes isolated, delete s.

Remark. In the third phase every edge can be split off by Theorem 2.2(a). The
resulting graph is an optimal k-edge-connected augmentation of G since, after the
first phase, OPT kP (G) ≥ |F |/2 by (∗).)

3. Simplicity-preserving augmentation with uniform demands. Our idea
is to modify the third phase of Frank’s algorithm by introducing some additional rules
which will determine the order of splittings. In certain cases not every admissible pair
will be allowed to be chosen. As we shall see, this will make it possible to avoid the
creation of parallel edges and hence to maintain simplicity provided that d′(s) is high
enough at the beginning of the third phase. Clearly, if we preserve simplicity during
Phase 3, the resulting augmenting set will be optimal for the simplicity-preserving
version, too.

If one wants to maintain simplicity while using Frank’s algorithm, only those
admissible pairs st, su may be split off for which t and u are not adjacent in the
original graph and for which there is no new edge between t and u (that is, the pair
st, su has not been chosen yet for another edge st and another edge su). We call such
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an admissible pair legal. We say that a complete splitting from s is feasible if the
resulting graph is simple and k-edge-connected.

Let G = (V,E) be the starting graph and let k ≥ 2 be the target-connectivity.
Theorem 3.1. Let G′ = (V + s,E ∪ F ) be the graph at the end of the second

phase of Frank’s algorithm and suppose that

d′(s) ≥ 3k4.(3.1)

Then there exists a feasible complete splitting from s.
Proof. Let S denote the set of neighbors of s. We claim that in the subgraph

H = G[S] induced by S each vertex has at most k − 1 neighbors. To see this let
us consider an edge st ∈ F . Since F is obtained from a minimal set F̄ satisfying
(2.1)–(2.3) by adding at most one edge e parallel to an edge of F̄ , there exists a set
X ⊂ V for which t ∈ X and dG′−e(X) = k. Each edge between t and some vertex in
S −X contributes to the degree of X, and each neighbor y of t in S ∩X contributes
to the degree of X by at least one by the existence of the edge sy. Thus

dH(t) = d(t, S ∩ (X − t)) + d(t, S −X) ≤ dG′−e(X)− 1 = k − 1.(3.2)

Condition (2.2) implies that |S| ≥ 3k3. Since ∆(H) ≤ k− 1, there exists (see the
easy exercise [17, Problem 8.1]) a subset T ⊂ S with |T | = k2 + 2k+ 1 ≤ 3k3/k = 3k2

which is independent in H. Since such a T can be obtained by a greedy procedure,
starting with an arbitrary vertex, we can assume that the end-vertex in V of the extra
edge e added in the second phase of Frank’s algorithm, if such an edge exists, belongs
to T .

Our proof of the existence of a feasible complete splitting will follow from the
analysis of the following algorithm which is a modified version of the third phase of
Frank’s algorithm. The goal is to split off only legal pairs until s becomes isolated.

After each splitting step we update S and H as follows. If we split off a pair
st, su, then first the edge tu will be added to H. Then, if the edge st (or su) was the
last copy of the edges between s and t (between s and u, respectively), then we delete
t (u) from S and from H as well. Thus at every iteration a pair st, su of edges is legal
if and only if t and u are not adjacent in the current H.

The algorithm has four parts, executed in the following order.
(1) Split off legal pairs of edges st, su of the form t ∈ T and u ∈ S−T until there

are no parallel edges between s and any vertex of T (but keep one copy of each edge
st, t ∈ T ).

(2) Split off legal pairs of edges sv, su of the form v, u ∈ S−T as long as possible.
(3) Split off all the edges su with u ∈ S − T with an edge st, t ∈ T , for which

st, su is a legal pair.
(4) Split off the remaining edges st, su (of the form t, u ∈ T ).
Let us prove why this algorithm terminates with a complete feasible splitting.

First observe that the proof of Theorem 2.2(b) combined with the proof of (3.2)
implies the following statement.

Proposition 3.2. Let st be an edge, and let W be a subset of vertices of the
current H not containing t. If |W | ≥ k + 2, then st, su is a legal pair for some
u ∈ W . Furthermore, if |W | = k + 1 and there is no legal pair st, su with u ∈ W ,
then d′(s, t) = 1.

Proof. Let Z be a set of vertices of H for which t /∈ Z and there is no legal pair
st, sz with z ∈ Z. Let Z1 ⊆ Z contain those vertices z′ of Z for which the pair st, sz′ is
not admissible. Let Z2 = Z−Z1. By our assumption each vertex of Z2 is adjacent to t
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in H. If Z1 = ∅, then by (3.2) we obtain |Z| = |Z2| ≤ k−1. Suppose Z1 6= ∅. It follows
from the remarks we made in the proof of Theorem 2.2(b) that either there exists a
unique maximal dangerous set M which includes Z1 ∪{t} or there exist two maximal
dangerous sets X,Y with t ∈ X ∩Y and Z1 ⊂ (X −Y )∪ (Y −X). Observe that each
vertex z ∈ Z1 (z ∈ Z2) contributes to the degree of M or X ∪ Y by the existence of
the edge sz (tz, respectively), and the edges from s to t have a positive contribution
as well. Thus in the case of the unique M we get |Z| = |Z1|+ |Z2| ≤ d′(M)− 1 ≤ k.
In the case where we have two maximal dangerous sets X and Y we can count as in
Theorem 2.2 and obtain |Z| ≤ d′(X ∪ Y )− 1 ≤ k + 1. Thus |Z| ≤ k + 1 follows and
|Z| = k + 1 if only if d(s, t) = 1, as required.

By (2.2) and the fact that Phase 2 adds at most one extra edge connecting s and
T , we have to split off at most (k − 1)|T | + 1 pairs in part (1). Proposition 3.2 and
the inequality |S−T | ≥ 3k3− (k2 + 2k+ 1) ≥ (k2 + 2k+ 1)(k− 1) + k+ 2 imply that
this can be done, that is, we can always find legal pairs to split off following the rule
of part (1). Therefore part (1) can be executed.

By Proposition 3.2 we obtain that at the end of part (2) the size of the current
S−T is at most k+2 and if |S−T | = k+2, then d′(s, u) = 1 for each u ∈ S−T . Thus
using (2.2), it follows that in part (3) at most max{k + 2, k(k + 1)} = k(k + 1) edges
must be split off, for which k(k + 1) + k + 1 vertices in T are sufficient to maintain
feasibility by Proposition 3.2. Since |T | = k2 + 2k+ 1 = k(k+ 1) + k+ 1, part (3) can
also be executed.

At the beginning of part (4) the current H, induced by T , is an independent
set with d′(s, t) = 1 for all t ∈ T . Hence H remains independent after an arbitrary
sequence of splittings. Thus in part (4) we are allowed to split off admissible pairs in
arbitrary order, which yields a (feasible) complete splitting by Theorem 2.2(a).

We obtain the following corollary.

Theorem 3.3. If OPT kP (G) ≥ 3k4/2 for some graph G, then OPT kS (G) =
OPT kP (G) holds.

If k is small, it is possible to sharpen the previous rough bound on f(k) ≤ 3k4/2.
Using a more precise analysis we can even obtain the sharp value in the special case
k = 4 (which was found already in [23], using a different approach). These details are
given in section 4.

Theorem 3.4. OPT kS (G) ≤ OPT kP (G)+2k2+1 for any starting graph G = (V,E)
and any target connectivity k.

Proof. If |V | ≤ 4k − 4, then OPT kS ≤ k(2k − 2) since for any |V | there exist k-
edge-connected simple graphsH = (V,E(H)) which are (almost) k-regular. Obviously
E(H) contains a set of edges which makes G k-edge-connected preserving simplicity.
Thus we may assume that |V (G)| ≥ 4k − 3.

The proof is based on a version of Frank’s algorithm, where in the third phase
certain edges will not be split off in pairs but will be replaced by one or two new edges
using different operations. The first two phases are the same. At the beginning of
Phase 3 we have a set F of new edges incident to s for which OPT kP (G) = |F |/2 holds.
In Phase 3 first let us split off legal pairs as long as possible. By Proposition 3.2 the
number of neighbors of s is at most k+ 2 when no more legal pairs can be found and
d′(s) ≤ k(k+1). In the rest of the procedure, instead of splitting off pairs of edges we
take the remaining edges incident to s one by one and for such an sx we either delete
it, without destroying (1.1), or, if it is not possible, we replace it by one or two edges
on V , maintaining (1.1) and preserving simplicity. Let us focus on some edge e = sx
of the current G′ in this last part. If e cannot be deleted without violating (1.1),
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then there exist sets X ′, Y ′ with x ∈ X ′ ⊂ V , d′(X ′) = k and s ∈ Y ′ ⊆ V + s − x,
Y ′ ∩ V 6= ∅, d′(Y ′) = k. Let us call such a set X ′ x-tight and such a set Y ′ s-tight.

Proposition 3.5. In G′ there is a unique minimal x-tight set X and a unique
minimal s-tight set Y , with respect to a fixed edge e = sx. Furthermore, (1.1) holds
in G′ − e+ e′ for any edge e′ = x′y′ with x′ ∈ X and y′ ∈ Y .

Proof. Let X be a minimal x-tight set and X ′ be an x-tight set which does not
contain X. In this case, by (1.1) and (1.2b) we obtain

k+k = d′(X)+d′(X ′) = d′(X−X ′)+d′(X ′−X)+2d′(X∩X ′, V+s−(X∪X ′)) ≥ k+k+2,

a contradiction. This proves that X is unique. The uniqueness of Y can be proved
similarly.

Let x′ ∈ X and y′ ∈ Y be two vertices and e′ = x′y′ be an edge and suppose that
(1.1) does not hold in G′′ = G′ − e + e′. Clearly, if a set ∅ 6= W ⊂ V violates (1.1),
then W is x-tight in G′. Hence the uniqueness of X implies x′ ∈W and then y′ ∈W
must also hold. From this it follows that V + s −W is an s-tight set in G′, which
does not contain Y , a contradiction. This proves the proposition.

Clearly, if X or Y − s has size at least k, then there exist two vertices x′ ∈ X
and y′ ∈ Y − s such that x′ and y′ are nonadjacent in G′. In this case, replacing
sx by e′ = x′y′ maintains (1.1) and preserves simplicity. Suppose that both X and
Y − s have size at most k − 1. There are at most 2k − 2 vertices in V − (X ∪ Y )
which are adjacent to x or to some vertex in Y − s, since each such vertex contributes
to the degree of X or Y . We assumed |V | ≥ 4k − 3; hence there exists a vertex
w ∈ V − (X ∪ Y ) which is neither adjacent to x nor to y for some vertex of Y − s.
Then replacing e by xw and wy preserves simplicity and it is easy to see that it
maintains (1.1) as well.

Thus substituting the remaining at most k(k+ 1) edges incident to s in G′ by at
most 2k(k + 1) edges, we obtain a solution with size at most |F |/2 + 1.5k(k + 1) ≤
OPT kP (G) + 1.5k(k + 1) ≤ OPT kP (G) + 2k2 + 1.

The graph K∗, defined as the disjoint union of two complete graphs Kk+1 and
Kk/2, connected by k/2 independent edges, shows that the biggest possible gap be-

tween OPT kS and OPT kP is indeed a quadratic function of k. (It is easy to check that
OPT kP (K∗) = (k/2 + 1)k/4, but OPT kS (K∗) = k2/4. Hence the difference in question
is k2/8− k/4.)

Also note that the solution obtained by the algorithm of Theorem 3.4 has size at
most 2|F |, where F is the set of the new edges added by the first two phases. Since
|F |/2 ≤ OPT kS (G), the previous method can also be considered as a 4-approximation
algorithm (that is, an algorithm which gives a solution of size at most 4OPT kS (G)) for
the simplicity-preserving k-edge-connectivity augmentation problem, provided that
k < n/4. Its running time is polynomial even if k is not fixed.

The basic idea of our algorithm for the simplicity-preserving k-edge-connectivity
augmentation problem is the following. If OPT kP is large enough, we can simply follow
the algorithmic proof of Theorem 3.1 which gives a solution of size OPT kS = OPT kP . If
OPT kP is small, a trivial way of finding an optimal solution is to check every possible
augmenting set with size less than OPT kP + 2k2 + 1. By Theorem 3.4 we can find an
optimal solution this way. However, although the number of such sets is a polynomial
function of n for fixed k, the exponent still depends on k. To avoid this, we prove that
when we check all the possible augmenting sets we may restrict the set T of possible
end-vertices of the augmenting edges to a set of size h(k) for an appropriate function
h of k, and that such a T can be fixed in advance in constant time for any fixed k.
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A set X ⊂ V is deficient in G = (V,E) (with respect to the target-connectivity
k) if d(X) < k. A set S ⊆ V is a covering of the deficient sets if S ∩X 6= ∅ for every
deficient set X.

It follows from the correctness of Frank’s algorithm — and also from Proposition
3.5 — that for every covering S ⊆ V there exists an optimal solution F with V (F ) ⊆ S
for the problem without simplicity requirement. This implies that if the optimum
value is m, we can easily find a set S of vertices in G — the covering S, formed by
the end-vertices of the new edges at the end of Phase 1 of Frank’s algorithm will do
— with size at most 2m, such that there exists an optimal solution F with V (F ) ⊆ S.
Although in the simplicity-preserving version a covering S does not have this property
in general (see the graph in Figure 1.1), we can find a relatively small subset T in this
case, too, such that there exists an optimal solution FS with V (FS) ⊆ T .

To see this, let G be the starting graph and let S be a covering of the deficient
sets of G. For each vertex y of G let us fix a set L(y) ⊆ N(y) of vertices such that
|L(y)| = min{|N(y)|, 2k}. For each vertex t ∈ S we define a subset M̄t of vertices of
V as follows. The vertex t itself belongs to M̄t if and only if d(t) ≤ 2k − 1. A vertex
x ∈ V−t belongs to M̄t if and only if there exists an xt-path P on at most k vertices for
which d(v) ≤ 2k−1 for every v ∈ P −x. Now let Mt := {t}∪L(t)∪⋃v∈M̄t

(v∪L(v)).

(It is not hard to see that |Mt| ≤ h(k) := 2k(2k − 1)k for any t ∈ S.) We claim
that T =

⋃
v∈SMv is a set with the required property. Note that S ⊆ T holds

and |T | ≤ |S|h(k). (The existence of such a set with size at most |S|h′(k) for some
function h′ of k follows immediately from our previous results. However, to construct
an efficient algorithm, we need to find such a set in advance without knowing an
optimal solution.)

Theorem 3.6. There exists an optimal simplicity-preserving solution F with
V (F ) ⊆ T .

Proof. For some edge e = xy let r(e) := |{x, y} ∩ (V − T )|. Let us choose an
optimal simplicity-preserving solution F for which r(F ) :=

∑
e∈F r(e) is as small as

possible. If r(F ) = 0, we are done. If r(F ) ≥ 1, there exists an edge e = ab ∈ F
for which at least one of its end-vertices is not in T . We may assume b /∈ T . If
we subdivide e by a new vertex s and then apply Proposition 3.5, we observe that
in G ∪ F − e we have precisely two minimal deficient sets A,B, and for these sets
we have A ∩ B = ∅, a ∈ A, and b ∈ B. Furthermore, for any edge e′ = a′b′ with
a′ ∈ A, b′ ∈ B the graph G ∪ F − e + e′ is k-edge-connected. Thus it is enough to
prove that there exists a vertex t ∈ B ∩ T which is not adjacent to a in G ∪ F . Since
dG∪F (A,B − b) ≤ dG∪F (A) − 1 ≤ k − 1, to prove that such a vertex t exists, it is
sufficient to see that |T ∩B| ≥ k. (Then replacing e by e′ = at would yield an optimal
simple augmenting set F ′ with r(F ′) < r(F ), contradicting the choice of F .)

First let us prove that S ∩ C 6= ∅ for every component C of the subgraph G[B].
Since B is deficient in G ∪ F − e, it is deficient in G as well. Thus since S covers the
deficient sets, S ∩ B 6= ∅. If S ∩ C = ∅ for some component C of G[B], the set C is
not deficient in G. Thus since each edge between C and V − C contributes to d(B),
we obtain dG∪F−e(B) ≥ dG(B) ≥ dG(C) ≥ k, a contradiction.

Now let t ∈ S be a vertex in the component of G[B] which contains b and let P
be (the set of vertices of) a tb-path in G[B]. Let b′ be the vertex of P closest to t on
P which is not included in M̄t and let P ′ denote the subpath of P with end-vertices t
and b′. (Such a b′ exists, since b /∈ M̄t.) Then P ′− b′ ⊂Mt ⊂ T . Thus if |P ′− b′| ≥ k,
we are done, since |T ∩ B| ≥ k follows. Assume now that |P ′ − b′| ≤ k − 1. Then
either b′ = t and hence d(t) ≥ 2k, or, by the definition of M̄t and b′, there exists a
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z ∈ P ′ ∩ M̄t with d(z) ≥ 2k. In the former case we let z = t. Then we obtain that
at least k vertices from L(z) belong to B; otherwise dG(B) ≥ dG(z, V − B) ≥ k, a
contradiction. Hence |T ∩B| ≥ |Mt ∩B| ≥ |L(z) ∩B| ≥ k.

The proofs of the previous three theorems lead to an algorithm whose running
time is O(n4), provided that the target-connectivity k is fixed. In the rest of this
section we sketch the algorithm and estimate the running time.

The input graph is G = (V,E) with n vertices and e edges. First we add a new
vertex s and construct a set F of new edges following Phases 1 and 2 of Frank’s
algorithm. Simultaneously we compute OPT kP (G) = |F |/2 and let S = N(s) be
our covering of the deficient sets. This can be done in time O(e + kn2) by applying
algorithm “Augment” of Nagamochi and Ibaraki [21]. If OPT kP (G) ≥ 3k4/2, we
proceed as described in Case II below. Otherwise we are in Case I, where |S| ≤ 3k4

and OPTS(G) ≤ ḡ(k) := 3k4/2 + 2k2 + 1 by Theorem 3.4. In this case we identify
the set T ⊆ V of vertices as defined before Theorem 3.6. From the algorithmic point
of view, this can be done by computing a restricted BFS-tree from each vertex of S.
Thus the number of steps we need to find T depends on k only. The last step of Case
I is just a series of k-edge-connectivity tests. We check for each possible set of new
edges F ′ of size at most ḡ(k) (and with V (F ′) ⊆ T ) whether (V,E ∪F ′) is simple and
k-edge-connected and choose the smallest good augmentation. Clearly, the number
of possibilities is a function of k, and by Theorem 3.6 we find an optimal augmenting
set. The number of steps in one of these tests is O(e + kn2) using the algorithm of
[20].

Let us analyze Case II, where OPT kS (G) = OPT kP (G) holds by Theorem 3.3.
Following the proof of Theorem 3.1, first we identify a set T of vertices which is
independent in G[S] and has size k2 + 2k + 1. This can be done by a greedy search
in linear time. Then we follow the four parts of the modified third phase of Frank’s
algorithm: first we split off pairs of edges incident to s between T and S−T . For this
we use the so-called s-based connectivity algorithm from [21] as a subroutine to test
whether or not a pair is legal. One of these tests requires time O(n(e + n)) and the
total number of tests in this first part depends on k only. In the second part we split
off pairs whose end-vertices are in S − T as long as possible. This requires at most
k(k + 2)n s-based connectivity tests. (There are at most k edges from each vertex
v ∈ S − T to s and by Proposition 3.2 after at most k + 2 tests we can find a legal
pair including sv, if there is any.) The remaining two parts consist of some further
s-based connectivity test: we split off all pairs between S − T and T and then within
T . These calculations imply the following theorem.

Theorem 3.7. The simplicity-preserving k-edge-connectivity augmentation prob-
lem can be solved in O(n4) time for any fixed k.

The running time O(n4) hides a huge exponential function of k which makes the
above described algorithm inefficient from any practical point of view. However, for
those small values of k which may occur in applications, our results and methods can
be substantially refined and the algorithm can be made efficient. This is the topic of
the next section.

4. Augmenting from 3 to 4. In this section we give a full solution for the
special case where G is 3-edge-connected and we want to make it 4-edge-connected.
As we remarked, k = 4 is the smallest target value where OPT kP and OPT kS may be
different. Our goal is to find the exact values of the functions f and g in this case.
The proof implies an algorithm which does not use a series of 4-edge-connectivity
tests as in Case I of the algorithm of the general case. The main result of this section,
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Theorem 4.7, was already obtained by Taoka, Takafuji, and Watanabe in [23] — where
most of the proofs are omitted — using a different approach which does not seem to
work for arbitrary values of the target connectivity. We included this section to show
how our method provides a fairly easy complete proof of this result.

A set X of vertices in a graph G with edge-connectivity l is called critical if
d(X) = l holds. The following easy lemma is left to the reader.

Lemma 4.1. Let G be simple and (k−1)-edge-connected but not k-edge-connected.
Then every minimal critical set has size one or at least k.

Lemma 4.1 shows that if X and Y are two disjoint critical sets, then there exist
two vertices x ∈ X and y ∈ Y which are nonadjacent, unless both X and Y are
singletons. This suggests that if the goal is to increase the connectivity by one, without
creating new parallel edges, only those minimal critical sets which are singletons have
an important role. The following lemma will make it possible to assume that every
minimal critical set is a singleton.

Lemma 4.2. Let G = (V,E) be a simple graph which is (k − 1)-edge-connected
but not k-edge-connected. Then there exists a (k− 1)-edge-connected simple graph G∗

for which

(1) every minimal critical set in G∗ has size one,
(2) OPT kP (G∗) = OPT kP (G),
(3) OPT kS (G∗) = OPT kS (G).

Proof. First note that for a minimal critical set X and a critical set Y either
X ⊆ Y or X ∩Y = ∅ holds by Proposition 2.1. This implies that the minimal critical
sets of G are pairwise disjoint. Suppose that G contains some minimal critical sets
X1, . . . , Xr which are not singletons. By Lemma 4.1, each Xi has size at least k.
Form a new graph G∗ = (V ∗, E∗) from G by adding a new vertex xi and joining it
by (k− 1) edges to different vertices of Xi for each i = 1, 2, . . . , r. We claim that G∗,
which is easily seen to be (k − 1)-edge-connected and simple, has properties (1)–(3)
above. Clearly, the singleton critical sets in V and the new vertices x1, ..., xr are
minimal critical sets in G∗. Suppose that G∗ has a minimal critical set X which is
disjoint from all of these vertices. Such an X corresponds to a critical set in G and
hence includes a minimal critical set X ′ of G. Now X ′ is not a singleton; hence by the
construction of G∗, one of the new vertices is a neighbor of X. Thus X has degree
more than k − 1 in G∗, a contradiction. Hence it follows that the minimal critical
sets in G∗ are precisely the original singleton critical sets plus the vertices x1, . . . , xr.
This proves (1) and implies that during the first two phases of Frank’s algorithm the
same number of new edges are added to G and G∗, which gives (2). (Observe that
at the end of the first phase of the algorithm, if applied to a (k − 1)-edge-connected
graph, there is precisely one new edge from the extra vertex s to each minimal critical
set and there are no more new edges incident to s.) Now let us consider an optimal
simple k-edge-connected augmentation F of G. Let us form a set F ∗ of new edges
from F by replacing every edge e ∈ F connecting two sets Xi and Xj by xixj and
every edge e′ = xy ∈ F which enters some x ∈ Xi (and y /∈ Xj , j = 1, ..., r) by xiy. It
is easy to see that the graph G∗+F ∗ is k-edge-connected and by the construction F ∗

contains no edges which are parallel to edges of G∗. Furthermore, since G∗ is (k− 1)-
edge-connected, parallel copies of the edges of F ∗ can be deleted without destroying
k-edge-connectivity. This gives OPT kS (G∗) ≤ OPT kS (G).

To prove the other inequality first observe that, since each Xi has size at least k,
it follows that if u ∈ V −Xi and uxi is an edge in an optimal simple augmentation
F ∗ of G∗, then there is at least one vertex in Xi which is not adjacent to u in G.
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Similarly, if xixj is an edge in F ∗, then we can find vertices u ∈ Xi and v ∈ Xj so
that uv is not an edge in G. Now define the following set of new edges F to be added
to G: let F contain all those edges of F ∗ which connect vertices of V . Furthermore,
for each edge of type uxi ∈ F ∗, where u ∈ V − Xi, let F contain an edge from u
to a nonneighbor of u in Xi and, for each edge of type xixj ∈ F ∗, let F contain an
edge uv such that uv 6∈ E and u ∈ Xi, v ∈ Xj . We claim that G′′ = (V,E ∪ F ) is k-
edge-connected which will imply that OPT kS (G) ≤ OPT kS (G∗). (By the construction,
F does not contain edges parallel to edges of E. It is easy to see that F itself does
not contain parallel edges, but to prove the inequality it is enough to observe that
deleting one copy of two parallel edges in F does not destroy k-edge-connectivity.)
Suppose that G′′ is not k-edge-connected and let W be a set whose degree in G′′ is
k− 1. Since G is (k− 1)-edge-connected, W is critical in G as well and if W ∩U 6= ∅
for some minimal critical set U (in G), then U ⊆ W . Since none of the edges in F
leave W we obtain that in G∗ the set W ∗, obtained by adding each of the vertices xi
for which Xi ⊆W to W , has degree k − 1, a contradiction. This proves (3).

In the next four lemmas we consider a graph G′ = (V + s,E ∪ E′ ∪ F ) obtained
by applying the first and second phases and possibly some p ≥ 0 iterations of the
third phase of Frank’s algorithm, starting from a 3-edge-connected (but not 4-edge-
connected) simple graph G = (V,E) with |V | ≥ 5 and target k = 4. The edges E′ are
the edges obtained by the p splitting off operations. Our goal is to find OPT 4

S(G) and
an optimal augmenting set. By Lemma 4.2 we can assume that all neighbors of s in G′

have degree 3 in G (i.e., they form singleton critical sets). Let S = {x ∈ V : sx ∈ F}
and let H = G[S]. We call a set ∅ 6= X ⊂ V critical in G′ if d′(X) = 4 and dangerous
if d′(X) ≤ 5 holds. Since G is already 3-edge-connected, every dangerous set X has
d′(s,X) ≤ 2. Note that d′(s, x) ≤ 2 for each x ∈ V and d′(s, x) = 2 holds for at
most one vertex of V . Therefore a vertex x ∈ V with d′(s, x) = 2 exists if and only if
|S| is odd. We also obtain E(H) ⊆ E(G). These facts are used several times in the
following.

Lemma 4.3. The following holds for every x ∈ S.
(1) If dH(x) ≥ 2, then for every nonneighbor u of x in H, the pair sx, su is legal

for splitting.
(2) There is at most one maximal dangerous set containing x and at least one

other neighbor of s. In particular there is at most one nonneighbor y of x in
H for which the pair sx, sy is not legal for splitting.

(3) Either dH(x) = 3, or sx is in at most two pairs sx, su and sx, sv which are
not legal for splitting.

Proof. Suppose that dH(x) ≥ 2 and that X is a dangerous set containing x and
some u ∈ S for which xu 6∈ E(H). Then the set X − x has degree at most 2 in
G, contradicting the fact that G is 3-edge-connected. This proves (1). To prove (2)
suppose that x is contained in two maximal dangerous sets A and B. Then d′(s) ≥ 4
and s has a neighbor in V − (A ∪B). Now it follows from Proposition 2.1 that

d′(A ∩B) = d′(A−B) = 4 and d′(A) = 5.

It is not difficult to check by a parity argument that all of these equalities cannot hold
at the same time. This contradiction verifies (2). Finally, observe that (3) follows
easily from (1) and (2).

Lemma 4.4. If d′(s) = 4 and |E(H)| ≤ 2, then there exists a feasible complete
splitting of s, unless G′ is of type I, II, or III in Figure 4.1.

Proof. d′(s) = 4 implies that |S| = 3 or |S| = 4. If |S| = 3, then every admissible
complete splitting of s will involve adding the edges uv and uw, where S = {u, v, w}
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L L L

Type I Type II Type III

s s s

Fig. 4.1. The exceptional cases when d′(s) = 4 and |S| = 3. For each of the three types, every
nonempty subset of L has degree at least 4.

and u is the vertex with two edges from s. Hence by Theorem 2.2 a feasible complete
splitting exists if and only if dH(u) = 0 and this is easily seen to be the case if and
only if G′ is not of type I, II, or III in Figure 4.1.

Consider the case |S| = 4. By Theorem 2.2, we may assume that |E(H)| ≥ 1.
Suppose first that dH(v) ≤ 1 for each v ∈ H and let uv ∈ E(H). Let w, z be the
remaining vertices in S. It follows from Lemma 4.3 (2) that at least one of the pairs
su, sw and su, sz is legal for splitting and, since the remaining pair of vertices in H
are not adjacent, this leads to a feasible complete splitting of s.

Now assume that H contains the edges uv, uw. Let z be the fourth vertex of S.
It follows from Lemma 4.3 that the pair su, sz is legal for splitting and hence, since v
and w are not adjacent, there is a feasible complete splitting of s.

Lemma 4.5. If d′(s) ≥ 4, then there exists a legal pair unless d′(s) = 4, |S| = 3,
and G′ is of type II in Figure 4.1.

Proof. If d′(s) ≥ 6, then it follows easily from Lemma 4.3 that there exists a legal
pair. Hence we may assume that d′(s) = 4. Suppose first that |S| = 4. It follows
from Lemma 4.3 that if there is no legal pair, then every x ∈ S has degree 3 in H. In
this case dG(S, V − S) = 0 follows, a contradiction.

If |S| = 3, S = {x, y, z}, we first note that if x is the vertex with two edges from
s, then there is no dangerous set containing x and some other neighbor of s. Hence
it follows that if there is no legal splitting involving x, then xy, xz ∈ E(H). In this
case G′ is of type II in Figure 4.1.

Lemma 4.6. If d′(s) = 2, then G′ − s can be made 4-edge-connected preserving
simplicity by adding at most two edges.

Proof. Let D = G′ − s. If the two neighbors u, v of s are not adjacent, then uv
makes D 4-edge-connected; thus we can assume that uv ∈ E(D).

By our assumption either dD(u) = dD(v) = 3 or dD(u) = 4 and dD(v) = 3. The
second case occurs if one of the two s-neighbors in G′, say u, was previously connected
to s by two parallel edges. Since d′(s) = 2, there are precisely two minimal critical sets
in D. One of them contains u, the other contains v. It is easy to see that adding an
arbitrary edge connecting these two minimal critical sets makes D 4-edge-connected.
Let us consider the first case. If D contains a vertex a which is not adjacent to any
of u, v, then by adding the edges ua, av we get a simple and 4-edge-connected graph.
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If no such vertex exists, then |V (D)| = 6 and D − {u, v} = K4 must hold. Now it is
easy to see that adding any pair of edges joining u to a nonneighbor of u and v to
a nonneighbor of v makes D 4-edge-connected. In the second case observe that the
minimal critical set of D containing u has size at least 4 by Lemma 4.1 and hence it
contains a vertex w which is not adjacent to v. Now adding the edge wv makes D
4-edge-connected.

Theorem 4.7 (see [23]). For every 3-edge-connected simple graph G = (V,E)
on at least five vertices the following hold:

(i) OPT 4
S(G) ≤ OPT 4

P (G) + 1.
(ii) If OPT 4

P (G) ≥ 3, then OPT 4
S(G) = OPT 4

P (G) unless G = K3,3.
Proof. Let G′ = (V + s,E ∪ F ) be the graph returned by Phase 2 of Frank’s

algorithm. If we are able to perform a sequence of legal splittings with the effect of
adding a set of edges F ′ to G while preserving simplicity, then it follows from Theorem
2.2 and the fact that at the end of Phase 2 of Frank’s algorithm OPT 4

P (G) = d′(s)/2,
that the following hold:

(4.1) OPT 4
P (G+ F ′) = OPT 4

P (G)− |F ′|,

(4.2) OPT 4
S(G+ F ′) ≥ OPT 4

S(G)− |F ′|.

Hence if we can show thatOPT 4
S(G+F ′) ≤ OPT 4

P (G+F ′)+1 (respectively, OPT 4
S(G+

F ′) = OPT 4
P (G+F ′)), then it will follow that OPT 4

S(G) ≤ OPT 4
P (G)+1 (respectively,

OPT 4
S(G) = OPT 4

P (G)). We will use this observation several times below.
We first prove (i). By Lemma 4.2 we may assume that all minimal critical sets of

G are singletons. By Lemma 4.6 we may also assume d′(s) ≥ 4. Now we use Lemma
4.5 to perform legal splittings until we have d′(s) = 4 in the current G′. If at this
point we have |S| = 3, then by the fact that d′(S, V − S) ≥ 4, |E(H)| ≤ 2 must hold
and by Lemma 4.4, either there exists a feasible complete splitting or G′ is of type I,
II, or III in Figure 4.1. It is not difficult to see that in the latter case, too, we have
OPT 4

S(G′ − s) = OPT 4
P (G′ − s). So from this and the observation above we get that

if |S| = 3 when d′(s) = 4, then OPT 4
S(G) = OPT 4

P (G).
Hence we may assume that |S| = 4, and now it follows from Lemma 4.5 that we

can still find one more legal splitting at this point. Then applying Lemma 4.6 we
obtain that OPT 4

P (G) + 1 edges are sufficient. Thus in all of the cases we get that
OPT 4

S(G) ≤ OPT 4
P (G) + 1. This proves (i).

To prove (ii) suppose that OPT 4
P (G) ≥ 3 and G 6= K3,3 (for which we have

OPT 4
S(K3,3) = OPT 4

P (K3,3) + 1). Note that OPT 4
P (G) ≥ 3 implies |V | ≥ 6. By

Lemma 4.5 we can split off feasible pairs in G′ until d′(s) = 6 holds. At this point we
have OPT 4

P (G′− s) = 3. By our remark at the beginning of the proof, it follows that
it is sufficient to prove that OPT 4

S(G′ − s) = 3 holds for the current G′. We verify
this by showing that OPT 4

P (G) = 3 implies OPT 4
S(G) = 3 for every G 6= K3,3. In

what follows let G′ = (V + s,E ∪ F ) be the graph returned by Phase 2 of Frank’s
algorithm applied to some simple graph G with OPT 4

P (G) = 3. Now d′(s) = 6 and
hence 5 ≤ |S| ≤ 6. By Lemma 4.2 we may assume that all minimal critical sets of G
are singletons. If |V | = 6, the graph G is either the prism (that is, the complement
of a cycle of length six) or a wheel, for which the desired equality trivially holds. In
what follows we assume |V | ≥ 7. Since G is 3-edge-connected and each neighbor of s
has degree 3 in G, it follows that |E(H)| ≤ 7 and, if |S| = 5, then |E(H)| ≤ 5 (there
must be at least four edges from S to V − S in G′).
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Case 1. |S| = 6. We shall argue that we can always find a legal splitting with the
property that after making this splitting at most two edges remain in the new graph
H. By Lemma 4.4 this implies that there exists a feasible complete splitting of s and
hence OPT 4

S(G) = OPT 4
P (G).

If |E(H)| = 7, then H has two vertices u, v of degree 3 and, by Lemma 4.3,
there is a legal splitting for the edge su (respectively, sv) with every edge sw where
w is a nonneighbor of u (respectively, v). Hence we may assume that u and v are
adjacent, because otherwise we can eliminate six edges of H by performing one legal
splitting. Since G is 3-edge-connected, u and v cannot have two common neighbors
x, y in H since then the degree of the set X = {u, v, x, y} would be at most 2 in G.
If u and v have no common neighbors, then it is easy to check that there is a legal
splitting (involving one of the edges su, sv) such that at most two edges remain in H
afterwards, because su (sv) can be split off with the edge from s to each of the two
neighbors of v (u). So we can assume that u and v have precisely one neighbor x in
common. Now it is easy to check, using Lemma 4.3, that we can always find a legal
splitting that eliminates at least five edges from H.

If |E(H)| = 6, then either each of the vertices in H has degree 2 and it follows
from Lemma 4.3 (1) that the desired legal splitting exists, or there is a vertex u of
degree 3 in H. Since G is 3-edge-connected, we cannot have all six edges of H inside
the graph induced by u and its neighbors and hence again, by Lemma 4.3, the desired
legal splitting exists.

If |E(H)| = 5, |E(H)| = 4, or |E(H)| = 3 and H has a vertex of degree at least
2, then it is easy to see that we can find a legal splitting eliminating all but two edges
in H. Finally, if |E(H)| = 3 and each vertex has degree 1 in H, then every legal
splitting has the desired property.

Case 2. |S| = 5. Since d′(s) = 6 it follows that we have two parallel edges
between s and some vertex v ∈ S. Let S = {v, x, y, z, w}. Since we started from a
3-edge-connected graph G, the vertices {x, y, z, w} (all of which, by our assumption,
have degree 3 in G) do not induce a K4. Hence it follows from Lemma 4.3 that there
is a legal splitting which involves two vertices in the set {x, y, z, w}, say z, w. Now
the remaining neighbors of s, {v, x, y} induce a graph with at most two edges, since
G′ is 4-edge-connected and each of the vertices in S has degree 3 in G. Now, by
Lemma 4.4, either there is a feasible complete splitting of s in the current G′, or G′

is of type I, II, or III in Figure 4.1 in which case, as we remarked in the proof of (i),
OPT 4

S(G′ − s) = OPT 4
P (G′ − s). Hence by the remark at the beginning of the proof,

we have shown that OPT 4
S(G) = OPT 4

P (G).

It can be verified—by analyzing the algorithm of [22], say—that any simple graph
G has an optimal simple 3-edge-connected augmentation G′ for which OPT 4

P (G) =
OPT 4

P (G′)+ |E(G′)|−|E(G)|. This and the results of this section show that g(4) = 1.

We conjecture that if the starting graph is already (k − 1)-edge-connected, the
bound 3k4/2 in Theorem 3.3 can be replaced by a linear function of k. Perhaps k or
k + 1 is sufficient.

5. Nonuniform demands. The augmentation problem without the simplicity-
preserving requirement is solvable in polynomial time even if the target connectivity
is not uniform but is given by a symmetric function r : V × V → Z+ on pairs of
vertices of the starting graph G = (V,E) (and the goal is to find a smallest set F of
new edges such that in G′ = (V,E ∪ F ) the local edge-connectivity λ(u, v) is at least
r(u, v) for any pair (u, v) of vertices). This more general version was solved by Frank
[8].
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For every subset ∅ 6= X ⊂ V let us define

R(X) = max{r(u, v) : u ∈ X, v ∈ V −X}.

Let k = max{r(u, v) : (u, v) ∈ V ×V }. (For simplicity, to avoid the so-called marginal
components [8], we assume that r(u, v) ≥ 2 for each pair u, v ∈ V .) By Menger’s
theorem the extended graph (or the augmented graph) satisfies the requirements if
and only if

(5.1) d′(X) ≥ R(X) for every ∅ 6= X ⊂ V.

As in the uniform-demand case, Frank used the same splitting off method in his proof.
In fact, the algorithm he gave is identical to the algorithm of the uniform case except,
that after adding k parallel edges between a new vertex s and each vertex of V , during
the deletion part in Phase 1 we must maintain (5.1) instead of (1.1) and during the
splitting off in Phase 3 the local edge-connectivities must be preserved everywhere
between pairs of vertices in V . (For more details we refer to [8].) The corresponding
Phase 3 can be done by the following result of Mader.

We say that two edges st and su form an admissible pair in H = (V + s,E′) if
after splitting off st and su the local edge-connectivities remain the same between
vertices of V . (Note that splitting off never increases the local edge-connectivity.)

Theorem 5.1 (see [18]). Let H = (V + s,E′) be a connected undirected graph
with d(s) 6= 3 for which there is no cut-edge incident to s. Then there is an admissible
pair st, su of edges.

In this section our goal is to prove the counterparts of Theorems 3.1, 3.3, and
3.4 by showing that in the case of the simplicity-preserving version of the nonuniform
augmentation problem, there exist similar functions f ′(k) and g′(k) such as f(k) and
g(k) in the uniform case and the problem is solvable in polynomial time if k is fixed.

We shall use a similar approach that we used for the uniform case. In fact, the
crucial part of the generalization is to prove that a similar statement (Lemma 5.4
below) corresponding to Theorem 2.2(b) holds in this case, too. This will ensure that
the number of edges which are nonadmissible with respect to some fixed edge st can
be bounded by a function of k. However, to prove this we must modify the concept
of admissibility and also Phase 3 of Frank’s algorithm (in the nonuniform case). The
reason is that although the goal is to satisfy (5.1) only, the solution given by Frank’s
algorithm will guarantee more and it will maintain the local edge-connectivities of the
extended graph constructed in Phase 2. On the other hand, by this extra property of
the solution it is easy to see that certain optimal augmentations cannot be obtained
by Frank’s algorithm. For example, let G be the disjoint union of two stars K1,m and
let r(u, v) = 2 for each pair u, v of vertices. Then the optimal solution produced by
Frank’s algorithm must be a set of m independent edges between the two stars —
although any set of m independent edges on the leaves would be a good augmenting
set provided that there are at least two edges connecting the two stars.

Moreover, in the simplicity-preserving version sometimes the minimum number of
new edges to be added to satisfy the requirements after the first two phases of Frank’s
algorithm — given by the local edge-connectivities in G′ — is more than the optimum
value with respect to the original demands given by the function r. For example, the
first two phases of Frank’s algorithm applied to the graph in Figure 5.1 add the edges
sx, sy, sv, sz. Then although there exists a proper augmenting set of size two (xy and
vz), there is no legal splitting in Phase 3, since λ′(a, b) = 6 must also be maintained.
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Fig. 5.1. r(x, y) = r(v, z) = 6 and r ≡ 2 otherwise.

Therefore if one wants to preserve simplicity as well, it is better to work with the
following less restrictive definition of admissibility in Phase 3.

Let G = (V + s,E′) be a graph for which (5.1) holds, where the function R is
defined by the nonuniform requirements, as before. Then we say that two edges st and
su form an R-admissible pair (or an admissible pair, if R is clear from the context) if
splitting off st and su does not violate (5.1). A set ∅ 6= X ⊂ V is tight if d(X) = R(X)
holds. If d(X) ≤ R(X) + 1, we say that X is dangerous. Let s(X) := d(X)− R(X).
It is easy to see that st, su is an admissible pair if and only if there is no dangerous
set X with t, u ∈ X. Now we briefly list some results we shall use from [7] and [8].

Proposition 5.2 (see [8]). For every pair X,Y ⊆ V at least one of the following
inequalities holds:

(5.2a) R(X) +R(Y ) ≤ R(X ∩ Y ) +R(X ∪ Y ),

(5.2b) R(X) +R(Y ) ≤ R(X − Y ) +R(Y −X).

It is easy to check that the proofs of [7, Claims 4.2, 3.2, 4.3] work the same way
if we use our definition of admissibility. Thus we can obtain three similar statements.
The first one gives that if X is a dangerous set (with respect to some edge st), then
d(s,X) ≤ d(s, V −X). To state the lemma corresponding to [7, Claim 3.2] we need
one more definition. (The third claim we get will be mentioned in the proof below.)
The contraction of a subset X of vertices in a graph G = (V,E) means that we
delete X and replace it by a new vertex vX and then add dG(v,X) new parallel edges
between each v ∈ V −X and vX . The resulting graph is denoted by G/X. After the
contraction of some subset X, we define the new requirement function r′ in G/X as
expected: r′(vX , w) = max{r(x,w) : x ∈ X} and r′(u,w) = r(u,w) for u,w ∈ V −X.
The corresponding function R′ on the subsets of V (G/X) is defined by r′.

Lemma 5.3. Let T be a tight set. A pair st, su of edges is R-admissible in G if
the corresponding pair of edges is R′-admissible in G/T .

Now we are ready to prove the lemma we need.
Lemma 5.4. Suppose that G = (V + s,E′) is 2-edge-connected. Then for every

edge st the number of edges su for which the pair st, su is nonadmissible is at most
2k2 − 2k.
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Proof. Let S denote the set of neighbors of s and let W ⊂ S denote those
neighbors u for which st and su form a nonadmissible pair. By one of our previous
remarks this means that there exists a family F of dangerous sets, each containing t,
which covers every vertex of W . Let us fix such a family for which |F| is minimal and
subject to this

∑
X∈F |X| is maximal. We shall prove that |F| ≤ 2k− 2 holds. (Note

that by [7, Claim 4.3], two dangerous sets cannot cover the whole S.)
First we claim that every dangerous set induces a connected subgraph. To see

this, assume that X is dangerous and has two components X1 and X2 such that,
without loss of generality, R(X) is attained on a pair u ∈ X1, v ∈ V − X. Then
R(X) ≤ R(X1) ≤ d(X1) = d(X) − d(X2) ≤ d(X) − 2 ≤ R(X) − 1, since d(X2) ≥ 2
by 2-edge-connectivity, a contradiction.

Let us consider a tight set M1 and a dangerous set M2, both containing t. For
these two sets (5.2b) cannot hold since otherwise by Proposition 2.1 we have

0 + 1 ≥ s(M1) + s(M2) ≥ s(M1 −M2) + s(M2 −M1)

+ 2d(M1 ∩M2, (V + s)− (M1 ∪M2)) ≥ 0 + 0 + 2,

a contradiction. (We used that d(M1∩M2, (V + s)− (M1∪M2)) ≥ 1 by the existence
of the edge st.) Thus (5.2a) must hold by Proposition 5.2, which implies that s(M1 ∩
M2)+s(M1∪M2) ≤ s(M2). From this it follows that if M2 is also tight, then M1∩M2

and M1 ∪M2 are both tight (as we remarked, M1 ∪M2 6= V ). Another consequence
is that if M2 ∈ F , then M1 ⊆M2 must hold, otherwise 2 ≤ s(M1 ∪M2) ≤ s(M2) ≤ 1
would follow by the choice of F . These observations imply that if there exists a tight
set which contains t, then there exists a unique maximal tight set M containing t.
Moreover, if such a tight set M exists, then M is a subset of every member of F and
d(s,M) ≤ d(M) = R(M) ≤ k holds.

By Lemma 5.3 the contraction of a tight set does not decrease the number of
edges which are nonadmissible with respect to st. Thus in the rest of the proof we
shall assume that every tight set is a singleton.

We say that a pair X,Y of members of F is an a-pair if (5.2a) holds for X and
Y . Otherwise the pair is a b-pair. If X,Y ∈ F is an a-pair, we get

1 + 1 ≥ s(X) + s(Y ) ≥ s(X ∩ Y ) + s(X ∪ Y ) ≥ 0 + 2,

since s(X ∪Y ) ≥ 2 by the choice of F . This shows that their intersection X ∩Y must
be tight. Therefore X ∩ Y = M = {t} holds for each a-pair X,Y .

Suppose now that X,Y is a b-pair and Y,Z is an a-pair. We claim that then X,Z
must be a b-pair. To see this, suppose X,Z is an a-pair. Then Z−M is disjoint from
(X ∪ Y )−M . Furthermore, there is precisely one edge — the edge st — from X ∩ Y
to (V + s)− (X ∪ Y ) by the inequality

1 + 1 ≥ s(X) + s(Y ) ≥ s(X − Y ) + s(Y −X) + 2d(X ∩ Y, (V + s)− (X ∪ Y )).

From this it follows that there is no edge between M and Z −M ; hence Z is not
connected, contradicting the fact that every dangerous set induces a connected graph.

Hence F can be partitioned into subfamilies F1, ...,Fr such that X,Y is a b-
pair if and only if X and Y are in different subfamilies. Suppose that one of these
subfamilies Fi has size at least k. Since each member in this subfamily is connected
and (X−M)∩(Y −M) = ∅ for different members X,Y ∈ Fi, M has at least k different
neighbors in V . Since M is connected to s as well, k ≥ R(M) = d(M) ≥ k+1 follows,
a contradiction. Thus each subfamily in the partition has size at most k − 1. This
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implies that if |F| ≥ 2k − 1, then there are three sets X,Y, Z ∈ F such that they are
pairwise b-pairs. Since for a b-pair X,Y the sets X − Y and Y −X are both tight,
and hence singletons, the minimality of F implies that there exists a set N such that
X ∩ Y = Y ∩ Z = X ∩ Z = N holds. Using (5.2b), this gives that the only edge that
leaves N in G is st, a contradiction.

Hence we obtain |F| ≤ 2k−2. Let α := d(s, t) ≤ k. Now for the number β of edges
which are nonadmissible with respect to st we obtain β ≤ (2k−2)(k+1−α)+α−1 ≤
2k2 − (2k − 3)α− 3 ≤ 2k2 − 2k, as required.

From Lemma 5.4, following the proof ideas of Theorems 3.1, 3.3, and 3.4 one can
obtain the corresponding results for the nonuniform version, that is, the existence of
the polynomials f ′, g′ below. The details, which are similar, are omitted, but some
remarks must be added. First of all, we modify Frank’s nonuniform algorithm in such
a way that (except the last part, where only a small number of edges are present) in
Phase 3 we split off edges which form admissible pairs in the sense we defined. This
is necessary, since otherwise Lemma 5.4 is not valid (see the example of two stars at
the beginning of this section). Efficient splitting off algorithms preserving local edge-
connectivities are in [8], [12]. They can be modified to work with our admissibility
conditions. Furthermore, the points where we need more involved arguments are the
extension of Proposition 3.5 and the existence of simple graphs with maximum degree
k = max{r(u, v) : u, v ∈ V } satisfying the nonuniform demands. (In the latter case
a result from [10] can be referred to.) Also note that our assumption r ≥ 2 implies
that the 2-edge-connectivity condition in Lemma 5.4 is fulfilled.

Theorem 5.5. Let G′ = (V + s,E ∪F ) be a graph at the end of the second phase
of Frank’s (nonuniform) algorithm such that

(5.3) d′(s) ≥ f ′(k).

Then there exists a feasible complete splitting from s, where feasibility is meant with
respect to (5.1).

Theorem 5.6. If OPT kP (G) ≥ f ′(k)/2, then OPT kS (G) = OPT kP (G) holds.
Theorem 5.7. OPT kS (G) ≤ OPT kP (G) + g′(k) for any G and nonuniform de-

mands r(u, v), where k = max{r(u, v) : u, v ∈ V }.
So far we have no proof for a counterpart of Theorem 3.6. This would improve

the efficiency of the algorithm such as Theorem 3.6 did in the uniform case.

6. Remarks. In this last section some remarks are made related to possible
extensions of the simplicity-preserving edge-connectivity augmentation problem.

The “subset-problem,” where the goal is to find a simplicity-preserving augmen-
tation which makes a subset X ⊂ V k-edge-connected, was mentioned as the next
open problem to be studied (at least for k = 3) in [23]. Observe that this is a special
case of the nonuniform demand version. (On the other hand, the subset-problem can
be solved by just slightly modifying our proofs of the uniform case as well.)

For the directed version of our problem a similar function f(k), such as in Theorem
3.1, does not exist. We have found a family Gki of digraphs for every k ≥ 1 with
i ≤ OPT kP (Gki ) < OPT kS (Gki ), i = 1, 2, ....

Although the weighted version of the edge-connectivity augmentation problem is
NP-hard, the special case where the weight function is induced by weights given on the
vertices (and the weight of a new edge is the sum of the weights of its end-vertices) is
polynomially solvable [8]. Our arguments do not apply for arbitrary weight functions
of this type in the simplicity-preserving augmentation problem. The reason is the
small modification we made in Phase 2 of the algorithm. For example, consider a star
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K1,m, where m is odd, k = 2, and the weights on the vertices are uniformly 2, except
the center v of the star, whose weight is 1.

Some of the above results are valid in the more general case where the starting
graph G is not simple, but the augmenting set F must not contain parallel edges and
edges which are parallel to edges of G. These details are omitted.

Finally we remark that the complexity of the version where the augmenting set
F must not contain parallel edges, but a new edge may be parallel to an edge of the
starting graph, is still open.
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Abstract. A projection is a subset of {0, 1}n given by equations of the form xi = xj , xi = x̄j ,
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1. Introduction. In this paper, we study monochromatic projections in 2-color-
ings of an n-dimensional Boolean cube. We also consider the related density question:
what is the density required to guarantee the existence of a d-dimensional projection?
A projection is a subset of {0, 1}n given by equations of the form xi = xj , xi = x̄j ,
xi = 0, and xi = 1, where for 1 ≤ i ≤ n, xi are the Boolean variables and x̄i are their
complements. Thus, a projection is an affine subspace of the n-dimensional GF (2)
space {0, 1}n. The dimension of a projection is its dimension as an affine subspace.
A projection P is monochromatic under a Boolean function f if P ⊆ f−1(1) or P ⊆
f−1(0). Projections are closely related to Boolean algebras, whose Ramsey-theoretic
properties have been studied extensively [4]. Boolean algebras are projections where
equations of the form xi = x̄j are not allowed, so the sets are always oriented in
a canonical direction. Gunderson, Rödl, and Sidorenko [3] recently obtained almost
matching bounds on the density required for the existence of a d-dimensional Boolean
algebra. They also obtained almost tight bounds for the dimension of the largest
monochromatic Boolean algebras under colorings of the Boolean cube.

In addition to being natural generalizations of Boolean algebras, projections are
relevant to the study of circuit complexity of Boolean functions. For example, it is
shown in [5] that if the set of satisfying solutions of a 2-CNF (conjunctive normal
form with two literals per clause) is large, then it must contain a large dimensional
projection. The existence of such nice subsets gives one a handle to construct hard
functions for a given class of Boolean circuits. In particular, Boolean functions which
do not have large dimensional monochromatic projections require large size depth-3
unbounded fan-in Boolean circuits with bottom fan-in 2. An interesting open question
is whether Boolean functions computable by linear size circuits have ω(n3/4 log n)-
dimensional monochromatic projections. A positive answer to this question implies
that certain explicitly defined Boolean functions in NC (the class of Boolean functions
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computable by logspace uniform circuits of polylogarithmic depth and polynomial
size) require nonlinear circuit size [5]. Proving lower bounds on the circuit size of
interesting explicit Boolean functions is a fundamental challenge in complexity theory.

In this paper, we obtain density results for projections using techniques similar to
those employed in [3]. We show that the existence of projections requires much lower
density than in the case of Boolean algebras. We also obtain bounds on the dimension
of the largest monochromatic projections in arbitrary Boolean functions. In addition,
we consider the question of constructing Boolean functions which do not have large
monochromatic projections. Although we do not have any explicit constructions, we
show that there are functions much simpler than arbitrary Boolean functions which
have this property. More precisely, we show that there exist degree-q GF(2) poly-
nomials representing Boolean functions which have only O(q(n log n)1/q)-dimensional
monochromatic projections. It follows that there are Boolean functions represented
by logarithmic degree polynomials which are nearly extremal with respect to the size
of monochromatic projections. Pudlák, Rödl, and Savichý [6] and Razborov [7] ob-
tained similar “low complexity” probabilistic constructions for combinatorial objects.
We also show that the bounds obtained by the probabilistic technique are almost tight:
given a degree-q GF(2) polynomial, we show how to construct a Ω(qn1/q)-dimensional
monochromatic projection.

We first introduce some definitions and state our results precisely. The following
sections present the proofs of our results.

1.1. Definitions. Let [n] = {1, 2, . . . , n}. Let Bn = {0, 1}n denote the n-
dimensional Boolean cube. We will also regard Bn as an n-dimensional GF (2) vector
space. A projection P ⊆ Bn is the set of all (x1, x2, . . . , xn) ∈ Bn satisfying a system
of equations of the form xi = xj , xi = x̄j , xi = 0, and xi = 1. xi are Boolean vari-
ables and x̄i is the complement of xi. The dimension of a projection is its dimension
as an affine subspace. It is convenient to think of a d-dimensional projection as a
partition {A0, B0, A1, B1, . . . , Ad, Bd} of {1, 2, . . . , n} with A0, B0, B1, . . . , Bd possi-
bly empty. A0 and B0 are the sets of variables which are set to 0 and 1, respectively.
For 1 ≤ i ≤ d, Ai is nonempty and all its variables are equal to each other. Fur-
thermore, the variables in Bi are equal to each other and equal to the complement
of the variables in Ai. We obtain a set of free variables of a projection by selecting a
representative from each class Ai for 1 ≤ i ≤ d.

We also need some notation to deal with hypergraphs. A d-uniform hypergraph
is a pair G = (V,E) with vertex set V and hyperedge set E ⊆ (

V
d

)
, where

(
V
d

)
is the set of all d-subsets of V . A d-partite d-uniform hypergraph is a d + 1-tuple
G = (X1, X2, . . . , Xd, E), where Xi are pairwise disjoint sets and (∪di=1Xi, E) is a
d-uniform hypergraph whose edges have exactly one point from each Xi. The sets Xi

are called partite sets. The complete d-partite d-uniform hypergraph with two vertices
in each partite set and having 2d edges is denoted by K(d)(2, 2, . . . , 2). Let ex(n,H)
be the maximum number of d-hyperedges in a hypergraph on n vertices which does
not contain a copy of H.

1.2. Statement of the results. Let ρ(n, d) denote the maximum density of a
subset A ⊆ Bn which does not contain a d-dimensional projection. Our first result
gives upper and lower bounds on ρ(n, d).

Theorem 1.

2−
n log(2d+2)

2d
−2 ≤ ρ(n, d) ≤ 2

− n

d(2d−1)
+1
.
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Let f be a Boolean function with the domain {0, 1}n. Let τ(f) be the dimension
of the largest monochromatic projection of f . Let dn = minf τ(f).

Theorem 2.

log n− log log n+ o(1) ≤ dn ≤ log n+ log log logn+ o(1).

Compared to the more restricted class of Boolean algebras, the dimension of
the largest projection which exists in an arbitrary subset of Bn is much larger. Let
ρBA(n, d) and dBAn be the analogues of ρ(n, d) and dn defined for Boolean algebras
rather than projections. The corresponding results for these quantities from [3] are

c1(d)n
− d

2d+1−2
(1−o(1)) ≤ ρBA(n, d) ≤ c2(d)n−

1

2d

and

log log n− (1 + o(1)) log log logn ≤ dBAn ≤ log log n+ log log logn.

We next consider the problem of constructing objects that match the bounds
established earlier. We show that the set of codewords of a “good” code (that is, a
code with constant rate and linear distance) can only contain bounded dimensional
projections. However, our technique involving codes does not help us in constructing
sets of size c2n whose largest projection has dimension O(log n). Furthermore, it is not
clear how to use codes to construct Boolean functions with no large monochromatic
projections, since the set of noncodewords may contain large projections.

Although we could not construct such Boolean functions, our next result shows
that simple functions exist which do not contain monochromatic projections of di-
mension larger than logn + log log logn. We use low-degree GF(2) polynomials to
represent Boolean functions. Using a probabilistic argument, we obtain the following.

Corollary 1. There are degree q GF(2) polynomials whose largest monochro-
matic projection has dimension O(q(n log n)1/q).

At the extreme end, we have the following.
Corollary 2. There exists a GF(2) polynomial of degree dlog n+ log log logn+

o(1)e which has no monochromatic projections of dimension greater than dlog n +
log log logn+ o(1)e.

We also prove that this bound is almost tight.
Corollary 3. Every degree q GF(2) polynomial contains a monochromatic pro-

jection of dimension Ω(qn1/q).
Open problems.
1. Construct a Boolean function with the largest monochromatic projection of

dimension O(log n).
2. Construct degree q GF(2) polynomials with the largest monochromatic pro-

jection of dimension O(q(n log n)1/q).

2. Dimension of projections in arbitrary Boolean functions. We adopt
the techniques of Erdős [2] and Gunderson, Rödl, and Sidorenko [3] to obtain upper
and lower bounds on the density required to guarantee the existence of a d-dimensional
projection.

Lemma 2.1. For r-uniform, r-partite hypergraphs with n/r nodes in each part,

ex(n,K(r)(2, . . . , 2)) ≤ 2(n/r)r−
1

2r−1

when n ≥ 16r.
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Proof. Let G = (X1, X2, . . . , Xr, E). The proof is by induction on r.
If r = 2, the lemma says that every (n2 ,

n
2 )-node bipartite graph (X1, X2, E) with

|E| ≥ 2(n2 )
3
2 has a 4-cycle. The number of pairs of nodes (counted with repetition) in

X2 with a common neighbor in X1 is m =
∑
v∈X1

(
deg(v)

2

)
. If this is larger than

(
n/2
2

)
,

the number of distinct pairs of nodes in X2, then some pair is counted twice, and a 4-

cycle exists. m is minimized when every node in X1 has average degree |E|
(n/2) > 2

√
n
2 .

In this case, m = n
2

(2√n/2
2

)
>
(
n/2
2

)
for n ≥ 0.

If r > 2, by hypothesis |E| ≥ 2(nr )r−
1

2r−1 . We first find two nodes a1, a2 ∈ Xr

for which there are many pairs of hyperedges (y1, . . . , yr−1, a1) and (y1, . . . , yr−1, a2).
We then select those two nodes for part r of the r-partite graph K(d)(2, 2, . . . , 2), and
use induction to select the remaining parts. To show that such a pair of nodes exist,
we use the following lemma.

Lemma 2.2 (Erdős). Let S be a set of N elements, y1, . . . , yN , and let Ai, 1 ≤
i ≤ k, be subsets of S. Let w be such that

∑
i |Ai| ≥ kN

w . If k ≥ 2l2wl, then there

exist Ai1 , . . . , Ail such that | ∩j Aij | ≥ N
2wl

.
Now, apply the lemma with S as the set of all (r−1)-tuples from X1×· · ·×Xr−1

and Ai as the set of all such tuples which, when extended by the ith element of Xr,

belong to E. Then N = (nr )r−1, k = n/r, w = 1
2 (nr )

1

2r−1 , and l = 2. Since n ≥ 16r,
the condition on k in the lemma is satisfied. There exist a1, a2 which have

N

2w2
≥ (nr )r−1

2( 1
2 (nr )

1

2r−1 )2
≥ 2

(n
r

)(r−1)− 1

2r−2

(r − 1)-tuples in common. By induction, there exists a K(r−1)(2, . . . , 2) among these
(r− 1)-tuples. This can then be extended to a K(r)(2, . . . , 2) by extending each such
(r − 1)-tuple (y1, . . . , yr−1) to (y1, . . . , yr−1, a1) and (y1, . . . , yr−1, a2).

We now apply the lemma to obtain an upper bound on ρ(n, d), the density re-
quired to guarantee the existence of a d-dimensional projection.

Lemma 2.3. For n ≥ 4,

ρ(n, d) ≤ 2
− n

d(2d−1)
+1
.

Proof. We only consider the case where d ≤ log n since, otherwise, the theorem
is vacuously true.

Given a set A with |A| ≥ 2
n(1− 1

d(2d−1)
)+1

, one can obtain a d-dimensional projec-
tion as follows.

Partition [n] into d classes, Xi, such that the largest class size is dn/de and the
smallest class size is bn/dc. Consider the following d-uniform, d-partite hypergraph
H. The ith part Hi will have 2|Xi| vertices, indexed by {0, 1}|Xi|. For each point
a ∈ A, include the hyperedge (a|X1 , . . . , a|Xd) obtained by restricting a to the set of
coordinates which appear in Xi.

Since this mapping between points and hyperedges is bijective, H has 2
n(1− 1

d(2d−1)
)+1

hyperedges, and by the construction, H is d-uniform, d-partite with d2n/d vertices.
By the preceding lemma, and by the hypothesis n ≥ 4, it follows that H must contain
a K(d)(2, 2, . . . , 2), which we denote by G = (Y1, Y2, . . . , Yd, E

′).
Given any two points of {0, 1}m for m ≥ 1, we can obtain a one-dimensional

projection by the following: for each coordinate, if both points have the same value
in that coordinate, set the corresponding variable to that constant value. Since the
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points are distinct, there is at least one coordinate which is 0 on one point and 1 on
the other. Fix one such coordinate and a variable to denote the value in that position.
All variables that were not set to constants are equated to this variable or its negation
so that the collection of equations determines precisely the two points.

It is now clear that the Cartesian product Y1 × Y2 × · · · × Yd is a d-dimensional
projection.

Lemma 2.4.

ρ(n, d) ≥ 2−
n log(2d+2)

2d
−2

for all sufficiently large n.

Proof. Define ε = 2−
n log(2d+2)

2d
−2. Consider the random set A obtained by selecting

each element of {0, 1}n independently with probability δ = 2ε.
The probability that this set is smaller than ε2n is at most (using the Chernoff

bound [1]) e−
ε
4 2n .

Also, for any fixed d-dimensional projection P , the probability that P is contained

in A is δ2d . The number of such projections is at most (2d+2)n. Thus, the probability
that such a randomly generated A has sufficiently large size and does not contain any
d-dimensional projection is at least

1− (2ε)2d(2d+ 2)n − e− ε4 2n .

For sufficiently large n, this probability is greater than zero, and thus there exists

such a set A with |A| ≥ 2−
n log(2d+2)

2d
−22n which contains no d-dimensional projec-

tions.
The bounds from the lemmas are summarized in the following theorem.
Theorem 3.

2−
n log(2d+2)

2d
−2 ≤ ρ(n, d) ≤ 2

− n

d(2d−1)
+1
.

Corollary 4. Let dn be the largest value such that every A with |A| ≥ 2n−1

contains a projection of dimension dn.

log n− log log n+ o(1) ≤ dn ≤ log n+ log log logn+ o(1)

for all sufficiently large n.
For Boolean functions f , we state the following corollary.
Corollary 5. If f is a Boolean function on n variables, then f has a monochro-

matic projection of dimension at least log n− log log n+ o(1).
Using a probabilistic argument very similar to the one used in Lemma 2.4, we

obtain the following.
Corollary 6. There are Boolean functions whose largest monochromatic pro-

jection has size at most log n+ log log logn+ o(1) for all sufficiently large n.

3. Explicit constructions. Although we showed that high density sets with no
large projections exist, the question of constructing such sets remains open. In this
section, we give some constructions of sets which contain no large projections. We
first show that the set of codewords of a good code has the property that it contains
no projections of greater than constant dimension. However, these sets have very
low density, and it is not clear how to extend this technique to construct sets with
high density but no large projections. Instead, we show that a randomly chosen low
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degree GF(2) polynomial is not constant on any large dimensional projection, with
high probability. While this does not give an explicit construction of a set with the
desired properties, it does show that there exist easily computed sets which have no
large projections.

3.1. Explicit constructions using codes. We start with a simple observation:
if a set A contains a d-dimensional projection, then the set A has two points at a
Hamming distance of at most n/d: if P is a d-dimensional projection, then it must
contain a part with at most n/d variables, and by fixing all the variables outside the
part consistent with the projection, we get two points which are at a distance of at
most n/d. If A is a set of codewords for a code with rate r and distance δ, then A has
size 2rn and cannot contain a projection of dimension larger than n/δ. We can use
constructions of linear codes to come up with “dense” sets with no large projections
[8]. For example, for 0 < r < 1, Justesen codes can be constructed with rate r and
minimum distance at least crn for some constant cr for infinitely many n. Such codes
can only include projections of bounded dimension.

For sets with constant density, it is easy to see that they can have at most constant
minimum distance. Thus, this technique does not allow us to construct sets of size
c2n which is guaranteed not to have projections of size o(n).

3.2. Projections in functions defined by low degree GF(2) polynomials.
The results of the previous section leave open the question of constructing sets of size
c2n with no large projections. Moreover, it is not clear how to apply the ideas in
the previous section to construct Boolean functions with no large monochromatic
projections. In particular, it is an interesting open question to construct Boolean
functions whose largest monochromatic projection has dimension O(log n). Although
we fall short of answering this question, we show that there are simple objects which
define Boolean functions without large monochromatic projections. In particular, we
consider Boolean functions defined by GF(2) polynomials and estimate the dimension
of the largest monochromatic projection as a function of degree of the polynomial.
Let δ(d) denote the largest degree such that all polynomials of smaller degree have a
monochromatic d-dimensional projection. We provide almost tight upper and lower
bounds on δ(d). From these bounds, it follows that there are dlog n + log log logn +
o(1)e-degree GF(2) polynomials such that the corresponding Boolean functions have
no monochromatic projections of dimension larger than logn+ log log logn.

Let f(x1, . . . , xn) be a GF(2) polynomial of degree q. Let P be projection of
dimension d, and let {y1, . . . , yd} be a set of representative free variables for P . To
restrict a polynomial to a projection, replace each variable by the corresponding rep-
resentative free variable or its negation, as appropriate. It is clear that the polynomial
f , when restricted to the projection P , is a polynomial in {yi} of degree at most q.
The following lemma shows that there exist low-degree polynomials which do not have
large monochromatic projections. A special case of this lemma appears in [5].

Lemma 3.1. For d ≥ dlog n+ log log logn+ o(1)e and all sufficiently large n,

δ(d) ≥ Q1(d),

where Q1(d) is the least integer such that
∑Q1(d)
i=0

(
d
i

)
> n log(2d+ 2) + 1.

Proof. Let q = Q1(d). Also, fix a projection P of dimension d. Let V1 =
{x1, . . . , xd} be a set of representative free variables for P , and let V2 be the set of all
other variables.

Consider the following method of generating random elements from the space
of GF(2) polynomials in the variables V1 of degree at most q: select a polynomial
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uniformly at random from the space of all GF(2) polynomials in variables V1 ∪ V2

of degree at most q, then restrict it to the projection P . The polynomials over the
variables V1 correspond to the cosets of the additive group of polynomials which are
zero when restricted to P . Therefore, it is easy to see that this distribution is uniform
in the space of polynomials in variables V1 of degree at most q. Hence, the probability
that a randomly chosen polynomial is constant when restricted to the projection P is

at most 21−
∑q
i=0

(
d
i

)
.

Since there are at most (2d+ 2)n projections of dimension d, the probability that
a randomly chosen GF(2) polynomial of degree at most q has any monochromatic
projection of dimension d is at most

(2d+ 2)n21−
∑q

i=0
(di).

Given the definition of q, it follows that this probability is less than 1. Thus,
there exists a polynomial of degree at most q which has no monochromatic projection
of dimension d.

Corollary 7. There exists a degree q GF(2) polynomial whose largest monochro-
matic projection has dimension O(q(n log n)1/q).

At the extreme end, we have the following.
Corollary 8. There exists a GF(2) polynomial of degree dlog n+ log log logn+

o(1)e which has no monochromatic projection of dimension greater than dlog n +
log log logn+ o(1)e.

As far as dense sets with no large projections are concerned, we obtain the fol-
lowing corollary.

Corollary 9. There exists a set of size 2n−1 defined by a degree d GF(2) polyno-
mial which does not contain projections of dimension greater than O(q(n log n)1/q).

We now show how to construct a monochromatic projection given an arbitrary
low-degree polynomial.

Theorem 4.

δ(d) ≤ Q2(d),

where Q2(d) is the greatest integer such that

2d+ 2 +Q2(d)

Q2(d)−1∑
j=1

(
2d+ 3

j

)
≤ n.

Proof. Define xI =
∏
x∈I xi.

Let f(x1, . . . , xn) =
∑
I⊂[n] aIx

I be an arbitrary polynomial of degree at most

q = Q2(d) which is not identically 1. We will construct a d-dimensional projection
which is a subset of {(x1, . . . , xn)|f(x1, . . . , xn) = 0}.

The projection will be constructed in several phases. Initially, all variables V0 =
{x1, . . . , xn} are available and we have a projection P0 where all variables are free. Let
R0 = ∅. During phase i, a nonempty set Ai ⊆ Vi−1 of available variables are equated
among themselves to obtain a new projection Pi from Pi−1, and those variables become
unavailable, that is, Vi = Vi−1 − Ai. Then a representative free variable is selected
from Ai and added to Ri−1 to obtain Ri. At the end of each phase, we maintain the
invariant that f(x1, . . . , xn), when restricted to Pi, does not contain any monomials
of degree 2 or more which involve only the variables from Ri.
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We now select a nonempty set of available variables while maintaining the invari-
ant. Assume we are at the beginning of phase i+ 1. By the induction hypothesis, the
polynomial f restricted to Pi does not contain any monomials of degree 2 or higher
involving only the variables in Ri. Let xri be the representative variable for Ai, and
define

fi =
∑
I⊆Ri

xI
∑

J⊆Vi,|I∪J|≤q
aI∪JxJ .

fi is f restricted to Pi. We now select a nonempty subset of variables Ai+1 ⊆ Vi in
the following way.

Let I ⊆ Ri be such that 1 ≤ |I| ≤ q − 1 and

gI =
∑

J⊆Vi,1≤|J|≤q−|I|
aI∪JxJ .

gI is a polynomial in the variables Vi and it is the coefficient of the term xI in fi
except for the constant term. If |I| ≥ 2, the constant coefficient of the term xI in fi
is 0 by the induction hypothesis. If |I| = 1, then we will be dealing with a linear term
which is not considered in the invariant. Note that if x is the characteristic vector of
a set of variables to be chosen for Ai+1 with representative variable xri+1 , then gI(x)
is the coefficient of the term xIxri+1 when f is restricted to the projection Pi+1. Since
gI has no constant term, it evaluates to 0 when all the variables in Vi are set to 0.
Now define

g = 1 +
∏

I⊆Ri,1≤|I|≤q−1

(1 + gI).

g is 0 exactly when all gI are 0. The degree of g is at most q
∑q−1
j=1

(
i
j

)
and it is not

identically equal to 1 since an assignment of 0’s to the variables in Vi makes g = 0.
If x is any nonzero solution of the equation g = 0, let Ai+1 be the set of all variables
in Vi which are set to 1 in x. Let Pi+1 be the projection obtained from equating
the variables in Ai+1. Also, update Ri to get Ri+1 by adding a representative free
variable for the class Ai+1. By the definition of g, f when restricted to Pi+1 does not
contain any monomials of degree 2 or more involving only the variables in Ri+1.

We now show that there is at least one nonzero solution to g = 0 with a “small”
number of ones in the solution, thus ensuring that we can choose a small but nonempty
set of variables to form the new part Ai+1. To show this, we use the following fact.

Fact 1. Any GF(2) polynomial T (x1, . . . , xm) in m variables of degree at most
k < m which is not identically 1 must have a nonzero solution with at most k + 1
ones.

Proof. Find a maximal degree monomial M of T and select a variable which does
not appear in M . Set this variable to 1 and set all other variables that do not appear
in M to 0. After this assignment, T still contains the monomial M and thus is not
identically 1. Hence, it has a solution containing at most k ones. Altogether, we have
a nonzero solution with at most k + 1 ones.

Returning to the proof of the theorem, in step i, the degree of g is at most
q
∑q−1
j=1

(
i
j

)
and so by Fact 1, there exists a solution with at most 1 + q

∑q−1
j=1

(
i
j

)
ones.

We continue this process, selecting Ai at each step, until there are no longer enough
variables remaining. Let Pt be the final projection we obtain in this process. At
this point, we make three modifications to Pt to obtain the desired projection. First,



632 RAMAMOHAN PATURI AND FRANCIS ZANE

all remaining available variables are set to 0. This ensures that f restricted to the
projection has degree at most 1. Second, if f restricted to the projection has a nonzero
constant term, set one of the free variables to 1. Finally, pair up all remaining free
variables, and equate the variables of each pair (if the number of free variables is odd,
set one free variable to 0) to get the final projection P . At this point, the polynomial
f restricted to the projection P is identically 0. Moreover, P has at least (t − 2)/2
free variables. We have

2d+2∑
i=1

1 + q

q−1∑
j=1

(
i

j

) = 2d+ 2 + q

q−1∑
j=1

2d+2∑
i=1

(
i

j

)
= 2d+ 2 + q

q−1∑
j=1

(
2d+ 3

j

)
≤ n

by the choice of q, thus guaranteeing t ≥ (2d + 2). Therefore, P has at least d free
variables, completing the proof of the theorem.

Corollary 10. Every degree q GF(2) polynomial contains a monochromatic
projection of dimension Ω(qn1/q).
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Abstract. Suppose G = (V,E) is a simple graph and k is a fixed positive integer. A ver-
tex z k-neighborhood-covers an edge (x, y) if d(z, x) ≤ k and d(z, y) ≤ k. A k-neighborhood-
covering set is a set C of vertices such that every edge in E is k-neighborhood-covered by some
vertex in C. A k-neighborhood-independent set is a set of edges in which no two distinct edges
can be k-neighborhood-covered by the same vertex in V . In this paper we first prove that the k-
neighborhood-covering and the k-neighborhood-independence problems are NP-complete for chordal
graphs. We then present a linear-time algorithm for finding a minimum k-neighborhood-covering set
and a maximum k-neighborhood-independent set for a strongly chordal graph provided that a strong
elimination ordering is given in advance.
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1. Introduction. Domination is a natural model for location problems in op-
erations research. This paper studies a variant of the domination problem we call
k-neighborhood-covering. All graphs in this paper are simple, i.e., finite, undirected,
loopless, and without multiple edges. In a graph G = (V,E), the length of a path is
the number of edges in the path. The distance d(x, y) from vertex x to vertex y is the
minimum length of a path from x to y; d(x, y) = ∞ if there is no path from x to y.
A vertex x k-dominates another vertex y if d(x, y) ≤ k. A vertex z k-neighborhood-
covers an edge (x, y) if d(z, x) ≤ k and d(z, y) ≤ k, or, equivalently, z k-dominates
both x and y. A vertex set C ⊆ V is a k-neighborhood-covering set if every edge
in E is k-neighborhood-covered by some vertex in C. The k-neighborhood-covering
number ρN (G, k) of G is the minimum cardinality of a k-neighborhood-covering set.
An edge set I ⊆ E is a k-neighborhood-independent set if no two distinct edges in I are
k-neighborhood-covered by the same vertex in V . The k-neighborhood-independence
number αN (G, k) of G is the maximum cardinality of a k-neighborhood-independent
set.

For any graph G and any positive integer k, αN (G, k) and ρN (G, k) are related
by the following obvious max-min inequality:

αN (G, k) ≤ ρN (G, k).

For k = 1, Lehel and Tuza [11] proved that the above inequality is in fact an equality
for odd-sun-free chordal graphsG and presented a linear-time algorithm for computing
αN (G, 1) = ρN (G, 1) for interval graphs. Wu [17] presented anO(|V |3)-time algorithm
for determining ρN (G, 1) = αN (G, 1) for a strongly chordal graph G. Chang, Farber,
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and Tuza [6] presented linear-time algorithms for computing αN (G, 1) = ρN (G, 1)
for a strongly chordal graph G provided that a strong elimination order is known in
advance. The purpose of this paper is to study αN (G, k) and ρN (G, k) for chordal
graphs.

A graph is chordal (or triangulated) if every cycle of length greater than three has
a chord, which is an edge joining two noncontiguous vertices in the cycle. In a graph
G = (V,E), the neighborhood N(v) of a vertex v is the set of all vertices adjacent to
v and the closed neighborhood N [v] = N(v) ∪ {v}. A vertex v is simplicial if N [v] is
a clique. It is well known that a graph G = (V,E) is chordal if and only if it has a
perfect elimination order, i.e., an ordering [v1, v2, . . . , vn] of V such that each vi is a
simplicial vertex of the subgraph Gi induced by {vi, vi+1, . . . , vn} (see [8]).

An s-sun (or incomplete trampoline of order s) is a chordal graph having 2s
vertices a1, a2, . . . , as, b1, b2, . . . , bs such that (a1, a2, . . . , as, a1) is a cycle and each
bi has exactly two neighbors ai and ai+1, where an+1 = a1. A graph is sun-free (resp.,
odd-sun-free) if it contains no s-sun as a subgraph for all s ≥ 3 (resp., for all odd
s ≥ 3) (see [4, 5]). Sun-free chordal graphs are called strongly chordal graphs in [7].
A vertex is simple if the set {N [u]: u ∈ N [v]} can be linearly ordered by inclusion.
Farber [7] proved that a graph G = (V,E) is strongly chordal if and only if it has
a simple elimination order, i.e., an ordering [v1, v2, . . . , vn] of V such that each vi
is a simple vertex of Gi. A strong elimination order is a simple elimination order
such that NGi [vj ] ⊆ NGi [vk] whenever i ≤ j ≤ k and vj , vk ∈ NGi [vi]. Anstee and
Farber [2] presented an O(|V |3)-time algorithm, Hoffman, Kolen, and Sakarovitch
[9] presented an O(|V |3)-time algorithm, Lubiw [12] presented an O(L log2 L)-time
algorithm where L = |V | + |E|, Paige and Tarjan [13] presented an O(L logL)-time
algorithm, and Spinrad [16] presented an O(|V |2)-time algorithm for finding a strong
elimination order of a strongly chordal graph G = (V,E).

The contents of this paper are as follows. In section 2, we prove that the
k-neighborhood-covering and the k-neighborhood-independence problems are NP-
complete for chordal graphs. Section 3 gives a linear-time algorithm for computing
αN (G, k) and ρN (G, k) for a strongly chordal graph G provided that a strong elimina-
tion ordering is given in advance. Section 4 verifies the correctness of the algorithm.
The algorithm in fact gives a k-neighborhood-covering set C∗ and a k-neighborhood-
independent set I∗ with |C∗| = |I∗|. Consequently, C∗ and I∗ are optimal and
αN (G, k) = ρN (G, k) for any strongly chordal graph G.

In the rest of this section, we discuss the k-neighborhood-covering problem by
means of the integer-linear programming method. The k-neighborhood-covering prob-
lem for a graph G is precisely the integer-linear programming problem

(ILP) min {1·x: Mx ≥ 1 and x ≥ 0 integral},
where M is the 0-1 matrix whose rows are indexed by the edges of G and whose
columns are indexed by the vertices and which possesses an entry of 1 for row e and
column v if and only if v is within distance k of both ends of e. The k-neighborhood-
independence problem is the following integer dual of (ILP):

(ID) max {y·1: yM ≤ 1 and y ≥ 0 integral}.
We now claim that if G is strongly chordal, then matrix M is totally balanced. First,
the 0-1 matrix Ak, with rows and columns both indexed by vertices of G and with a 1
for row u and column v if and only if u and v are within distance k, is totally balanced
[12]. Second, the property of being totally balanced is preserved by the operation of
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adding a new row which is the intersection of two existing rows [1]. Thus for each
edge (u, v) we can add a row which is the intersection of row u and row v—this new
row has 1’s for precisely the vertices x that are within distance k of both u and v.
Finally, deleting the rows corresponding to vertices yields the matrix M .

Since M is totally balanced, the integrality conditions in (ILP) and (ID) can
be dropped, thus giving a min-max equality and a polynomial-time algorithm by
means of a greedy method [9]. This method also works for the weighted cases of
the problems. The drawback of the method is that it takes more than linear-time
to compute M . The main effort of this paper is to give a linear-time algorithm to
solve these problems without explicit computation of M . This is similar to the case of
solving the k-domination problem in strongly chordal graphs in linear-time without
taking the k-power of the graph; see [3].

2. NP-completeness for chordal graphs. In this section we show that for any
fixed k, the k-neighborhood-covering and the k-neighborhood-independence problems
are NP-complete for chordal graphs. We shall do this by reducing the problems with
k = 1 for split graphs, which are known to be NP-complete in [6], to the problems for
chordal graphs. A graph G = (V,E) is split if its vertex set V is the disjoint union of
a clique C and an independent set S. Split graphs are chordal.

Theorem 2.1. For any fixed positive integer k, the k-neighborhood-covering and
the k-neighborhood-independence problems are NP-complete for chordal graphs.

Proof. For any split graph G = (V,E), whose vertex set V is the disjoint union of
a clique C and an independent set S, construct the graph Gk = (Vk, Ek) by attaching
a path s ≡ s1, s2, . . . , sk of length k − 1 to each vertex s in S. In other words,

Vk = C ∪ {si: s ∈ S and 1 ≤ i ≤ k} and Ek = E ∪ {(si, si+1): 1 ≤ i ≤ k − 1},

where s1 is considered to be the same as s, Gk is clearly a chordal graph. We shall
prove that ρN (Gk, k) = ρN (G, 1) and αN (Gk, k) = αN (G, 1). If these two equalities
hold, then the theorem follows from the fact that the 1-neighborhood-covering and
the 1-neighborhood-independence problems are NP-complete for split graphs (see [6]).

Suppose D is a minimum 1-neighborhood-covering set of G. Any edge in E is
1-neighborhood-covered and so k-neighborhood-covered by some vertex in D. For
any edge (si, si+1) ∈ Ek − E, there exists some x ∈ D such that d(x, s) ≤ 1. So
d(x, si) ≤ i < k and d(x, si+1) ≤ i + 1 ≤ k, i.e., x k-neighborhood-covers (si, si+1).
Therefore D is a k-neighborhood-covering set of Gk. This gives ρN (Gk, k) ≤ ρN (G, 1).

Conversely, suppose D is a minimum k-neighborhood-covering set of Gk. We can
assume that D ⊆ C, otherwise any si in D can be replaced by a vertex adjacent to
s ≡ s1 in C to form a new minimum k-neighborhood-covering set. Consider any edge
(x, y) in E. If x and y are both in C, then (x, y) is clearly 1-neighborhood-covered by
any vertex in D. Suppose x ∈ C and y ∈ S. Since D is a k-neighborhood-covering set
of Gk, there exists some vertex z in D that k-neighborhood-covers (yk−1, yk). Both
z ∈ C and d(z, yk) ≤ k imply that z is adjacent to y and so z 1-neighborhood-covers
(x, y). Therefore D is a 1-neighborhood-covering set of G. This gives ρN (Gk, k) ≥
ρN (G, 1). Together these inequalities imply that ρN (Gk, k) = ρN (G, 1).

Suppose I is a minimum 1-neighborhood-independent set of G. It must be the
case that each edge of I has one end in C and the other end in S. Also S′ = {s ∈ S:
there is some (x, s) ∈ I} is a 2-independent set; i.e., no two distinct vertices of S′ have
a common neighbor. So I ′ = {(sk−1, sk): s ∈ S′} is a k-neighborhood-independent
set of Gk. This gives αN (Gk, k) ≥ αN (G, 1).
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Conversely, suppose I ′ is a minimum k-neighborhood-independent set Gk. Each
edge of I ′ must be of the form (sk−1, sk) for some s ∈ S. Also S′ = {s ∈ S: some
(sk−1, sk) ∈ I ′} is a 2-independent set. For any s ∈ S′, choose a neighbor s′ of s
in C. Then I = {(s′, s): s ∈ S′} is a 1-neighborhood-independent set of G. This gives
αN (Gk, k) ≤ αN (G, 1). Together these inequalities imply that αN (Gk, k) =
αN (G, 1).

3. The algorithm for strongly chordal graphs. In this section we set forth
a linear-time algorithm for the k-neighborhood-covering and the k-neighborhood-
independence problems for a strongly chordal graph G provided that a strong elimi-
nation ordering is given in advance. Without loss of generality, we may assume that
G has no isolated vertices. The algorithm in fact gives a k-neighborhood-covering set
C∗ and a k-neighborhood-independent set I∗ with |C∗| = |I∗|. By definitions and the
max-min inequality,

|C∗| = |I∗| ≤ αN (G, k) ≤ ρN (G, k) ≤ |C∗|.

Hence all inequalities are equalities. Consequently, C∗ and I∗ are optimal and
αN (G, k) = ρN (G, k) for any strongly chordal graph G.

Suppose G = (V,E) is a strongly chordal graph for which a strong elimination
order [v1, v2, . . . , vn] is given. Note that this is also a perfect elimination order of the
chordal graph G. For simplicity we identify vertex vi as i, and hence [1, 2, . . . , n] is a
strong elimination order. For any vertices i and j, i ≤ j, let

Ni(j) = {l ∈: (j, l) ∈ E and l ≥ i} and

Ni[j] = Ni(j) ∪ {j}.

As in [7], we use N+(i) for Ni(i) and N+[i] for Ni[i]. A useful property of a chordal
graph G, in which [1, 2, . . . , n] is a perfect elimination order, is that

(3.1) N+[i] is a clique for any i.

A useful property of a strongly chordal graph G, in which [1, 2, . . . , n] is a strong
elimination order, is that

(3.2) j, l ∈ N+[i] and i ≤ j ≤ l imply Ni[j] ⊆ Ni[l].

(3.2) states that in the graph Gi induced by {i, i+ 1, . . . , n}, the maximum neighbor
of i has the largest closed neighborhood among all neighbors of i. So, the maximum
neighbor is a most powerful dominating vertex. This is important to the development
that follows. (3.1) and (3.2) are also used frequently in the proofs of lemmas and
theorems in section 4.

The idea behind our algorithm for the k-neighborhood-covering and the k-neighbor-
hood-independence problems is analogous to, but much more complicated than, that
behind the algorithms for the k-domination problem (see [3, 15]). In fact, a (k − 1)-
dominating set is a k-neighborhood-covering set. However, the converse is not true.
Note that a vertex set C is a k-neighborhood-covering set if and only if for any edge
e in G, either one end vertex of e is (k − 1)-dominated by some vertex in C, or both
end vertices of e are exactly k-distant from the same vertex in C. So our algorithm
retains the spirit of the (k− 1)-domination problem with special attention to cases in
which a critical edge e occurs; i.e., both end vertices of e are exactly k-distant from
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the same vertex in C. To handle critical edges, we employ some of the ideas in [6] for
1-neighborhood-covering and -independence.

The algorithm processes vertices in the order 1, 2, . . . , n. Initially the k-neighbor-
hood-covering set C and the k-neighborhood-independent set I are empty. In iteration
i, the algorithm determines whether vertex i must be put into C. If the answer is
positive, the algorithm also finds an edge to put into I. After processing, vertex i is
deleted from the graph and i+ 1 becomes a simple vertex of the remaining graph.

For technical reasons, we associate each vertex i with two nonnegative integers
a(i) and b(i), two vertices A(i) and s(i), and a subset N+

0 (i) of N+(i). The meanings
of these items are as follows. For each vertex i the algorithm must eventually include
some vertex that is within distance a(i) from i in the k-neighborhood-covering set C.
At any time, there is a vertex in the current C that is within distance b(i) from i.
Both a(i) and b(i) keep decreasing as the algorithm proceeds. a(i) decreases when i
is the maximum neighbor of a smaller vertex i′ that is not properly neighborhood-
covered by a vertex of C within distance a(i′) in iteration i′. In this case, a(i) is set
to a(i′)− 1. Similarly, in a previous iteration, a(i′) was set to a(i′′)− 1. Continuing
this argument, there exists a smallest vertex i∗ that forces . . . , i′′, i′, i to decrease
their a(·) values, although a(i∗) never changes. We use A(i) to denote this initial
vertex i∗ from which a(i) decreases. s(i) is the optimal candidate for j such that (i, j)
is put into I. N+

0 (i) is a set of candidates for s(i). More precisely, N+
0 (i) contains

those j ∈ N+(i) such that there is no vertex i′ 1-neighborhood-covering (i, j) and
i′ itself is (k − 1)-dominated by a vertex in the current C. s(i) is chosen to be min
N+

0 (i) in iteration i. If in iteration i the algorithm determines that i should be put
into C, it will also put the edge (A(i), s(A(i))) into I. Initially, a(i) = k, b(i) = ∞,
A(i) = i, s(i) =∞, and N+

0 (i) = N+(i) for all i ∈ V . The algorithm processes vertex
i according to one of the following cases.

When a(i) = 0, vertex i must be put into C. When a(i) < b(i) and N+(i) = ∅,
all vertices in the current C are farther than distance a(i) from i and no vertex j > i
is adjacent to i. So, we need to put i into C. In these two cases, we also put the edge
(A(i), s(A(i))) into I. Since i is now in C, b(i) is set to 0.

Suppose a(j) ≥ a(i) and b(j) ≥ a(i) for all j ∈ N+(i). When 0 < a(i) < b(i) and
N+(i) 6= ∅, all vertices in the current C are farther than distance a(i) from i. In this
case, we need to find a vertex no farther than a(i)−1 from the maximum neighbor m
of i, since for any vertex j > i there is a shortest path from j to i that passes through
m. When a(i) = b(i) = k and N+

0 (i) 6= ∅, there is one vertex in the current C that
is k-distant from vertex i. However, this vertex does not k-neighborhood-cover any
edge (i, j) with j ∈ N+

0 (i). Again, we need to find a vertex that (k− 1)-dominates m
and so k-neighborhood-covers all edges (i, j) with j ∈ N+

0 (i).

When a(i) ≥ b(i) and k > b(i), there is a vertex in the current C that is within
distance a(i) from i. This vertex in fact (k − 1)-dominates i and so k-neighborhood-
covers all edges incident to i. When a(i) = b(i) = k and N+

0 (i) = ∅, by the definition
of N+

0 (i), any edge (i, j) with j ∈ N+(i) is k-neighborhood-covered by some vertex in
C. When a(j) < a(i) or b(j) < a(i) for some j ∈ N+(i), a vertex of C that is within
distance a(j) from j must be within distance a(i) from i. In these three cases, we do
not need to do anything.

Finally, we need to update b(j) and N+
0 (j) for all vertices j ∈ N+(i).

We can summarize the procedure described above in the following algorithm:

Algorithm CI.

Input. A strongly chordal graph G = (V,E) without isolated vertices and in which
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[1, 2, . . . , n] is a strong elimination order.
Output. A minimum k-neighborhood-covering set C and a maximum k-neighborhood-
independent set I of G.
Method.
1. C ←− ∅; I ←− ∅;
2. for all i ∈ V do
3. [a(i)←− k; b(i)←−∞; A(i)←− i; s(i)←−∞; N+

0 (i)←− N+(i)];
4. for i = 1 to n do
5. Case 1: a(i) = 0 or (a(i) < b(i) and N+(i) = ∅)
6. C ←− C ∪ {i};
7. I ←− I ∪ {(A(i), s(A(i)))};
8. b(i)←− 0;
9. Case 2: ((0 < a(i) < b(i) and N+(i) 6= ∅) or (a(i) = b(i) = k

N+
0 (i) 6= ∅)) and (a(j) ≥ a(i) and b(j) ≥ a(i) for all j ∈ N+(i))

11. m←− max N+(i);
12. a(m)←− a(i)− 1;
13. A(m)←− A(i);
14. s(i)←− min N+

0 (i); {where min ∅ =∞}
15. Case 3: (a(i) ≥ b(i) and k > b(i)) or (a(i) = b(i) = k and N+

0 (i) = ∅)
16. or (a(j) < a(i) or b(j) < a(i) for all j ∈ N+(i))
17. do nothing;
18. for all j ∈ N+(i) do b(j)←− min{b(j), b(i) + 1};
19. R←− {j ∈ N+

0 (i) : a(j) = b(j) = b(i) + 1 = k};
20. for all j ∈ R do N+

0 (j)←− N+
0 (j)−R;

21. end for.

4. Correctness of the algorithm. This section proves the correctness of Al-
gorithm CI. First, we note that during the execution of the algorithm, a(i), b(i), A(i),
s(i), C, and I are updated. We shall denote their final values by a∗(i), b∗(i), A∗(i),
s∗(i), C∗, and I∗, respectively. Note that a(i), b(i), and A(i) keep decreasing and
stay at their final values from the beginning of iteration i. s(i) only changes from ∞
to min N+

0 (i) in iteration i when Case 2 of the algorithm holds.
Our proof of the correctness of Algorithm CI is based on proving that C∗ is

a k-neighborhood-covering set (Theorem 4.4), I∗ is a k-neighborhood-independent
set (Theorem 4.11), and |C∗| = |I∗| (Theorem 4.7). If these conditions hold, C∗ is a
minimum k-neighborhood-covering set, I∗ is a maximum k-neighborhood-independent
set, and αN (G, k) = ρN (G, k).

Lemma 4.1. For any vertex x ∈ V , there exists some y ∈ C∗ such that d(x, y) ≤
b∗(x).

Proof. We claim that in any iteration, for any vertex x ∈ V , there exists some
y ∈ C such that d(x, y) ≤ b(x). Initially, b(x) = ∞ and C = ∅. The claim holds
if we interpret it to be miny∈C d(x, y) ≤ b(x) and min ∅ = ∞. b(x) only changes
its value in lines 8 and 18. If b(x) is reset to 0 in line 8, then x is added to C
in line 6. So d(x, x) = 0 = b(x) for x ∈ C. Suppose b(x) is reset to b(i) + 1
in line 18 for x ∈ N+(i) and b(x) > b(i) + 1; it then follows from the induction
hypothesis that there must be some y ∈ C such that d(i, y) ≤ b(i). Therefore,
d(x, y) ≤ d(x, i) + d(i, y) ≤ 1 + b(i) < b(x). This proves the claim. Consequently, the
lemma holds.Lemma 4.2. For any vertex x ∈ V , one of the following three statements holds.

(1) b∗(x) ≤ a∗(x).
(2) b∗(j) < a∗(x) for some j ∈ N+(x).
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(3) a∗(j) < a∗(x) for some j ∈ N+(x).
Proof. We shall prove the lemma by considering the following cases in iteration x.
If Case 1 of the algorithm holds, then b∗(x) = 0 ≤ a∗(x); i.e., (1) holds.
If Case 2 of the algorithm holds, then there exists j = maxN+(x) such that

a(j) = a(x)− 1 and so a∗(j) ≤ a(j) < a(x) = a∗(x); i.e., (3) holds.
If Case 3 of the algorithm holds, then b(x) ≤ a(x) or there exists j ∈ N+(x) such

that a(j) < a(x) or b(j) < a(x). For the first case, b∗(x) ≤ b(x) ≤ a(x) = a∗(x); i.e.,
(1) holds. For the second case, a∗(j) ≤ a(j) < a(x) = a∗(x); i.e., (3) holds. For the
third case, b∗(j) ≤ b(j) < a(x) = a∗(x); i.e., (2) holds.

Lemma 4.3. For any vertex x ∈ V , there exists some y ∈ C∗ such that d(x, y) ≤
a∗(x).

Proof. Repeatedly apply Lemma 4.2 to get a sequence x ≡ x0, x1, . . . , xr−1, xr
such that xi ∈ N+(xi−1) for 1 ≤ i ≤ r and

b∗(xr) ≤ a∗(xr) < a∗(xr−1) < · · · < a∗(x1) < a∗(x0) = a∗(x)

or b∗(xr) < a∗(xr−1) < · · · < a∗(x1) < a∗(x0) = a∗(x).

Then r + b∗(xr) ≤ a∗(x). By Lemma 4.1, there exists some y ∈ C∗ such that
d(xr, y) ≤ b∗(xr). Hence d(x, y) ≤ d(x, xr) + d(xr, y) ≤ r + b∗(xr) ≤ a∗(x).

Theorem 4.4. C∗ is a k-neighborhood-covering set of G.
Proof. Suppose (x, z) is an edge with x < z, i.e., z ∈ N+(x). We shall prove the

theorem according to (1), (2), and (3) of Lemma 4.2.
(1) b∗(x) ≤ a∗(x). By Lemma 4.1, there exists some y ∈ C∗ such that d(x, y) ≤

b∗(x) ≤ a∗(x) ≤ k. If d(x, y) ≤ k − 1, then y k-neighborhood-covers (x, z). So we
may assume that d(x, y) = b∗(x) = a∗(x) = k. Since Lemma 4.2 (1) holds only when
Case 2 of the algorithm does not, N+

0 (x) = ∅ in iteration x. By z ∈ N+(x) and the
updating rule for N+

0 (j) in lines 18 and 19, there exists an i such that x, z ∈ N+
0 (i)

and b(i) = k − 1 in iteration i. By Lemma 4.1, there exists some y ∈ C∗ such that
d(i, y) ≤ b(i) = k−1. Hence y (k−1)-dominates i and i 1-neighborhood-covers (x, z);
i.e., y k-neighborhood-covers (x, z).

(2) b∗(j) < a∗(x) for some j ∈ N+(x). By Lemma 4.1, there exists some y ∈ C∗
such that d(j, y) ≤ b∗(y) < a∗(x) ≤ k; i.e., y (k− 1)-dominates j. Since z, j ∈ N+(x),
j 1-neighborhood-covers (x, z) by (3.1). So y k-neighborhood-covers (x, z).

(3) a∗(j) < a∗(x) for some j ∈ N+(x). By Lemma 4.3, there exists some y ∈ C∗
such that d(j, y) ≤ a∗(y) < a∗(x) ≤ k; i.e., y (k−1)-dominates j. Since z, j ∈ N+(x),
j 1-neighborhood-covers (x, z) by (3.1). So y k-neighborhood-covers (x, z).

Lemma 4.5. If y ∈ C∗, then a∗(y) < k.
Proof. Since y ∈ C∗, Case 1 of the algorithm holds in iteration y, i.e., a(y) = 0 or

a(y) < b(y) with N+(y) = ∅. For the former case, clearly, a∗(y) < k. For the latter
case, since G has no isolated vertex, there exists a largest neighbor w of y. Note that
y ∈ N+(w). Suppose N+(w) contains a vertex y′ other than y. Then by (3.1) y′ is
adjacent to y. So y′ is a neighbor of y that is larger than w, which is a contradiction.
Thus N+(w) = {y} and y = maxN+(w). We now consider the following cases in
iteration w.

If Case 1 of the algorithm holds, then by line 8 b(w) = 0 and so, by line 18,
b(y) ≤ 1. Thus b(y) ≤ 1 in iteration y and so a∗(y) ≤ a(y) < b(y) ≤ 1 ≤ k.

If Case 2 of the algorithm holds, then a∗(y) ≤ a(y) = a(w)− 1 < k.
If Case 3 of the algorithm holds, then b(w) < k or a(w) = b(w) = k with

N+
0 (w) = ∅ or a(y) < a(w) or b(y) < a(w). For the first case, b(y) ≤ k by line 18.
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b(y) ≤ k still holds in iteration y and so a∗(y) ≤ a(y) < b(y) ≤ k. For the second case,
by the updating rule in lines 19 and 20, there exists some i such that w, y ∈ N+

0 (i) and
a(y) = b(y) = k in iteration i. Thus b(y) ≤ k still holds in iteration y and so a∗(y) ≤
a(y) < b(y) ≤ k. For the third case, a∗(y) ≤ a(y) < a(w) ≤ k. For the fourth case,
b(y) < a(w) still holds in iteration y and so a∗(y) ≤ a(y) < b(y) < a(w) ≤ k.

Lemma 4.6. For any x̄ ∈ C∗ with A(x̄) = x, there exists a unique increasing path
x ≡ x̄0, x̄1, . . . , x̄u ≡ x̄ from x to x̄ (with u ≥ 1) such that x̄i = maxN+(x̄i−1) for
1 ≤ i ≤ u and A∗(x̄i) = x and a∗(x̄i) = k − i for 0 ≤ i ≤ u. Furthermore, s∗(x) 6=∞
and A∗(y) 6= A∗(x̄) for any y ∈ C∗ − {x̄}. Also, u = k when N+(x̄) 6= ∅.

Proof. Let u = k− a∗(x̄) and x̄u = x̄, i.e., a∗(x̄u) = k− u. By Lemma 4.5, u ≥ 1.
Note that a∗(x̄u) is initially k and decreases only when Case 2 of the algorithm holds
in some iteration i and x̄u = maxN+(i). There may be several such i. Let x̄u−1 be
the maximum of all such i. In this case, x̄u = maxN+(x̄u−1), A∗(x̄u) = A∗(x̄u−1),
and a∗(x̄u−1) = a∗(x̄u) + 1 = k − (u− 1). Continuing the same argument, we get an
increasing path x ≡ x̄0, x̄1, . . . , x̄u ≡ x̄ such that x̄i = maxN+(x̄i−1) for 1 ≤ i ≤ u,
A∗(x̄0) = A∗(x̄1) = . . . = A∗(x̄u), and a∗(x̄i) = k− i for 0 ≤ i ≤ k. Since a∗(x̄0) = k,
A∗(x̄0) keeps its original value x, i.e., A∗(x̄i) = x for all 0 ≤ i ≤ u.

Furthermore, since x̄i is uniquely determined by x̄i−1, such a path is unique and
there is no y ∈ C∗ − {x̄} with A∗(y) = A∗(x̄).

Since a∗(x) = k, a(x) = k at any time. In iteration x, Case 2 holds, i.e., 0 <
a(x) < b(x) with N+(x) 6= ∅ or a(x) = b(x) = k with N+

0 (x) 6= ∅. For the latter case,
s∗(x) 6= ∞ by line 14. For the former case, b(x) > k in iteration x and so b(x) > k
in any previous iteration. By the definition of R in line 18, x /∈ R in any previous
iteration. Hence by line 19, N+

0 (x) = N+(x) 6= ∅ in iteration x. Again, s∗(x) 6=∞.

If N+(x̄) 6= ∅, then a(x̄) = 0 in line 5 in iteration x̄. So, k−u = a∗(x̄u) = a∗(x̄) =
0, i.e., u = k.

We shall call the unique path x ≡ x̄0, x̄1, . . . , x̄u ≡ x̄ from x to x̄ (with u ≥ 1)
in Lemma 4.6 the maximum path for x̄. For any x̄ ∈ C∗, the corresponding edge
(x, x′) ∈ I∗, where x = A∗(x̄) and x′ = s∗(x). Note that Case 2 holds in iteration x̄i
for 0 ≤ i ≤ u− 1 and Case 1 holds in iteration x̄u ≡ x̄. Also, in Lemma 4.6, instead
of saying a∗(x̄i) = k − i, we can say a(x̄i) = k − i in iteration x̄i−1 when line 12 is
executed for 1 ≤ i ≤ u. x̄1, x

′ ∈ N+(x) imply that d(x̄1, x
′) ≤ 1 by (3.1) and so x̄1

1-neighborhood-covers (x, x′). This together with d(x̄1, x̄p) ≤ p − 1 implies that x̄p
p-neighborhood-covers (x, x′) for 1 ≤ p ≤ u.

Theorem 4.7. |C∗| = |I∗|.
Proof. By Lemma 4.6, for any two distinct vertices y, y′ ∈ C∗, A∗(y) 6= A∗(y′),

s(A∗(y)) 6= ∞, and s(A∗(y′)) 6= ∞. Hence the theorem holds, because each time a
new vertex is added to C in line 6 a new edge is added to I in line 7.

Lemma 4.8. If vertex z k-neighborhood-covers an edge (x, x′), then there exists
a shortest x-z path x ≡ x0, x1, . . . , xr ≡ z such that r ≤ k and each xp (k − 1)-
neighborhood-covers (x, x′) for 1 ≤ p ≤ r − 1.

Proof. The lemma is easy when d(x, z) = 1 +d(x′, z) or d(x′, z) = 1 +d(x, z). For
the case in which d(x, z) = d(x′, z) ≤ k, the lemma follows from the fact that there
exists a vertex w adjacent to both x and x′ such that d(w, z) = d(x, z)− 1. (See [10,
Lemma 1 (d)].)

Lemma 4.9. Any shortest x0-xr path x0, x1, . . . , xr is unimodal, i.e., x0 < x1 <
· · · < xi−1 < xi and xi > xi+1 > · · · > xr for some 0 ≤ i ≤ r.

Proof. If the sequence is not unimodal, then xi−1, xi+1 ∈ N+(xi) for some i with
1 ≤ i ≤ r− 1. By Property (3.1), xi−1xi−1 ∈ E and so x0, x1, . . . , xr is not a shortest
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path.

Lemma 4.10. If y0, y1, . . . , yr is an increasing path and y0 ∈ C∗, then b(yi) ≤ i
after iteration yi−1 for 1 ≤ i ≤ r. Consequently, b(yi) ≤ i in and after iteration yi
for 0 ≤ i ≤ r.

Proof. We shall prove the lemma by induction on i. If i = 1, then in iteration
y0, b(y0) = 0 by line 8 of the algorithm and so b(y1) ≤ 1 by line 18. Suppose
i ≥ 2 and b(yi−1) ≤ i − 1 after iteration yi−2. In iteration yi−1, by line 18, we have
b(yi) ≤ b(yi−1) + 1 ≤ i. Hence the lemma holds.

Theorem 4.11. I∗ is a k-neighborhood-independent set of G.

Proof. Suppose I∗ is not k-neighborhood-independent; i.e., there exists some
vertex z ∈ V that k-neighborhood-covers two distinct edges (x, x′) and (y, y′) in I∗,
where x′ = s∗(x) and y′ = s∗(y). Without loss of generality, we may assume that z
is set as large as possible.

By the algorithm, there exist x̄, ȳ ∈ C∗ such that x = A∗(x̄) and y = A∗(ȳ).
Let x ≡ x̄0, x̄1, . . . , x̄u ≡ x̄ be the maximum path for x̄ and y ≡ ȳ0, ȳ1, . . . , ȳv ≡ ȳ
the maximum path for ȳ. Since x 6= y, x̄ 6= ȳ by Lemma 4.6. Also, each x̄p p-
neighborhood-covers (x, x′) for 1 ≤ p ≤ u and each ȳq q-neighborhood-covers (y, y′)
for 1 ≤ q ≤ v.

By Lemma 4.8, there exists a shortest x-z path P : x ≡ x0, x1, . . . , xr ≡ z
with r ≤ k and a shortest y-z path y ≡ y0, y1, . . . , yt ≡ z with t ≤ k such that
each xp (k − 1)-neighborhood-covers (x, x′) for 1 ≤ p ≤ r − 1 and each yq (k − 1)-
neighborhood-covers (y, y′) for 1 ≤ q ≤ t − 1. By Lemma 4.9, x0 < x1 < · · · < xi
and xi > xi+1 > · · · > xr for some 0 ≤ i ≤ r and y0 < y1 < · · · < yj and
yj > yj+1 > · · · > yt for some 0 ≤ j ≤ t.

Let i∗ be the largest index such that xp = x̄p for 0 ≤ p ≤ i∗. We may as-
sume that i∗ is as large as possible. Note that i∗ ≤ i. For the case of i∗ + 1 ≤ i,
i∗ + 1 ≤ u, otherwise u < i∗ + 1 would imply that u < i ≤ r ≤ k, but x∗i+1 ∈
N+(x̄u) = N+(x̄) contradicts the last statement of Lemma 4.6. Since xi∗+1x̄i∗+1 ∈
N+(xi∗), by (3.1) xi∗+1x̄i∗+1 ∈ E. By the fact that x̄i∗+1 = maxN+(x̄i∗), we have
xi∗+1 < x̄i∗+1. Now i∗ + 1 = i, otherwise i∗ + 2 ≤ i would imply that x̄i∗+1, xi∗+2 ∈
N+(xi∗+1), which in turn implies x̄i∗+1xi∗+2 ∈ E and so P ′: x̄0, . . . , x̄i∗ , xi∗+1,
xi∗+2, xi∗+3 . . . , xr is a path with i∗(P ′) > i∗(P ). In conclusion, either xp =
x̄p for 0 ≤ p ≤ i (when i = i∗) or xp = x̄p for 0 ≤ p ≤ i − 1 with x̄i−1 <
xi < x̄i form a clique of 3 vertices (when i = i∗ + 1). Similarly, we may as-
sume that either yq = ȳq for 0 ≤ q ≤ j (when j = j∗) or yq = ȳq for 0 ≤
q ≤ j − 1 with ȳj−1 < yj < ȳj form a clique of 3 vertices (when j = j∗ +
1).

We now claim that z 6= ȳ. Suppose, to the contrary, z = ȳ ∈ C∗. Suppose
i∗ = i = r. Since x̄u = x̄ 6= ȳ = z = xr = x̄r∗ , r

∗ ≤ u − 1. But x̄r∗ ∈ C implies that
Case 1 holds in iteration x̄i∗ , in contradiction to the fact that Case 2 holds in iteration
x̄p for 0 ≤ p ≤ u − 1. Therefore, either i∗ + 1 ≤ i = r or i < r. In any case, r > 0.
Suppose i = 0. Consider the increasing path z ≡ xr, xr−1, . . . , x1, x0 ≡ x ≡ x̄0. By
Lemma 4.10, b(x1) ≤ r − 1 in iteration x1 and so, by line 18, b(x0) ≤ b(x1) + 1 ≤ r
in iteration x1. Then b(x) ≤ r ≤ k in iteration x. On the other hand, by Lemma
4.6, a∗(x) = a(x̄0) = k and so, a(x) = k in any iteration. Then a(x) = b(x) = k in
iteration x, since Case 2 of the algorithm holds. Thus, b(x1) = k − 1 and b(x) = k in
iteration x1, and a(x) = b(x) = k = r in iteration x. By line 19, x ∈ R in iteration
x1. Now, d(z, x) = r = k. Since x′ > x, we also have d(z, x′) = k. By Lemma 4.8, we
may assume that x′ is adjacent to x1. By line 18, b(x′) ≤ b(x1)+1 ≤ k in iteration x1
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and hence b(x′) ≤ k in iteration x. Since Case 2 holds in iteration x, a(x′) ≥ a(x) = k
and b(x′) ≥ a(x) = k. So, a(x′) = b(x′) = k in iterations x and x1. By line 19, x′ ∈ R
in iteration x1. Therefore, by line 20, x′ /∈ N+

0 (x) after iteration x1 is completed. In
iteration x, it is impossible that x′ = s(x) ≡ N+

0 (x). Thus i ≥ 1.

First, consider the case of i∗ + 1 ≤ i = r, i.e., xi = z = ȳ = ȳv ∈ C∗. If
x̄i−1 ≤ ȳv−1, then ȳv−1 ∈ Nx̄i−1

[xi]. By (3.2), Nx̄i−1
[xi] ⊆ Nx̄i−1

[x̄i]. Thus, ȳv−1 is
adjacent to x̄i > xi = ȳv, in contradiction to ȳv = maxN+[ȳv−1]. So, ȳv−1 < x̄i−1.
In iteration ȳv−1, a(ȳv) = k − v by line 12 of the algorithm and Lemma 4.6. Also,
N+(ȳv) 6= ∅ since it contains x̄i. By Lemma 4.6, v = k. Then, a(ȳv) = 0 in and
after iteration ȳv−1. In particular, a(ȳv) = 0 in iteration x̄i−1. But, in iteration x̄i−1,
Case 2 holds. By line 9, 0 < a(x̄i−1), but, by line 10, 0 = a(ȳv) ≥ a(x̄i−1), which is a
contradiction.

Next, consider the case of i < r. If x̄i−1 ≤ xi+1, then xi+1 is adjacent to x̄i
by (3.2). Consider the increasing path z ≡ xr, xr−1, . . . , xi+1, x̄i. By Lemma 4.10,
b(x̄i) ≤ r − i ≤ k − i = a∗(x̄i) in iteration x̄i. When Case 1 holds in iteration
x̄i, a

∗(x̄i) = 0 and so k = r = i, which contradicts i < r. When Case 2 holds in
iteration x̄i, a(x̄i) = b(x̄i) = k and so i = 0, which contradicts i ≥ 1. If x̄i−1 > xi+1,
then b(xi) ≤ k − i after iteration xi+1 by Lemma 4.10. In particular, b(xi) ≤ k − i
in iteration x̄i−1. But Case 2 of the algorithm holds in iteration x̄i−1. By line 10,
k − (i− 1) = a(x̄i−1) ≤ b(xi) ≤ k − i, which is a contradiction.

So, in any case z 6= ȳ, i.e., z < ȳ. Similarly, z < x̄. Consider the two increasing
paths P1 and P2, where P1 is z ≡ xr, xr−1, . . . , xi, x̄i∗ , x̄i∗+1, . . . , x̄u ≡ x̄ (with x̄i∗
omitted when xi = x̄i∗ and i = i∗) and P2 is z ≡ yt, yt−1, . . . , yj , ȳj∗ , ȳj∗+1, . . . , ȳv ≡ ȳ
(with ȳj∗ omitted when yj = ȳj∗ and j = j∗). By (3.1), (α, β) ∈ E, where α is the
second vertex of P1 and β the second vertex of P2. Note that α = xp with p ≤ r − 1
or α = x̄p with p ≤ u, and β = yq with q ≤ t−1 or β = ȳq with q ≤ v. By Lemma 4.8
and the sentence just before Theorem 4.7, α (k − 1)-neighborhood-covers (x, x′) or β
(k− 1)-neighborhood-covers (y, y′), and so α or β k-neighborhood-covers both (x, x′)
and (y, y), contradicting the choice of z, except when u = v = k, α = x̄u, β = ȳv,
and |P1| = |P2| = 1. For the exceptional case, since either i = i∗ with xi = x̄i or
i = i∗ + 1 with x̄i−1 < xi < x̄i form a clique, we have r = i = i∗ = u − 1 = k − 1
or r = i = i∗ + 1 = u = k and so x̄k−1 ≤ z < x̄k, i.e., z, x̄k ∈ N+[x̄k−1]. Similarly,
z, ȳk ∈ N+[ȳk−1]. Without loss of generality, assume x̄k−1 ≤ ȳk−1. Then, by (3.2),
ȳk−1 is adjacent to x̄k. Now, x̄k k-neighborhood-covers (x, x′). Also, ȳk−1 (k − 1)-
neighborhood-covers (y, y′) and so x̄k k-neighborhood-covers (y, y′). So we have x̄k >
z and x̄k k-neighborhood-covers both (x, x′) and (y, y′), which is a contradiction to
the choice of z.

Theorem 4.12. Algorithm CI finds a minimum k-neighborhood-covering set
C∗ and a maximum k-neighborhood-independent set I∗ of a strongly chordal graph
G = (V,E) in linear-time if a strong elimination order is given.

Proof. The correctness of the algorithm follows from Theorems 4.4, 4.7, and 4.11.
The algorithm is linear, since iteration i costs only O(|N+(i)|) time excepting line 20,
and line 20 in the whole algorithm costs at most O(|E|) time.

Acknowledgments. The authors thank referees for many constructive sugges-
tions on the revision of this paper. In particular, one referee suggested the linear
programming viewpoint as added at the end of section 1. A significant simplification
of the proofs in section 4 was made after their comments.



k-NEIGHBORHOOD-COVERING AND -INDEPENDENCE PROBLEMS 643

REFERENCES

[1] R. P. Anstee, Properties of (0,1)-matrices without certain configurations, J. Combin. Theory
Ser. A, 31 (1981), pp. 256–269.

[2] R. P. Anstee and M. Farber, Characterization of totally balanced matrices, J. Algorithms,
5 (1984), pp. 215–230.

[3] G. J. Chang, Labeling algorithms for the domination problems in sun-free chordal graphs,
Discrete Appl. Math., 22 (1988/89), pp. 21–34.

[4] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability problems on sun-free
chordal graphs, SIAM J. Algebraic Discrete Methods, 5 (1984), pp. 332–345.

[5] G. J. Chang and G. L. Nemhauser, Covering, packing and generalized perfection, SIAM J.
Algebraic Discrete Methods, 6 (1985), pp. 109–132.

[6] G. J. Chang, M. Farber, and Z. Tuza, Algorithmic aspects of neighborhood numbers, SIAM
J. Discrete Math., 6 (1993), pp. 24–29.

[7] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–
189.

[8] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[9] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally balanced and greedy matrices,
SIAM J. Algebraic Discrete Methods, 6 (1985), pp. 721–730.

[10] R. Laskar and D. Shier, Construction of (r, d)-invariant chordal graphs, Congressus Numer-
antium, 33 (1981), pp. 155–165.

[11] J. Lehel and Z. Tuza, Neighborhood perfect graphs, Discrete Math., 61 (1986), pp. 93–101.
[12] A. Lubiw, Doubly lexical ordering of matrices, SIAM J. Comput., 16 (1987), pp. 854–879.
[13] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Comput., 16

(1987), pp. 973–989.
[14] E. Sampathkumar and P. S. Neeralagi, The neighborhood number of a graph, Indian J. Pure

Appl. Math., 16 (1985), pp. 126–132.
[15] P. J. Slater, R-domination in graphs, J. Assoc. Comput. Mach., 23 (1976), pp. 446–450.
[16] J. P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Inform. Process. Lett., 45 (1993),

pp. 229–235.
[17] J. Wu, Neighborhood-Covering and Neighborhood-Independence in Strongly Chordal Graphs,

manuscript.



LOCAL STRUCTURE WHEN ALL MAXIMAL INDEPENDENT SETS
HAVE EQUAL WEIGHT∗
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Abstract. In many combinatorial situations there is a notion of independence of a set of points.
Maximal independent sets can be easily constructed by a greedy algorithm, and it is of interest to
determine, for example, if they all have the same size or the same parity. Both of these questions
may be formulated by weighting the points with elements of an abelian group, and asking whether all
maximal independent sets have equal weight. If a set is independent precisely when its elements are
pairwise independent, a graph can be used as a model. The question then becomes whether a graph,
with its vertices weighted by elements of an abelian group, is well-covered , i.e., has all maximal
independent sets of vertices with equal weight. This problem is known to be co-NP-complete in
general. We show that whether a graph is well-covered or not depends on its local structure. Based
on this, we develop an algorithm to recognize well-covered graphs. For graphs with n vertices and
maximum degree ∆, it runs in linear time if ∆ is bounded by a constant, and in polynomial time

if ∆ = O( 3
√

logn). We mention various applications to areas including hypergraph matchings and
radius k independent sets. We extend our results to the problem of determining whether a graph
has a weighting which makes it well-covered.

Key words. well-covered graph, maximal independent set, local structure, polynomial time
algorithm, recognition algorithm, hypergraph matching, independence system
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PII. S0895480196300479

1. Introduction. In many situations in mathematics there is a notion of “in-
dependence” for subsets of a set. We can “greedily” construct a “large” independent
subset by repeatedly adding elements until there are no further feasible elements to
add. We often want to know if some property of our final independent set is the
same, regardless of how we choose the elements to add. For example, we may wish
to determine whether we always get an independent set of maximum size. Or, in a
game where players take turns adding elements independent of the previously chosen
ones until no further moves can be made, we may ask whether one player inevitably
wins. In this paper we show that many natural problems of this kind can be answered
by examining their “local structure” and that problems whose local structures sat-
isfy certain size bounds can be solved by polynomial time algorithms. Our results
have applications to well-covered graphs, hypergraphs in which maximum or perfect
matchings can be found greedily, graphs where certain vertex packings can be found
greedily, graph games whose outcome depends on the parity of a maximal independent
set, and other related problems.

Our fundamental problem may be formulated in three equivalent ways. In what
follows, A is an arbitrary abelian group represented additively, which we use to as-
sign weights to elements of a structure. Our weighted problems all have unweighted
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counterparts, which may be considered as the case where A = Z and all weights are
1; the weight of a set then becomes its cardinality.

Our first formulation is in terms of graphs. An A-weighted graph G is a graph
whose vertices are weighted by elements of A. Given S ⊆ V (G), the weight of S is
the sum of the weights of its elements. If all maximal independents sets in G have
the same weight, we call it the independence weight iw(G) of G and say that G is
well-covered .

Graph problem. Given an A-weighted graph, is it well-covered?

As multiple edges do not affect the independent sets of vertices and vertices with
loops can never appear in an independent set, we assume that our graphs have no
loops or multiple edges.

Well-covered (unweighted) graphs were introduced by Plummer [20]. One of the
definitions is that a graph is well-covered exactly when all maximal independent sets
have the same cardinality, which is just the unweighted version of our more general
definition. Plummer [21] recently surveyed known results on well-covered graphs (note
that [21, Theorem 5.7] does not correctly summarize the results of [2]). Another
special case of the Graph Problem is considered by Finbow and Hartnell [9, 10], who
examine the problem of recognizing graphs in which all maximal independent sets
have the same parity, i.e., Z2-weighted graphs with all vertices of weight 1 that are
well-covered.

Our second formulation involves independence systems. An A-weighted indepen-
dence system consists of a (finite) set of points, a nonempty collection of sets of points
known as independent sets, which is closed under taking subsets and a function as-
signing each point a weight in A. The weight of a set of points is the sum of the
weights of its elements. A maximal independent set is called a base, and a minimal
dependent set is called a circuit .

Independence system problem. Given an A-weighted independence system
with all circuits of cardinality 2, do all bases have the same weight?

The Independence System Problem is equivalent to the Graph Problem, via the
following one-to-one correspondence between independence systems with all circuits
of cardinality 2 and graphs. Given a graph, its independent sets of vertices form an
independence system, and a circuit is a set containing both ends of any one edge,
which has cardinality 2. Conversely, given an independence system with circuits of
cardinality 2, we may construct a graph where points become vertices and each circuit
becomes the set of ends of an edge. We may also allow circuits of cardinality 1 without
essentially changing the problem, as a vertex in a circuit of cardinality 1 can never
appear in a base.

Unweighted independence systems with all bases of the same cardinality are the
“greedy hereditary systems” of Caro, Sebő, and Tarsi [5], which properly include
matroids.

At first glance, considering only independence systems with circuits of cardinal-
ity exactly 2 seems very restrictive. However, all circuits are of cardinality 2 when
independence of a set of points means pairwise independence of its elements, a very
common situation. In particular, the points may be sets, and independence may mean
pairwise disjointness. This motivates our third formulation below.

The Independence System Problem expresses our problem in a more abstract
way, which allows us easily to recognize many problems as fitting into our framework.
For example, Gunther, Hartnell, and Whitehead [15, 16] have considered radius 2
independent sets, also known as 2-packings, in graphs, i.e., sets of vertices which are
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pairwise at distance greater than 2. They examine the problem of determining when
all maximal radius 2 independent sets have the same cardinality or when they all
have the same parity. More generally, Hartnell and Whitehead [18] have examined
the cardinality problem for radius k independent sets or k-packings. Clearly these sets
form an independence system in which independence means pairwise independence,
so our results can provide some information about them. The problems discussed here
correspond to Z- and Z2-weighted independence systems with all weights 1. (This
example may also be simply formulated as an instance of the Graph Problem, since
a radius k independent set is just an independent set in Gk, the kth power of G.)

Our third formulation involves hypergraphs. An A-edge-weighted hypergraph con-
sists of a (finite) set of vertices, a collection (with repetitions allowed) of (possibly
empty) sets of vertices known as edges, and a function giving each edge a weight from
A. The weight of a set of edges is the sum of the weights of its elements. A matching
is a set of mutually disjoint edges.

Hypergraph matching problem. Given an A-edge-weighted hypergraph, do
all maximal matchings have the same weight?

The Hypergraph Matching Problem is also equivalent to the Graph Problem, via
the following correspondence. Given a graph G, construct a hypergraph H whose
vertex set is the edge set of G. For every vertex v of G, the set of edges incident with
v gives an edge ev of H; the weight of ev is just the weight of v. Conversely, given a
hypergraph H, construct a graph G whose vertex set is the edge set of H with two
vertices of G adjacent if the corresponding edges of H intersect; the weight of a vertex
in G is just the weight of the corresponding edge in H.

Many aspects of the unweighted version of the Hypergraph Matching Problem
are discussed in [5, Section 2], including applications to two graph decomposition
problems studied by Ruiz [24] and Caro, Ruiz, and Rojas [4]. As an example of the
use of weights in the Hypergraph Matching Problem, suppose we assign each edge
a weight from Z equal to its cardinality. Then our question is equivalent to asking
whether all maximal matchings use the same number of vertices. In particular, we
may ask if they are all perfect , i.e., use all the vertices.

Since all three problems above are equivalent, we may work with whichever is
most convenient for a particular application. For the purposes of this paper it is easi-
est to work with the Graph Problem. The following is known about the computational
complexity of this problem. In the unweighted case, recognition of well-covered graphs
is a co-NP-complete problem, as shown by Chvátal and Slater [8] and, independently,
Sankaranarayana and Stewart [25]. It is co-NP-complete even when a graph has no
induced K1,4’s [5, Theorem 2.1], although polynomial algorithms have been found for
line graphs [19] and claw-free graphs—graphs with no induced K1,3 [26, 27]. More-
over, structural characterizations of certain classes of well-covered graphs easily yield
recognition algorithms, such as for cubic graphs [2] and for graphs of girth at least 5
[11] (the girth is the length of a shortest cycle in the graph). Other structural work
on well-covered graphs includes work by Ravindra [23] on bipartite graphs, Ramey on
graphs of maximum degree at most 3 [22], and by various authors on graphs with no
4-cycles [12, 14, 17].

If a fixed abelian group A can be represented by finite strings that can be added
in polynomial time, then the graph problem, i.e., the recognition problem for well-
covered A-weighted graphs, is co-NP-complete, even for K1,4-free graphs: the un-
weighted proof of [5, Theorem 2.1] is easily modified by giving each vertex the same
nonzero weight. In particular, the problem of recognizing graphs in which all maximal
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independent sets have the same parity, as studied by Finbow and Hartnell [9, 10] is
co-NP-complete for K1,4-free graphs.

We will examine minimal non-well-covered graphs, which arise in characterizing
well-covered graphs, and use them to give an algorithm for recognizing well-covered
graphs. For n-vertex graphs this runs in polynomial time if the maximum degree is
bounded by O( 3

√
log n) and in linear time if the maximum degree is bounded by a

constant. This answers a question posed in [2], as to whether well-covered graphs of
bounded degree can be recognized in polynomial time.

2. Minimal non-well-covered graphs. In this section we discuss ways to char-
acterize well-covered A-weighted graphs, leading to the notion of a minimal non-well-
covered graph. When no confusion can result, we just refer to an A-weighted graph
as a graph. Unless explicitly stated otherwise, vertices in subgraphs of a graph G
inherit their weights from G, and when we combine graphs G1, G2, . . . , Gk to obtain
G, in such a way that V (G) is the disjoint union of V (G1), V (G2), . . . , V (Gk), then
each vertex of G inherits its weight from the appropriate Gi.

If S is a set of vertices in a graph G, the closed neighborhood of S is the set NG[S],
or just N [S], containing S and all neighbors of vertices in S. We abbreviate N [{v}]
to N [v]. If S is independent, the graph G\N [S] is said to be obtained from G by
neighborhood deletion. The following important observation seems to have been first
stated by Campbell [1] for unweighted graphs. A similar result in the special context
of randomly decomposable graphs was observed by Caro, Rojas, and Ruiz [4].

Observation 2.1. Suppose S ⊆ V (G) is independent. If G is well-covered, then
G\N [S] is well-covered. Equivalently, if any component of G\N [S] is not well-covered,
then G is not well-covered.

This observation is very useful in characterizing classes of well-covered graphs.
If we can show that a certain structure in a graph G contains an independent set S
of G such that G\N [S] has a component which is a non-well-covered graph L, then
that structure cannot occur in a well-covered graph. We are, therefore, interested in
generating (isomorphism classes of) non-well-covered graphs L, which can be used to
restrict the possible structure of well-covered graphs.

Some non-well-covered graphs L are not needed to characterize well-covered graphs,
because any structures they eliminate can also be eliminated by smaller non-well-
covered graphs. In particular, suppose that L contains a nonempty independent set
T for which M = L\NL[T ] is non-well-covered. Then, whenever S is an independent
set in G such that G\N [S] contains L as a component, S ∪ T is also an independent
set in G such that G\(S ∪ T ) contains M as a component. In other words, M can
eliminate any structures that L can. The essential non-well-covered graphs L, those
that cannot be replaced in this way, are those for which L\NL[T ] is well-covered for
all nonempty independent T in L. Thus, they are the non-well-covered graphs which
are minimal with respect to the neighborhood deletion operation; we call them simply
minimal non-well-covered graphs. In the unweighted case, translated into the hyper-
graph matching form of our problem, they correspond exactly to the critical nongreedy
hypergraphs investigated by Caro, Sebő, and Tarsi [5, Section 2.7], and they generalize
an idea developed by Caro, Rojas, and Ruiz [4] in the context of randomly decompos-
able graphs. We may summarize the usefulness of minimal non-well-covered graphs
as follows.

Observation 2.2. G is non-well-covered if and only if there exists some (possibly
empty) independent set S in G such that G\N [S] has a component which is minimal
non-well-covered.
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We now characterize minimal non-well-covered graphs. Our characterization is
a natural generalization of the characterizations for the unweighted case obtained
independently by Ramey [22, Theorems 2.11, 2.12] and by Caro, Sebő, and Tarsi
(using the hypergraph matching form of the problem) [5, Theorem 2.8]. Our proof
adapts that of [5]. Note that G1 +G2 + · · ·+Gk denotes the join of G1, G2, . . ., Gk,
obtained from their disjoint union by adding an edge between every pair of vertices
in different graphs.

Theorem 2.3. An A-weighted graph G is minimal non-well-covered if and only
if there exist well-covered A-weighted graphs G1, G2, . . . , Gk such that G = G1 +G2 +
· · ·+Gk and iw(Gi) 6= iw(Gj) for some i and j.

Proof. Suppose G is minimal non-well-covered. For each v ∈ V (G), the graph
G\N [v] is well-covered, and therefore every maximal independent set of G containing
v has the same weight, which we denote t(v). Let {t(v) : v ∈ V (G)} be {t1, t2, . . . , tk};
since G is not well-covered, k ≥ 2. Let Gi be the subgraph of G induced by {v ∈
V (G) : t(v) = ti}. If v ∈ V (Gi) and w ∈ V (Gj), then v and w must be adjacent,
for otherwise there would be a maximal independent set including {v, w}, and we
would have t(v) = t(w). Thus, G = G1 + G2 + · · · + Gk, and a set of vertices of
G is independent if and only if it is an independent set in some Gi. Therefore, any
maximal independent set in Gi is a maximal independent set in G and has weight ti,
so that Gi is well-covered with iw(Gi) = ti. Since k ≥ 2, iw(Gi) 6= iw(Gj) for some i
and j.

Suppose now that G = G1 + G2 + · · · + Gk, where G1, G2, . . . , Gk are all well-
covered. Clearly, any set S ⊆ V (G) is independent if and only if S is an independent
set in Gi for some i. Therefore, the maximal independent sets of G are the maximal
independent sets of the individual Gi’s, and G is well-covered if and only if iw(Gi)
is the same for all i. Thus, if iw(Gi) 6= iw(Gj) for some i and j, then G is non-
well-covered. Moreover, it is minimal with respect to neighborhood deletion, because
for any nonempty independent S in Gi, we have G\NG[S] = Gi\NGi [S], which is
well-covered by Observation 2.1.

The following corollary will be very important in the next section.

Corollary 2.4. A minimal non-well-covered A-weighted graph has diameter at
most 2.

Proof. Such a graph is a join, and any join has diameter at most 2.

Some special cases of Theorem 2.3 are of interest. Suppose G is unweighted and
minimal non-well-covered. If G is bipartite, or, in fact, if G has girth 4 or more, then
G must be a complete bipartite graph Km,n with 1 ≤ m < n. If G has girth 5 or
more, then G must be a star K1,n with n ≥ 2. The fact that the minimal non-well-
covered graphs in these situations can easily be described seems to be reflected in the
fact that well-covered unweighted graphs that are bipartite or have girth 5 or more
have relatively simple characterizations [11, 23]. It also suggests that the problem
of characterizing well-covered graphs of girth 4, which has been considered difficult,
may in fact be tractable. Note also that a consequence of the unweighted version of
Theorem 2.3 has been used by Tankus and Tarsi [27] to find a simple proof of their
earlier result [26] that well-covered claw-free graphs can be recognized in polynomial
time.

Theorem 2.3 also has some implications for the characterization of well-covered
graphs of bounded degree.

Corollary 2.5. Let G be a minimal non-well-covered A-weighted graph. If G
has maximum degree ∆, then G contains at most 2∆ vertices.
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Proof. By Theorem 2.3, we know that V (G) can be partitioned into two sets (e.g.,
V (G1) and V (G2) ∪ V (G3) ∪ · · · ∪ V (Gk)) such that every possible edge between the
sets is in E(G). Since the maximum degree is ∆, each set cannot contain more than
∆ vertices; otherwise, the vertices in the other set would have degree greater than
∆.

In the unweighted case, this corollary is close to the best possible, as shown by
the complete bipartite graph K∆−1,∆, which is minimal non-well-covered on 2∆ − 1
vertices with maximum degree ∆. It is best possible in situations where K∆,∆ with
bipartition (V1, V2) can be assigned weights so that V1 and V2 have different weights.

Corollary 2.5 implies immediately that in the unweighted case, or if A is finite,
there are finitely many minimal non-well-covered graphs of maximum degree at most
∆. All may be constructed as joins of well-covered graphs, not all with the same
independence weight, on at most ∆ vertices. We summarize some results for the
unweighted case. There is only one minimal non-well-covered graph with maximum
degree 2, namely, P3 = K1,2 = K1 + 2K1. The four minimal graphs with maximum
degree 3 are K1,3 = K1 + 3K1, K1 + (K2 ∪ K1), K1,1,2 = K1 + K1 + 2K1, and
K2,3 = 2K1 + 3K1. There are 14 minimal graphs with maximum degree 4 and 43
minimal graphs with maximum degree 5. The minimal graphs with maximum degree
at most 3 were used, without realizing their nature, in [2] in characterizing well-
covered cubic graphs, and were consciously used by Ramey [22] to characterize the
well-covered graphs with maximum degree at most 3.

3. Testing well-coveredness. In this section, we use Corollaries 2.4 and 2.5
to prove that well-coveredness depends on the local, rather than the global, structure
of a graph. We then show how this can be used to test whether a graph is well-
covered, resulting in polynomial time algorithms under certain circumstances. Let
Nk[v] denote the set of vertices at distance at most k from a vertex v in the graph G.

Theorem 3.1. Consider an A-weighted graph G with maximum degree ∆. The
following are equivalent.

(i) G is non-well-covered.
(ii) There exist v ∈ V (G) and an independent set S in the subgraph Q = Q(v) of

G induced by N4[v], such that Q\NQ[S] has a minimal non-well-covered component
containing v.

(iii) There exist v ∈ V (G) and an independent set S in the subgraph Q = Q(v)
of G induced by N4[v], such that Q\NQ[S] has a non-well-covered component with at
most 2∆ vertices and of diameter at most 2 containing v.

Proof. (i) ⇒ (ii): If G is non-well-covered, by Observation 2.2 we can choose
an independent set S, minimal with respect to inclusion, for which G\N [S] has a
minimal non-well-covered component L. A vertex of S cannot be at distance 0 or
1 from L, and if it is at distance 3 or more from L then we may delete it from S
without changing the fact that L is a component of G\N [S]. Thus, by minimality of
S, every vertex of S is at distance 2 from L. Let v be an arbitrary vertex of L. Since
L has diameter at most 2 by Corollary 2.4, every vertex of S is in N4[v] and L is a
component of Q\NQ[S], where Q is induced by N4[v].

(ii) ⇒ (iii): By Corollaries 2.4 and 2.5, a minimal non-well-covered component
has the properties specified in (iii).

(iii) ⇒ (i): If v, S, and Q exist as stated in (iii), let L be the non-well-covered
component of Q\NQ[S] containing v. Since L has diameter at most 2, no vertex of L
is adjacent in G to a vertex outside Q. Therefore, L is also a component of G\NG[S]
and G is non-well-covered.
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For creating theoretical characterizations of classes of well-covered graphs, condi-
tion (ii) is very useful. Condition (iii) is easier to check by computer than (ii), so it
is useful in constructing algorithms.

Theorem 3.2. Let G be an A-weighted graph with n vertices and maximum
degree ∆, represented by a list of neighbors for each vertex. Then we may determine
whether or not G is well-covered in O(ne2∆∆2∆+5/222∆3−4∆2

) operations (or, more

roughly, in O(n22∆3

) operations). (Each addition or comparison in A is counted as
one operation.)

Proof. We check condition (iii) of Theorem 3.1 by brute force. Given a vertex v,
we try to find a non-well-covered component L, containing v, of some Q\NQ[S], by
first constructing all possible graphs L and then trying to find S.

Fix v. There are at most ∆ + ∆(∆− 1) = ∆2 vertices at distance 1 or 2 from v,
which we locate in O(∆2) operations. The number of sets of vertices of cardinality at
most 2∆ that include v and otherwise contain only vertices at distance 1 or 2 from v
is at most (

∆2

0

)
+

(
∆2

1

)
+ · · ·+

(
∆2

2∆− 1

)
= O(e2∆2−2∆∆2∆−3/2)

(using Stirling’s formula and other standard estimations). The subgraph L induced
by such a set has at most 2∆ vertices and maximum degree at most ∆. Thus, L
may be generated in O(∆2) operations (including the generation of its vertex set),
and checked for diameter 2 in O(∆3) operations. Each of the O(22∆) subsets of V (L)
may be generated, be checked to see if it is a maximal independent set in L, and
have its weight calculated in O(∆2) operations, so we require O(∆222∆) operations
to determine whether L is non-well-covered.

Now, given a non-well-covered diameter 2 graph L, we must see if S exists with
Q\NQ[S] having L as a component. As in the proof of Theorem 3.1, we may assume
that every vertex of S is at distance 2 from L. Given a set S of vertices at distance 2
from L, we need check only that S is independent and that every vertex at distance 1
from L is covered by, i.e., adjacent to, a vertex of S. Since L has at most 2∆ vertices,
there are at most 2∆(∆− 1) vertices at distance 1 from L, and at most 2∆(∆− 1)2

vertices at distance 2 from L. Therefore, there are O(22∆(∆−1)2

) potential sets S,
each of which can be generated in O(∆3) operations and checked for independence
and covering in O(∆4) operations.

Combining the above estimates, we come up with a bound on the number of
operations in which the dominant term comes from the number of vertices v, the
number of sets giving a possible L, the number of possible sets S, and the time to
check each S for independence and covering. Thus the total number of operations
required is

O(n · e2∆2−2∆∆2∆−3/2 · 22∆(∆−1)2 ·∆4) = O(ne2∆∆2∆+5/222∆3−4∆2

),

which is clearly O(n22∆3

).
In some cases, where the maximum degree is large but there are only a few

vertices of maximum degree and they are widely separated, it may be more useful to
observe that the above method also uses at most O(nq222q) operations, where q is
the maximum of |N4[v]| for v ∈ V (G). For example, if most vertices have degree 3 or
less, with any two vertices of degree 4 or more always being separated by distance 5
or more, then q ≤ 15∆ + 1, and so we obtain a bound on the number of operations of
O(n∆2230∆), which is better than a bound involving 22∆3

.
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Theorem 3.1, in fact, implies that in a non-well-covered graph G, there is some
vertex for which the subgraph Q = Q(v) induced by N4[v] is non-well-covered. If the
converse of this statement were true, it would give a very simple local characterization
of well-covered graphs. Unfortunately, the converse is false, as shown by the graph G
obtained from a 9-cycle by joining one pendant vertex to each original vertex: this
graph is well-covered, but every Q(v) is non-well-covered.

We can now answer the question posed in [2], of whether well-covered graphs of
bounded degree can be recognized in polynomial time.

Corollary 3.3. Suppose that addition and comparison in A can be done in
polynomial time. For graphs, let n denote the number of vertices and ∆ the maximum
degree.

(i) Suppose F is a family of A-weighted graphs such that ∆ = O( 3
√

log n). Then
we may determine whether a graph in F is well-covered in polynomial time.

(ii) Suppose F is a family of A-weighted graphs such that ∆ = O(1), i.e., ∆ is
bounded by a constant. Then we may determine whether a graph in F is well-covered
in linear time (O(n) operations).

We now mention some applications of the above, to some of the specific prob-
lems mentioned earlier and to some classes of graphs derived from (unweighted) well-
covered graphs. We expect that our results will also apply to many other interesting
situations involving “greedy” or “random” processes.

Corollary 3.4. The following questions may be settled in polynomial time:

(a) Given a family of graphs with ∆ = O( 3
√

log n), do all maximal independent
sets have the same parity?

(b) Given a family of graphs with ∆ = O( 3k
√

log n), do all radius k independence
sets (k-packings) have the same cardinality? Or do they all have the same parity?

(c) Given a family of hypergraphs where the number of edges is m and each edge
intersects at most O( 3

√
logm) other edges, do all matchings have the same cardinality?

Or are all matchings perfect?

(d) Given a family of graphs with ∆ = O( 3
√

log n), is a graph in the class W2

(also known as 1-well-covered) or is it strongly well-covered? (See [21] for definitions
and work on these concepts. One of us (Caro) has shown that the first of these two
problems is co-NP-complete for general graphs or even K1,4-free graphs [3].)

Is it possible to significantly improve Theorem 3.2? For example, is there ε > 0
such that determining whether a graph (weighted or unweighted) is well-covered can
be done in polynomial time when ∆ = O(nε)? For any ε > 0, this problem is co-
NP-complete, because for any graph G with n vertices, determining whether G is
well-covered is equivalent to determining whether the union of n1/ε−1 disjoint copies
of G is well-covered and for this union, ∆ = O(nε).

Theorem 3.2 and the previous paragraph refer to graphs which are sparse. Some
observations may also be made for dense graphs. Let ∆ denote the maximum degree
of the complement of a graph, equal to n− 1− δ, where δ is the minimum degree. If
∆ = O(log n), then any vertex has at most O(log n) nonneighbors, and all independent
sets may be constructed and tested for maximality in polynomial time, so determining
whether a graph (weighted or unweighted) is well-covered may be done in polynomial
time. However, for any ε > 0, the problem of determining whether graphs with
∆ = O(nε) are well-covered is co-NP-complete. For any G, determining whether G is
well-covered is equivalent to determining whether the join of n1/ε−1 disjoint copies of
G is well-covered and for this join, ∆ = O(nε).

Algorithmically, it may be possible to take advantage of the ease of finding a
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maximum independent set in an unweighted well-covered graph, without explicitly
being able to recognize well-covered graphs. Jerry Spinrad (personal communication)
has posed the following problem: Is there a polynomial time algorithm which, given
any graph, either finds a maximum independent set for the graph or reports that the
graph is not well-covered? A weighted version of this makes sense only in the context
of nonnegative real weights.

Finally, it is interesting to contrast the behavior of two closely-related problems:
determining whether a graph is well-covered and finding a maximum independent set.
The recognition problem for well-covered graphs is co-NP-complete [8, 25], but for any
constant ∆, we can recognize well-covered graphs of maximum degree at most ∆ in
linear time. The maximum independent set problem, however, remains NP-complete
even for cubic planar graphs (see [13, p. 194] for references).

4. Well-covered weightings. In this section we consider the following concept.
Given an abelian group A and an unweighted graph G, a function x : V (G) → A is
called a well-covered weighting of G if it makes G into a well-covered A-weighted
graph. The zero function is always a well-covered weighting, but does a graph have
any nonzero (i.e., nonzero for at least one vertex) well-covered weighting? Sometimes
we may wish to add stronger restrictions, such as that the weighting must be nonzero
for all vertices, or that it must take nonnegative or positive values if A is an additive
subgroup of R.

Not every graph has a nonzero well-covered weighting. To give two arbitrary
examples, the Petersen graph and every cycle of length 8 or more have no nonzero
well-covered weighting over any abelian group. It is not difficult to prove this by using
Observation 2.1 to derive properties of a well-covered weighting and then deduce that
it must be zero.

Let B(G) denote the set of maximal independent sets, i.e., bases, of G. If x is a
well-covered weighting, then x(B) must be the same for all B ∈ B(G), i.e., if B0 is a
fixed element of B(G), then

x(B)− x(B0) = 0 ∀B ∈ B(G)\{B0}.
We call this system of equations in the variables x(v), v ∈ V (G), a global well-covering
system for G. When A is a commutative ring with identity, as well as an additive
abelian group, it is a linear system over A. It is a finite system, but, in general, it
will have exponentially many equations, and so we will not be able to determine in
polynomial time if there is a nonzero well-covered weighting of G.

However, we can replace a global system by another system using Theorem 3.1. In
the following discussion, we use the notation from that theorem. For each v ∈ V (G),
let L(v) denote the set of all subgraphs L which (i) are obtained as a component of
Q(v)\NQ(v)[S] for some independent S in Q(v), (ii) contain v, (iii) contain at most
2∆(G) vertices, and (iv) have diameter at most 2. By Theorem 3.1, G is well-covered
if and only if each element of L(G) = ∪v∈V (G)L(v) is well-covered. Therefore, a weight
function makes G into a well-covered graph if and only if it makes each element of
L(G) well-covered. Thus, the well-covering system for G has the same solution set as
the union of a global well-covering system for each element of L(G): we will call this
union a local well-covering system for G. Constructing a local well-covering system
requires only a minor modification in the algorithm of Theorem 3.2. Instead of a
step to compute and compare its weight for a maximal independent set in a graph
L ∈ L(G), we have a step to set up its equation. Therefore, a local well-covering

system can be constructed in O(n22∆3

) operations. In particular, if ∆ = O( 3
√

log n),
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we obtain a polynomial time algorithm to set up a local well-covering system. By
Gaussian elimination, we can then find a basis for the solutions of that system in
polynomial time, and so we have a polynomial time algorithm to determine a basis
for the space of well-covered weightings of G.

As a minor modification of the above, a local well-covering system may be used
to compute the rank over a given field of the maximal independent set incidence
matrix X of a graph (rows are indexed by maximal independent sets S, columns by
vertices v, with an entry being 1 if v ∈ S and 0 otherwise). Since a local well-covering
system is equivalent to any global well-covering system, the rows of the matrix of
a local well-covering system together with the incidence vector of any one maximal
independent set span precisely the rowspace of X. If ∆ = O( 3

√
log n) this gives a

polynomial time algorithm for finding the rank of X. In the case where the graph
is (unweighted) well-covered, every row of X has the same number of 1’s and so X
has some special structure; however, the algorithm is valid regardless of whether the
graph is well-covered, which is a little surprising.

A case which appears to have special interest is the case of positive real, rational,
or integral weightings. Working with real or rational numbers is essentially the same,
as in either case we have a basis for the solution set of a (global or local) well-covering
system using only rational numbers, because all coefficients in the system are integral
(in fact, 0 or ±1). And working with rational numbers or integers is essentially the
same, because to obtain an integral solution we merely multiply by a constant to clear
the denominator in a rational solution. Therefore, we assume that we are working
with rational numbers. Not all graphs have a positive well-covered weighting. The
simplest example known to us is P5; the central vertex must have weight 0 in any well-
covered weighting over any A. We would guess that determining whether a positive
well-covered weighting exists is, in general, a difficult problem.

If we have a positive well-covered weighting for a graph, then by multiplying by
a suitable positive constant, we know that there is a positive well-covered weighting
for which all weights are at least 1. Therefore, we can formulate the question as to
whether a graph has a positive well-covered weighting as follows: Is there a weighting
which satisfies a (global or local) well-covering system, and for which all weights are
at least 1? This feasibility problem is solvable via linear programming, and thus there
is a polynomial algorithm to solve it when a well-covering system can be found in
polynomial time, e.g., when ∆ = O( 3

√
log n). The existence problem for nonnegative

nonzero well-covered weightings can be solved in a similar way.

As a final remark, note that the idea of the space of well-covered weightings
(vertex weightings with a uniform sum on the maximal independent sets of a graph)
has been extended by Caro and Yuster [6, 7] to the idea of a uniformity space (the
vertex weightings with a uniform sum on the edges of an arbitrary hypergraph).
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Abstract. In this paper we extend the notion of a ranking of elements in a weak order to a
ranking of elements in general ordered sets. The weakness of an ordered set P = (X,≺) (denoted
wk(P )) is the minimum integer k for which there exists an integer-valued function lev : X → Z
satisfying: (i) if x ≺ y, then lev(x) < lev(y); and (ii) if x ‖ y, then |lev(x)− lev(y)| ≤ k (where “‖”
denotes incomparability). A forcing cycle L in P is a sequence of elements L : x = v0, v1, . . . , vm = x
of P so that for each i ∈ {0, 1, . . . ,m− 1} either vi ≺ vi+1 or vi ‖ vi+1.

Our main result relates these two concepts; we prove wk(P ) = maxL
⌈
up(L)
side(L)

⌉
, where up(L) =

#{i : vi ≺ vi+1}, side(L) = #{i : vi ‖ vi+1} and the maximum is taken over all forcing cycles L in
P .

We also discuss algorithms for computing wk(P ) and prove that wk(P ) is a comparability
invariant.

Key words. partially ordered sets, weak orders
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PII. S0895480197319628

1. Introduction. We begin with some notation. The ordered sets in this paper
will be irreflexive, with “≺” denoting the relation, unless otherwise specified. If x
and y are incomparable elements, we write x ‖ y. We denote by r+ s the ordered set
consisting of two disjoint chains, one with r elements, the other with s elements (the
ordered set 3 + 4 is shown in Figure 2.2).

Definition 1.1. Given an ordered set P = (X,≺), and a nonnegative integer k,
an integer-valued function lev : X → Z is a k-leveling function of P if it satisfies the
following for all x, y ∈ X.

Rule A. If x ≺ y, then lev(x) < lev(y).
Rule B. If x ‖ y, then |lev(x)− lev(y)| ≤ k.

An ordered set P = (X,≺) is k-weak if there exists a k-leveling function of P .
The weakness of an ordered set P, denoted wk(P ), is the least k for which P is k-weak.

It is easy to see that an ordered set P with n elements has wk(P ) ≤ n− 1 simply
by taking a linear extension of P and assigning lev(x) to be the height of x in the
linear extension. Thus the concept of weakness is well defined. In Proposition 3.1 and
Theorem 3.4 we improve this bound to wk(P ) ≤ min(hgt(P ), dn−2

2 e), where hgt(P )
is the number of elements in a maximum chain in P .

In the case k = 0, Rules A and B can be combined as follows: A 0-leveling
function lev : X → Z is one that satisfies x ≺ y iff lev(x) < lev(y) for all x, y ∈ X.
The resulting 0-weak orders are known as weak orders [1]. Thus there is a natural
ranking of the elements of a 0-weak order, which provides an ordering that is almost
linear, except that ties are allowed. One example of a weak ordering is a set of students
ordered by grade point average.
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Fig. 2.1. An ordered set Q with wk(Q) = 2.

More generally, there may be several criteria for ordering elements. As an exam-
ple, the management of a company may want to order employees based on perfor-
mance. Such an order is unlikely to be a weak order. Yet it is still desirable to assign a
rank (level) to each employee for the purposes of salary computation. If employee y is
superior to employee x, y should get a higher salary than x (Rule A). In addition, it is
desirable to minimize the largest salary discrepancy between incomparable employees.
This is achieved by using a k-leveling function where k is as small as possible, i.e.,
k = wk(P ).

The rest of the paper is organized as follows. In section 2 we introduce forcing
cycles and prove our main theorem which relates weakness to forcing cycles. We
prove two upper bounds on weakness in section 3 and consider algorithms to compute
weakness in section 4. Finally, in section 5 we prove that weakness is a comparability
invariant.

2. Forcing cycles. In this section we characterize the weakness of an ordered
set in terms of what we call forcing cycles. Each forcing cycle in P provides a lower
bound on wk(P ). Surprisingly, wk(P ) is completely determined by the forcing cycles
in P .

Given an ordered set P, a forcing cycle L in P is a sequence of elements L :
x = v0, v1, . . . , vm = x of P so that for each i ∈ {0, 1, . . . ,m − 1} either vi ≺ vi+1

or vi ‖ vi+1. The element x is called the starting point of cycle L. Given a forcing
cycle L : x = v0, v1, . . . , vm = x of an ordered set, we define up(L) = #{i : vi ≺
vi+1} and side(L) = #{i : vi ‖ vi+1}. Thus up(L) + side(L) = m. The sequence
L′ : v0, v1, . . . , v6, v0 is a forcing cycle in the ordered set shown in Figure 2.1. Note
that up(L′) = 4 and side(L′) = 3.

We make a few remarks about forcing cycles before stating the main result of this
paper.

1. Any element may be chosen as the starting point of a forcing cycle. This
is true because if L : x = v0, v1, . . . , vm = x is a forcing cycle, so is Li :
vi, vi+1, . . . , vm = v0, v1, . . . , vi for each i < m.

2. The quantities up(L) and side(L) are independent of the starting point of L.
3. Every forcing cycle L has side(L) ≥ 2.

Proof of 3. Let L : x = v0, v1, . . . , vm = x be a forcing cycle of the ordered
set P = (X,≺). If side(L) = 0, then x ≺ v1 ≺ · · · ≺ vm−1 ≺ x which
implies x ≺ x, contradicting the irreflexivity of P . If side(L) = 1, then there
exists i ∈ {1, 2, . . . ,m − 1} such that x = v0 ≺ v1 ≺ · · · ≺ vi, vi ‖ vi+1, and
vi+1 ≺ vi+2 ≺ · · · ≺ vm = x. But then by transitivity, vi+1 ≺ x ≺ vi, and
therefore, vi+1 ≺ vi, which contradicts vi ‖ vi+1. Thus side(L) ≥ 2.

Theorem 2.1. If P = (X,≺) is an ordered set, then wk(P ) = maxL

⌈
up(L)
side(L)

⌉
where the maximum is taken over all forcing cycles L in P .
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Fig. 2.2. The ordered set 3 + 4.

Before proving Theorem 2.1, we return to the ordered set Q in Figure 2.1. It is
easy to check that wk(Q) = 2. As noted before, the forcing cycle L′ : v0, v1, . . . , v6, v0

has up(L′) = 4 and side(L′) = 3, which yields
⌈
up(L′)
side(L′)

⌉
=
⌈

4
3

⌉
= 2 = wk(Q).

Proof of Theorem 2.1. First we show wk(P ) ≥
⌈
up(L)
side(L)

⌉
for each forcing cycle L in

P . Let L : x = v0, v1, . . . , vm = x be a forcing cycle in P . To shorten notation, write
a = up(L), b = side(L), t = wk(P ), and let lev be a t-leveling of P . Consider the
sequence of differences: S : lev(v1)−lev(v0), lev(v2)−lev(v1), . . . , lev(vm)−lev(vm−1).
By the definition of a t-leveling function, if vi ≺ vi+1, then lev(vi+1) − lev(vi) ≥ 1,
and if vi ‖ vi+1, then lev(vi+1)− lev(vi) ≥ −t.

Clearly, the sum of the terms of S is 0; thus

0 =

m−1∑
i=0

[lev(vi+1)− lev(vi)] ≥ a · 1 + b · (−t).

By our third remark listed above, we know b is at least 2; hence it is positive and thus
we can conclude t ≥ a/b. Since t = wk(P ) is an integer, we take the ceiling of the

ratio to obtain wk(P ) = t ≥ ⌈ab ⌉ =
⌈
up(L)
side(L)

⌉
.

It remains to show that if wk(P ) = t, then there exists a forcing cycle L in P

so that
⌈
up(L)
side(L)

⌉
= t. We will construct such a cycle L using the algorithm k-Weak

Leveling, which is given in [5]. We outline the steps of the algorithm that are needed
here; a proof of the correctness of the algorithm and a time complexity bound can be
found in [5].

Algorithm k-Weak Leveling begins by breaking an ordered set into inseparable
suborders, where Q = (X,≺) is inseparable if it can not be partitioned nontrivially
X = V ∪W so that v ≺ w for every v ∈ V , w ∈W . It is easy to show that the weakness
of P is equal to the maximum of the weaknesses of these inseparable suborders. Thus
without loss of generality, we will assume our ordered set P is inseparable. The
algorithm constructs a k-leveling of P, if such a leveling exists, otherwise, it reports
that P is not k-weak.

Since wk(P ) = t, we know that P is not (t− 1)-weak. We run Algorithm k-Weak
Leveling on input P with k = t− 1.

Throughout the proof we will refer to the ordered setH = 3+4 shown in Figure 2.2
and to Table 2.1 which shows an implementation of the algorithm k-Weak Leveling
with k = 2 on the input H. It is easy to check that wk(H) = 3; thus the algorithm
will fail to produce a 2-leveling of H. However, from this failed attempt, we will

produce a forcing cycle L1 in P with
⌈
up(L1)
side(L1)

⌉
= 3.

Given any k-leveling of an ordered set P , one can add the same constant to the
level assigned to each element of P (i.e., lev′(x) = lev(x) + c for each element x in P )
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Table 2.1
A sequence of narrowing steps in the implementation of the Algorithm k-Weak Leveling with

k = 2, applied to the ordered set in Figure 2.2.

Initial NS 1 NS 1 NS 1 NS 5 NS 4 NS 1 NS 1 NS 1 NS 4
z R(z) x=d x=e x=f x=g x=g x=g x=f x=e x=c

y=e y=f y=g y=a y=a y=f y=e y=d y=d

a (−∞,0] [0,0]
b [1,1]
c [2, ∞) [2,1]
d [-1,3] [-1,-1]
e [-1,3] [0,3] [0,0]
f [-1,3] [1,3] [1,1]
g [-1,3] [2,3] [2,2]

and the resulting function (lev′) will be another k-leveling of P . Thus in searching
for a k-leveling of P , we may start by picking a particular base element b of P and
designating lev(b) = 1. This is the initial step in the algorithm.

Next, range sets R(x) = [`(x), r(x)] are assigned to each x ∈ X as follows. If
x = b, then R(x) = [1, 1]. For x 6= b,

• if b ≺ x, set R(x) = [2,∞).
• if x ≺ b, set R(x) = (−∞, 0].
• if b ‖ x, set R(x) = [1− k, 1 + k].

By the definition of a k-leveling, if P has a k-leveling lev with lev(b) = 1, then
for each element x in P , we have lev(x) ∈ R(x). This statement will remain true even
as the ranges are narrowed in the following steps. The second column of Table 2.1
shows the initial ranges for the elements of H.

After this initialization, the ranges are repeatedly narrowed by choosing pairs of
distinct elements x, y ∈ X − {b} (labeled so that x ≺ y or x ‖ y) and applying one or
more of the following narrowing steps.

NS 1. If x ≺ y and `(y) ≤ `(x), increase `(y) to `(x) + 1.
NS 2. If x ≺ y and r(x) ≥ r(y), decrease r(x) to r(y)− 1.
NS 3. If x ‖ y and r(y) ≥ r(x) + k + 1, decrease r(y) to r(x) + k.
NS 4. If x ‖ y and r(x) ≥ r(y) + k + 1, decrease r(x) to r(y) + k.
NS 5. If x ‖ y and `(y) ≤ `(x)− k − 1, increase `(y) to `(x)− k.
NS 6. If x ‖ y and `(x) ≤ `(y)− k − 1, increase `(x) to `(y)− k.
Note that in applying NS 1 and NS 2 to ranges with infinite bounds, we think

of “−∞+ 1 = −∞” and “∞− 1 = ∞.” The pairs x, y are chosen with some care to
ensure that the algorithm runs in polynomial time. We omit the details here because
they are not necessary in our proof.

Either Algorithm k-Weak Leveling produces a k-leveling of P (by setting lev(v) =
`(v) for each v once the ranges stabilize and become finite) or, eventually, some
element v ∈ U has its range narrowed to the empty set, i.e., R(v) = [`(v), r(v)] = ∅
so `(v) > r(v), where `(v) and r(v) are integers. Since P is not k-weak in our case,
the latter occurs.

Table 2.1 shows the narrowing of ranges which occurs as a sequence of narrowing
steps is applied to pairs of elements in H. In this example, the algorithm halts when
R(c) is narrowed to the empty set with `(c) = 2 and r(c) = 1.

In general, the left and right endpoints of R(v) change as the algorithm runs,
so we need notation to refer to the values of `(v) and r(v) at specific times in the
algorithm’s implementation. Let r0 be the value of r(v) when the algorithm halts
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with R(v) = [`(v), r(v)] = ∅. We will backtrack through the implementation of the
algorithm to produce a sequence of elements v = v0, v1, . . . , vm−1, vm = b so that
applying the narrowing steps to the pairs x = vi, y = vi+1 for i = m − 1 down to
i = 0 yields r0 as the right endpoint of R(v).

Trace back through the implementation of Algorithm k-Weak Leveling to find the
narrowing step at which the right endpoint of R(v) was lowered to r0. Note that right
endpoints of range sets are lowered using only NS 2, 3, and 4 when they are compared
to the right endpoints of range sets of other elements. Since NS 3 and 4 are the same
step except that the roles of x and y are exchanged, without loss of generality, we will
assume NS 4 was used. Let v1 be the element for which the right endpoint of R(v)
was lowered to r0 when the pair x = v, y = v1 was considered, and let r1 be the right
endpoint of R(v1) at that time.

If v0 ≺ v1 (NS 2), then r0 = r1 − 1. If v0 ‖ v1 (NS 4), then r0 = r1 + k.

Continue tracing back in this fashion. More precisely, given the sequence vi, vi−1,
. . . , v1, v0 = v and the corresponding sequence of right endpoints ri, ri−1, . . . , r1, r0,
we trace back an additional step as follows. Let vi+1 be the element for which the right
endpoint of R(vi) was lowered to ri when the pair x = vi, y = vi+1 was considered.
Let ri+1 be the right endpoint of R(vi+1) at this time. If vi ≺ vi+1 (NS 2), then
ri = ri+1 − 1. If vi ‖ vi+1 (NS 4), then ri = ri+1 + k.

Eventually, we trace back to the beginning of Algorithm k-Weak Leveling, i.e.,
vm = b for some m and thus rm = lev(b) = 1. This produces the sequence

S : v = v0, v1, v2, . . . , vm = b

which for each i satisfies

• vi ≺ vi+1, in which case ri = ri+1 − 1, or
• vi ‖ vi+1, in which case ri = ri+1 + k.

In our specific example H, the sequence produced is c, d, e, f, g, a, b and the values
of ri are r0 = 1, r1 = −1, r2 = 0, r3 = 1, r4 = 2, r5 = 0, r6 = 1.

Let up(S) = #{i : vi ≺ vi+1} and let side(S) = #{i : vi ‖ vi+1}. Then r0 =
rm − up(S) + k · side(S) = 1− up(S) + k · side(S).

Similarly, construct the sequence which leads to the left endpoint `0 of R(v):

T : v = w0, w1, w2, . . . , wr = b

which for each j satisfies

• wj � wj+1, in which case `j = `j+1 + 1, or
• wj ‖ wj+1, in which case `j = `j+1 − k.

Again, in our specific example, the sequence produced is c, b and the values of `j
are `0 = 2, `1 = 1.

Let down(T ) = #{j : wj � wj+1} and let side(T ) = #{j : wj ‖ wj+1}. Then
`0 = `r + down(T )− k · side(T ) = 1 + down(T )− k · side(T ).

Appending S to the reversal of T gives the forcing cycle

L : b = wr, wr−1, . . . , w1, w0 = v = v0, v1, . . . , vm = b

with up(L) = up(S)+down(T ) and side(L) = side(S)+side(T ). The cycle produced
in our example is L1 : b, c, d, e, f, g, a, b, with up(L1) = 5 and side(L1) = 2, which

yields
⌈
up(L1)
side(L1)

⌉
= 3 = wk(H).
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In general, since r0 < `0, we have

1− up(S) + k · side(S) = r0 < `0 = 1 + down(T )− k · side(T )

k · side(L) < up(L)

k <
up(L)

side(L)
.

However, k is an integer, so
⌈
up(L)
side(L)

⌉
≥ k + 1 = t = wk(P ). By the proof of the

first half of this theorem, wk(P ) ≥
⌈
up(L)
side(L)

⌉
. Thus wk(P ) =

⌈
up(L)
side(L)

⌉
and L is our

desired forcing cycle.

3. Upper bounds on weakness. Recall that the height of an ordered set P ,
denoted hgt(P ), is the number of elements in a maximum chain of P . In the intro-
duction we observed that any ordered set P with n elements has wk(P ) ≤ n− 1. In
this section we improve this bound in two different ways by proving that

• wk(P ) ≤ hgt(P ) in Proposition 3.1; and
• wk(P ) ≤ ⌈n−2

2

⌉
in Theorem 3.4.

The first is a simple result; our proof of the second uses forcing cycles. The
inequalities in each of these results is sharp, and in each case we give examples where
equality holds.

Proposition 3.1. If P = (X,≺) is an ordered set, then wk(P ) ≤ hgt(P )− 1.

Proof. Let P = P1 be an ordered set with hgt(P ) = m. For i = 1, 2, . . . ,m, let
Si be the set of all minimal elements of Pi, and let Pi+1 = Pi − Si. Thus the sets
S1, S2, . . . , Sm partition X. For v ∈ Si, define lev(v) = i. It is easy to check that this
is a valid (m− 1)-leveling of P .

The ordered set Q in Figure 2.1 has hgt(Q) = 3 and wk(Q) = 2; thus the
inequality in Proposition 3.1 is sharp.

The next lemma is an easy algebraic result which we need in the proof of Lemma 3.3.

Lemma 3.2. Let a, b, c and d be nonnegative integers with b and d strictly greater
than 0. If a/b ≤ c/d, then a/b ≤ (a+ c)/(b+ d) ≤ c/d.

Proof. The proof (by contradiction) is a simple calculation.

Our definition of forcing cycles allows for a sequence with repeated elements.
However, as the next lemma shows, forcing cycles with repeated elements are never
needed. Thus we are motivated to define the following: A forcing cycle L : x =
v0, v1, v2, . . . , vm = x is said to have distinct elements if the vi are distinct (except for
v0 = vm).

Lemma 3.3. If L is a forcing cycle of an ordered set P , then there exists a forcing

cycle L′ of P with distinct elements so that
⌈
up(L′)
side(L′)

⌉
≥
⌈
up(L)
side(L)

⌉
.

Proof. For a contradiction, assume that L is a smallest forcing cycle that fails to
satisfy the lemma. If L had distinct elements, then L′ = L satisfies the lemma. Thus
we may assume L has repeated elements.

Choose the starting point x of L : x = v0, v1, . . . , vm = x so that there ex-
ists i : 1 < i < m for which the elements v0, v1, . . . , vi−1 are all distinct, but
that vi = v0. Then L can be broken into two smaller, nontrivial forcing cycles
L1 : x = v0, v1, . . . , vi = x, and L2 : vi+1, vi+2, . . . , vm = v0 = vi, vi+1. By con-
struction, L1 has distinct elements. We note that up(L) = up(L1) + up(L2) and
side(L) = side(L1) + side(L2).
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If up(L1)
side(L1) ≥ up(L2)

side(L2) , then by Lemma 3.2 (with a = up(L2), b = side(L2),

c = up(L1) and d = side(L1)) we have up(L)
side(L) ≤ up(L1)

side(L1) and L′ = L1 satisfies the

conditions of the lemma.
Otherwise, up(L1)

side(L1) <
up(L2)
side(L2) . We again apply Lemma 3.2 (this time with a =

up(L1), b = side(L1), c = up(L2), and d = side(L2)) and conclude up(L)
side(L) ≤ up(L2)

side(L2) .

By construction, L2 is smaller than L, so there exists a forcing cycle L3 with distinct

elements in P such that
⌈
up(L3)
side(L3)

⌉
≥
⌈
up(L2)
side(L2)

⌉
. In this case, choose L′ = L3.

Now in either case, L′ is a forcing cycle with distinct elements in P for which⌈
up(L′)
side(L′)

⌉
≥
⌈
up(L)
side(L)

⌉
as desired.

Theorem 3.4. If P is an ordered set with n elements, then wk(P ) ≤ ⌈n−2
2

⌉
.

Proof. Let P be an ordered set with n elements and let k = wk(P ). By Theo-

rem 2.1, there exists a forcing cycle L in P with
⌈
up(L)
side(L)

⌉
= k. By Lemma 3.3, there

exists a forcing cycle L′ of P with distinct elements so that
⌈
up(L′)
side(L′)

⌉
≥ k. Let L′ be

the sequence L′ : x = v0, v1, . . . , vm = x.

Since k is an integer, up(L′)
side(L′) > k − 1; thus up(L′) > (side(L′))(k − 1) ≥ 2k − 2,

because side(L) ≥ 2 for any forcing cycle L. Since up(L′) and 2k − 2 are integers,
up(L′) ≥ 2k − 1. Thus m = up(L′) + side(L′) ≥ (2k − 1) + 2 = 2k + 1.

Recall that L′ has distinct elements, so P has at least 2k + 1 elements, i.e.,
n ≥ 2k + 1. If n is odd, k ≤ n−1

2 =
⌈
n−2

2

⌉
. If n is even, n ≥ 2k + 1 =⇒ n ≥ 2k + 2;

thus k ≤ n−2
2 =

⌈
n−2

2

⌉
. So in either case, wk(P ) = k ≤ ⌈n−2

2

⌉
.

The following example shows that the inequality in Theorem 3.4 is sharp. Let
r =

⌈
n
2

⌉
and s =

⌊
n
2

⌋
. Then, the ordered set P = r + s has exactly n elements.

All forcing cycles L in P with distinct elements have side(L) ≥ 2. The cycle L with
the largest value of up(L) uses each element of P exactly once. Therefore, up(L) =

(
⌈
n
2

⌉−1)+(
⌊
n
2

⌋−1) = n−2. Using Theorem 2.1, we have wk(P ) =
⌈
up(L)
side(L)

⌉
=
⌈
n−2

2

⌉
.

4. Computing the weakness of an ordered set. In [5] it is shown that
Algorithm k-Weak Leveling determines if an n-element order P is k-weak in O(n4k)
time. Combining Algorithm k-Weak Leveling with Theorem 3.4 immediately yields
the following O(n6) algorithm for computing the weakness of an n-element ordered
set.

Use Algorithm k-Weak Leveling to check if P is i-weak for i = 0, 1, 2, . . . and stop
as soon as a value of i is found for which P is i-weak. By definition, this value of i
is wk(P ). Theorem 3.4 ensures that in the worst case, Algorithm k-Weak Leveling is
implemented for i = 1, 2, . . . ,

⌈
n−2

2

⌉
before finding an i for which P is i-weak. Thus

in the worst case we run an O(n4k) algorithm for k = 1, 2, . . . ,
⌈
n−2

2

⌉
, resulting in a

complexity of O(n6).
A better method was suggested by Jeremy Spinrad (personal communication) and

implemented by Christina Chen [2]. This method searches for a forcing cycle L that

maximizes the ratio
⌈
up(L)
side(L)

⌉
. For each value of r = 2, 3, . . . , n the algorithm uses

dynamic programming to compute the maximum value of up(L) when side(L) is fixed
at r. The running time for this algorithm is O(n4). Once the value of k = wk(P ) is
computed, Algorithm k-Weak Leveling is run to construct a k-leveling of P .

5. Weakness is a comparability invariant. If P = (V,≺) is an ordered set,
its associated comparability graph G = (V,E) is the graph whose vertex set is the
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element set of P and with xy ∈ E iff x ≺ y or y ≺ x. In this section we follow the
notation of [6].

Given a graph G = (V,E), an autonomous set S ⊆ V is one with the property
that every vertex x ∈ V − S is either adjacent to all vertices in S or to none of the
vertices in S. Autonomous sets play an important role in relating two ordered sets
that have the same comparability graph.

Let G = (V,E) be a comparability graph and let P1 = (V,≺1) and P2 = (V,≺2)
be ordered sets, each of whose associated comparability graph is G. We say that P2

is obtained from P1 by an elementary reversal if there exists an autonomous set S of
G such that

• S is not an independent set;
• if x, y are not both in S, then x≺1y iff x≺2y; and
• if x, y ∈ S, then x≺1y iff y≺2x.

Thus to obtain P2 from P1 (or vice versa), one reverses all comparabilities within
S and leaves all other comparabilities/incomparabilities unchanged. The first of the
three conditions ensures that P1 6= P2.

Several parameters of ordered sets are known to be comparability invariant, most
notably, dimension [6]. The next theorem shows that weakness is a comparability
invariant.

Theorem 5.1. Let G = (V,E) be the comparability graph associated with ordered
sets P and Q. Then wk(P ) = wk(Q).

We will need the following result of Gallai [3] (which appears in [6, pgs. 61–62])
for the proof of Theorem 5.1. A simple proof of Lemma 5.2 appears in [4].

Lemma 5.2. Let G = (V,E) be the comparability graph associated with distinct
ordered sets P = (V,≺p) and Q = (V,≺q). Then, there exists a sequence of ordered
sets P0, P1, . . . , Pm so that P0 = P , Pm = Q and Pi+1 is obtained from Pi by an
elementary reversal for i = 0, 1, . . . ,m− 1.

Proof of Theorem 5.1. Let G = (V,E) be a comparability graph and let P and Q
be ordered sets, each of whose associated comparability graph is G. By Lemma 5.2,
there exist orders P0 = P, P1, . . . , Pm = Q on set V such that Pi+1 is obtained
from Pi by an elementary reversal for i = 0, 1, . . . ,m − 1. Thus it suffices to show
wk(Pi) = wk(Pi+1). We accomplish this by showing that if Pi has a k-leveling
function, then so does Pi+1. This suffices to prove the theorem, since the process
of obtaining one ordered set from another by an elementary reversal is a symmetric
operation.

Let Pi = (V,≺1) and Pi+1 = (V,≺2). Since Pi+1 is obtained from Pi by an
elementary reversal, there exists an autonomous set S ⊆ V of G associated with this
reversal. Let lev1 : V → Z be a k-leveling function of Pi. Let s = min{lev1(v) : v ∈ S}
and let t = max{lev1(v) : v ∈ S}. We construct the function lev2 : V → Z as follows:

• If x ∈ S, let lev2(x) = s+ t− lev1(x).
• If x ∈ V − S, let lev2(x) = lev1(x).

To complete the proof, one checks that lev2 is a valid k-leveling function of
Pi+1.

Acknowledgments. The authors would like to thank Ed Scheinerman and Jer-
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Abstract. In this paper we present and describe an improved version of the Zero-Neighbors
algorithm, which we call the Zero-Coverings algorithm. We also present a method for finding a
smallest subset of codewords ( Zero-Coverings) which need to be stored to perform the Zero-Coverings
algorithm. For some short codes, the sizes of Zero-Coverings are obtained by computer searches; for
long codes, an asymptotic bound on the sizes of such subsets is also given.
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1. Introduction. In general, complete decoding [11] for a linear block code
has proved to be an NP-hard computational problem [1]. That is, it is unlikely
that a polynomial time (space) complete decoding algorithm for a linear block code
can be found. A new decoding algorithm, the Zero-Neighbors algorithm (ZNA) [9],
using the concept of a Zero-Neighbors, was proposed. Only the codewords in a Zero-
Neighbors need to be stored and used in the decoding procedure. The size of a
Zero-Neighbors is very small compared to min(2k, 2n−k) for n >> 1 and a wide range
of code rates R = k/n. An improvement of the Zero-Neighbors algorithm, the Zero-
Guards algorithm (ZGA), was recently presented [7, 10]. The ZGA further reduces
the number of codewords to be stored. The special set of these codewords is called
Zero-Guards. The time and space complexity of the ZNA and ZGA are determined by
the sizes of the Zero-Neighbors and the Zero-Guards used, respectively. The problem
here is how to find the smallest subset of codewords that can be used to perform the
ZNA-like decoding procedure. We call all the decoding algorithms that perform a
ZNA-like decoding procedure “ZNA-like” algorithms. Similarly, we call any subset
of codewords that can be used to perform a ZNA-like algorithm procedure a “ZN-
like” subset of codewords. The ZN-like subset of codewords with the smallest size is
called an “optimal ZN-like set.” Furthermore, a ZNA-like algorithm using an optimal
ZN-like set is denoted as an “optimal ZNA-like” algorithm.

In this paper we present an optimal ZNA-like algorithm, the Zero-Coverings al-
gorithm, and give a systematic way in which to find an optimal ZN-like set, a Zero-
Coverings. Furthermore, an asymptotic bound on the size of an optimal ZN-like set
is derived for long codes. In section 2 we briefly review the Zero-Neighbors and the
Zero-Guards algorithms. In section 3 we give a description of the Zero-Coverings al-
gorithm and, in the next section, properties of Zero-Coverings are presented. We also
give a systematic way to find Zero-Coverings. Simulation results and an asymptotic
bound on the size of a Zero-Coverings are given in section 5. Remarks and conclusions
are given in section 6.
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2. The Zero-Neighbors and the Zero-Guards algorithms. In this section
we briefly describe the ZNA and an improved version of it, the ZGA. First, we give
some definitions.

Let Z be the set of all binary vectors of length n, and let C⊂ Z be a binary
linear block code. Let d(x1,x2) denote the Hamming distance between x1,x2 ∈ Z.
Let w(x) = d(x,0) denote the Hamming weight of x and let ⊕ denote the modulo-2
addition. Furthermore, let dmin be the nonzero minimum weight of codewords in C.
In this paper we will assume that dmin ≥ 2.

Definition 2.1. The domain D(c) of a codeword c ∈ C is the set of all x∈ Z
such that d(x, c) ≤ d(x, c′), for all c′ ∈ C.

Definition 2.2. The vicinity B(x) of x ∈ Z is the set of all y ∈ Z such
that d(x,y) = 1. The domain frame G(c) of a codeword c ∈ C is the set G(c) =⋃
x∈D(c)B(x)−D(c).

Definition 2.3. A set of Zero-Neighbors (ZN) is a set N0 of codewords such
that

G(0) ⊂
⋃
c∈N0

D(c), where

|N0| = min

{
|N | | N ⊂ C, G(0) ⊂

⋃
c∈N

D(c)

}
.

It can be shown that if x 6∈ D(0), there exists a c ∈ N0 such that w(x⊕ c) < w(x).
Thus, the Zero-Neighbors algorithm is as follows.

Algorithm. Let y = y0 ∈ Z be the received vector to be decoded. At the ith step
of the algorithm we calculate w(yi−1 ⊕ c) for all c ∈ N0. If there exists a ci ∈ N0

such that w(yi−1 ⊕ ci) < w(yi−1), we set yi = yi−1 ⊕ ci and go to the next step;
otherwise, the algorithm terminates. If the algorithm terminates at the (m + 1)th
step, then ym = y ⊕∑m

i=1 ci ∈ D(0) and can be taken as a coset leader, while
c =

∑m
i=1 ci ∈ C is a codeword that is one of the closest to y.

We need only to store a ZN to accomplish this algorithm. It can be shown
that the number of steps m mentioned above is less than or equal to n − bdmin

2 c.
Furthermore, if 1 is in C, then m ≤ bn+1

2 c. Another improved version of the ZNA,
the ZGA, is described next.

Definition 2.4. The frontier F (0) of 0 is the set of all x ∈ Z such that all its
proper descendants [12] belong to D(0) and x 6∈ D(0).

Definition 2.5. A Zero-Guards (ZG) is a set RN0 of codewords such that

F (0) ⊂
⋃

c∈RN0

D(c), where

|RN0| = min

{
|N | | N ⊂ C, F (0) ⊂

⋃
c∈N

D(c)

}
.

In other words, the set of domains of codewords in RN0 forms a minimum covering
of F (0). It is not difficult to see that F (0) ⊂ G(0). Consequently, the number of
codewords in a ZG is less than or equal to that in a ZN . The decoding procedure
of the Zero-Neighbors algorithm described above can be applied to the Zero-Guards
algorithm while we use a ZG instead of a ZN in the procedure.
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3. An optimal ZN-like set. In this section we will give a systematic way to
find an optimal ZN-like set, a Zero-Coverings (ZC), which is related to a Zero-Guards.
First, we give a formal definition of a ZN-like subset of codewords.

Definition 3.1. A ZN-like subset of codewords, CZN , is a subset of C with
the following property: for every received vector y, if y 6∈ D(0), then there exists a
c ∈ CZN such that w(y ⊕ c) < w(y).

It has been shown that a ZN and a ZG are ZN-like subsets of codewords in [9] and
[6], respectively. It is not difficult to see that if N0 in the algorithm given in section 2
is replaced with CZN , the algorithm will still perform complete decoding. That is,
the algorithm is a ZNA-like algorithm. Since the time and space complexity of any
ZNA-like algorithm grow with the size of CZN , in order to reduce the complexity we
need to find the smallest CZN .

Definition 3.2. The covering domain Dc(c) of a codeword c ∈ C is the set of
all x ∈ F (0) such that d(x, c) < d(x,0).

That is, Dc(c) contains all vectors in the frontier F (0) such that they are closer
to c than to 0. Furthermore, if x ∈ D(c), then x ∈ Dc(c) for any x ∈ F (0).

Definition 3.3. A set of Zero-Coverings (ZC) is a subset of C such that

F (0) =
⋃
c∈ZC

Dc(c), where(1)

|ZC| = min

{
|N | | N ⊂ C, F (0) =

⋃
c∈N

Dc(c)

}
.(2)

In other words, the set of covering domains of a Zero-Coverings forms a minimum
covering of the frontier F (0). The algorithm for solving general minimum covering
problems can be found in [5].

There are many properties of the frontier F (0), derived in [6], that can help us
to find F (0). We state these properties here without proofs. The details of these
properties can be found in [6].

Lemma 3.4. Let S(x, a) = {v | v ∈ Z, w(v) = a and v be a descendant of x}.
Then x ∈ F (0) iff x 6∈ D(0) and S(x, w(x)− 1) ⊂ D(0).

Lemma 3.5. If x ∈ F (0), then there exists at least one c ∈ C such that x ∈ D(c)
and x is a descendant of c.

Lemma 3.6. Let x ∈ F (0). If d(x, c) < w(x), then x is a descendant of c.
Lemma 3.7. Let y ∈ Z and y 6∈ D(0). Then there exists a descendant x of y

such that x ∈ F (0).
Lemma 3.8. For every c ∈ C and c 6= 0 there exists a descendant x of c such

that x ∈ F (0).
The following are some new results that are related to covering domains.
Lemma 3.9. If x ∈ F (0), then there exists at least one c ∈ C such that x ∈ Dc(c)

and x is a descendant of c.
Proof. Since x ∈ F (0) and x ∈ D(c) imply that x ∈ Dc(c), by Lemma 3.5, the

result holds.
Lemma 3.10. If x ∈ Dc(c), then x is a descendant of c.
Proof. The result follows directly from Lemma 3.6.
Lemma 3.11. If c ∈ ZC, then there exists one x ∈ F (0) such that x ∈ Dc(c)

and x 6∈ Dc(c
′), c′ 6= c, c′ ∈ ZC.
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Proof. Assume that there is no x ∈ F (0) such that x ∈ Dc(c) and x 6∈ Dc(c
′), c′ 6=

c, c′ ∈ ZC. Then for every x ∈ Dc(c) and x ∈ F (0), there exists at least one
c′ ∈ ZC, c′ 6= c such that x ∈ Dc(c

′). Therefore, if we remove c from ZC we also
have F (0) =

⋃
c∈ZC Dc(c). The above result contradicts the statement that ZC is a

minimum set such that F (0) =
⋃
c∈ZC Dc(c).

Next we need to prove that a ZC is a ZN-like subset of codewords. In order to
show this, it is sufficient to prove the following theorem.

Theorem 3.12. y 6∈ D(0) iff there exists one c ∈ ZC such that w(y⊕c) < w(y).
Proof. Assume that y 6∈ D(0). From Lemma 3.7, there exists a descendant

x of y such that x ∈ F (0). Consider a c ∈ ZC such that x ∈ Dc(c). Hence,
w(y ⊕ c) = d(y, c) ≤ d(y,x) + d(x, c) < d(y,x) + d(x,0) = w(y). Assume that
y ∈ D(0). Then d(y,0) ≤ d(y, c) for all c ∈ C. Thus, w(y) ≤ w(y ⊕ c) and no
c ∈ ZC, such that d(y ⊕ c) < w(y).

Now we prove that ZC is an optimal ZN-like set.
Theorem 3.13. A Zero-Coverings is an optimal ZN-like set.
Proof. Assume that we have a ZN-like subset of codewords, CZN . Let x ∈ F (0).

Since x 6∈ D(0), by the properties of CZN , there exists one c ∈ CZN such that
d(x, c) < d(x,0). Therefore, x ∈ Dc(c). If we run through all of the elements in
F (0), we have a subset of CZN , denoted as C ′ZN , such that

F (0) =
⋃

c∈C′
ZN

Dc(c).

Consequently, any ZN-like subset of codewords will contain a subset that satisfies the
above equality. Therefore, by Definition 3.3, a ZC is a ZN-like subset of codewords
with the smallest size that satisfies the above equality.

In general, the ZGA is not an optimal ZNA-like algorithm. One example to
illustrate this fact is given in the appendix.

4. Properties of the frontier of 0 and a Zero-Coverings. In this section
we give some theorems describing the properties of the frontier of 0 and a ZC that
can be used to find the ZC.

Definition 4.1. Let xC be the coset containing x. Furthermore, let w(xC) be
the Hamming weight of a coset leader in xC.

Theorem 4.2. x ∈ F (0) iff w(x)− 2 ≤ w(xC) ≤ w(x)− 1 and for every vector
v in xC with w(v) < w(x), w(x⊕ v) = w(x) + w(v).

Proof. Assume that x ∈ F (0). Since w(xC) < w(x), then w(xC) ≤ w(x) − 1.
Furthermore, assume that w(xC) < w(x) − 2. Let u be a coset leader in xC and
Let v1 be an immediate descendant of x which differs from x in the ith position.
Furthermore, let v2 be a vector that differs from u only in the ith position. Then
w(v2) ≤ w(x) − 2 and w(v1) = w(x) − 1. Since u and x are in the same coset, v1

and v2 are also in the same coset. Thus, v1 6∈ D(0). This contradicts the statement
that v1 ∈ D(0).

Assume that w(x⊕ v) 6= w(x) +w(v) for a vector v in xC, where w(v) < w(x).
Then there are two cases to consider:

1. w(v) = w(xC). Since w(x⊕ v) 6= w(x) + w(v), there exists a position such
that x and v are one in that position. Let v3 and v4 be descendants of x and v, which
differ from them in the position just mentioned, respectively. Since x and v are in the
same coset, then v3 and v4 are in the same coset, also. Obviously, w(v3) > w(v4).
This contradicts the statement that v3 ∈ D(0).
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2. w(v) 6= w(xC). Then w(v) = w(x)−1 and w(xC) = w(x)−2. In this case,
the argument is similar to that above.

Now assume that, for every vector v in xC with w(v) < w(x), w(x ⊕ v) =
w(x) + w(v) and w(x) − 2 ≤ w(xC) ≤ w(x) − 1. We want to prove that x ∈ F (0).
That is, we need to prove that every immediate descendant of x belongs to D(0). Let
v be any vector in xC such that w(v) < w(x). Let v5 be an immediate descendant
of x that differs from x in the ith position. Let v6 be a vector that is one in the ith
position and that differs from v only in that position. Therefore, v5 and v6 are in
the same coset. v6 has a weight of at least w(x)− 1 since w(x⊕ v) = w(x) + w(v).
Therefore, v5 ∈ D(0).

Base on the above theorem, we can design an efficient algorithm to find F (0)
from a standard array. Furthermore, we can find the Dc(c) from a standard array by
the following theorems. Since the proofs of the theorems are simple, we omit them
here.

Theorem 4.3. Let x ∈ F (0); x ∈ Dc(c) iff there exists a vector v in xC such
that w(v) < w(x) and c = v ⊕ x. Furthermore, if x ∈ Dc(c), then w(c) = 2w(x)− 2
or w(c) = 2w(x)− 1 .

Theorem 4.4. Let x ∈ F (0) and x ∈ Dc(c); then w(xC) ≤ d(x, c) ≤ w(xC)+1.
The following result can be used to derive an upper bound on the size of a ZC.
Theorem 4.5. Let r be the covering radius of the code C. If c ∈ C and

w(c) > 2r + 1, then c 6∈ ZC.
Proof. Assume that c ∈ ZC. From Lemma 3.11 there exists an x ∈ F (0),

x ∈ Dc(c), and x 6∈ Dc(c
′), c′ 6= c. Since x ∈ F (0), w(x) ≤ r + 1 and d(x, c) ≤

r. Hence, w(c) = w(x) + d(x, c) ≤ 2r + 1. Therefore, if w(c) > 2r + 1, then
c 6∈ ZC.

Theorem 4.6. Let c1,c2 ∈ C and c1 be a proper descendant of c2. Then,
c2 6∈ ZC.

Proof. Assume that c2 ∈ ZC and c3 = c1 ⊕ c2. Then, by Lemma 3.11, there
exists an x ∈ F (0) such that x ∈ Dc(c2) and x 6∈ Dc(c

′), c′ 6= c2, c′ ∈ ZC.
Furthermore, by Lemma 3.6, x is a descendant of c2. By Lemma 3.6, if d(x, c1) <
w(x), then x is a descendant of c1. In this case, d(x, c2) = d(x, c1) + w(c3). Since
w(c3) ≥ 2, by Theorem 4.4, x 6∈ Dc(c2), which contradicts the statement that x ∈
Dc(c2). Therefore, d(x, c1) ≥ w(x). Similarly, we have d(x, c3) ≥ w(x). Therefore,
d(x, c2) = d(x, c1) + d(x, c3) − w(x) ≥ w(x). This contradicts the statement that
x ∈ Dc(c2).

The above theorem is much less restrictive than Theorem 3 in [9] which states
that if c1 and c3 are in N0, then c2 6∈ N0. The following result gives a low bound on
the number of codewords in ZC.

Theorem 4.7. All codewords of minimum weight belong to a ZC.
Proof. Let c be a codeword of minimum weight. From Lemma 3.8, there exists

one x ∈ F (0) and x is a descendant of c. Thus, d(c, c′) ≤ d(c,x) + d(x, c′) = w(c)−
w(x) + d(x, c′), where c′ 6= c and c′ ∈ C. Hence, d(x, c′) ≥ w(x) + [d(c, c′)− w(c)].
Since c is of minimum weight, d(c, c′)− w(c) ≥ 0. Thus, d(x, c′) ≥ w(x). But since
x 6∈ D(0), then x ∈ Dc(c), and x 6∈ Dc(c

′). Therefore, c ∈ ZC.

5. Analysis of the size of a Zero-Coverings. In this section we give sizes
of Zero-Coverings for some short codes that are obtained by computer searches. For
long codes, an asymptotic bound on the size of a Zero-Coverings is given. As pointed
out in section 2, the space and time complexity of the ZCA are determined by the
size of a ZC. Therefore, we will focus on the discussion of the size of a ZC.
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In Table 1 we give the sizes of the Zero-Coverings for some linear block codes.
We also indicate, for comparison, the numbers of codewords and coset leaders for
those codes. Since finding a ZC is an NP-hard computational problem (the minimum
covering problem), for some codes we can obtain only upper bounds on the sizes of a
ZC. The algorithm for solving the minimum covering problem used here is modified
from the approximation algorithm given in [5].

Table 1
The sizes of Zero-Coverings for some linear block codes.

code(n, k, dmin) 2k 2n−k |ZC|
BCH(15, 7, 5) 128 256 63
QR(17, 9, 5) 512 256 ≤ 76

BCH(21, 12, 5) 4096 512 ≤ 189
QR(23, 11, 8) 2048 4096 506
QR(31, 16, 7) 65536 32768 ≤ 2271
QR(47, 24, 11) 16777216 8388608 ≤ 17296

Now we give an asymptotic bound on the size of a ZC for long codes. The
asymptotic bound will be characterized by the function

FZC(R) = lim
n→∞ 1/n log2 |ZC|,

where R = k/n is the code rate [9].
Theorem 5.1.

FZC(R) ≤ H2(2H−1
2 (1−R))− (1−R) when R > 0.1887,

≤ R otherwise,

where H2(x) is the binary entropy function of x and H−1
2 is the inverse of H2(x) for

0 ≤ x ≤ 1/2.
Proof. For large n, the size of a ZC can be estimated by using the following

facts:
1. The number of codewords with weight j, aj can be estimated by aj =(

n
j

)
/2n−k for j ≥ dmin [11].

2. For virtually all linear (n, k) codes,

r = nH−1
2 (1−R) + o(n),

where o(n) denotes a function satisfying limn→∞ o(n)/n = 0 [4, 2, 8, 3].
3. For virtually all linear (n, k) codes, dmin ≥ nH−1

2 (1−R) + o(n) [11, 3].
By Theorem 4.5 and fact 1, we have

|ZC| ≤
2r+1∑
j=dmin

aj .

By facts 2 and 3, the above inequality will be

|ZC| ≤ (r + 2)B,

where B is the largest value among admin , admin+1, . . . , and a2r+1.
If 2r + 1 ≤ bn/2c, then

B = a2r+1;
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otherwise

B =

(
n

bn/2c
)
/2n−k.

By calculation, when R > 0.1887, 2r+1 ≤ bn/2c, where r = nH−1
2 (1−R)+o(n).

Furthermore, by the relation

2nH2(λ)−o(n) ≤
(
n

λn

)
≤ 2nH2(λ),

we have

B = 2n[H2(2H−1
2 (1−R))−(1−R)] when R > 0.1887,

= 2k otherwise.

Since r + 2 = nH−1
2 (1 − R) + o(n) + 2 � 2k or 2n[H2(2H−1

2 (1−R))−(1−R)] when n
is large, then

|ZC| ≤ 2n[H2(2H−1
2 (1−R))−(1−R)] when R > 0.1887,

≤ 2k otherwise.

Therefore,

FZC(R) ≤ H2(2H−1
2 (1−R))− (1−R) when R > 0.1887,

≤ R otherwise.

We remark here that the asymptotic bound turns out to be the same as that for
the size of a Zero-Neighbors presented in [9] that is based on a geometric argument.
However, the argument used here is simpler and more direct than that used in [9].

6. Conclusions. In this paper we have presented an improved ZNA-like decod-
ing algorithm, the Zero-Coverings algorithm. The time and space complexity analysis
of this algorithm are also given. Although the asymptotic bound given here indicates
that the complexity of this algorithm is growing exponentially with code length n,
from the computer simulation, a good computation gain can be obtained. For exam-
ple, by the results in Table 1, the computation gain for code (47, 24, 11) is at least
(223/17296)/24 = 20. However, due to limitation of the memory and computation
power of the computer, we can obtain simulation results only for short codes.

The decoding procedure presented here is a complete decoding procedure [11].
That is, the procedure always finds the codeword that is closest to the received vec-
tor. The procedure can be modified to an incomplete decoding (bounded-distance
decoding) procedure in order to further reduce the decoding computation needed.
Furthermore, although the decoding algorithm presented in this paper is designed for
binary linear block codes, it can be generalized to nonbinary linear block codes.

Appendix. In this appendix we give an example to show that ZGA is not an
optimal ZNA-like algorithm. Let code (12, 5, 3) be a linear code generated by the
following generating matrix:

G =


1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1

 .
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From computer simulation we have

ZG = ZC ∪ {111100000000},

where ZC is a set containing 12 codewords. Thus, |ZC| is less than |ZG|.
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